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Abstract
In order to design the most effective systems of vibra-

tion control of a distributed elastic object, it is necessary
to have a model of this object, which would allow one
to obtain the control results numerically without experi-
ment. This gives an opportunity to compare the results
of different control systems with each other and choose
the most efficient ones. The paper is concerned with nu-
merical simulation of the results of experimental study
on suppression of forced vibrations of a cantilever metal
beam with piezoelectric sensors and actuators by finite
element method. The new designed control systems are
based upon the results of numerical simulation and turn
out to be more effective than those tested in the exper-
iment. The numerical results previously received for
modal control systems were significantly improved by
using the optimization procedure, which allows one to
select the optimal parameters of the filters used in the
feedback loops of the designed control systems.
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1 Introduction
The specific feature of control of distributed elastic

systems is that these systems formally have an infinite
number of degrees of freedom, therefore, they are not
completely controllable and observable. In addition,
these systems have an infinite number of resonances, and
the resonance vibrations present the greatest danger to
their operation.

Among the generally accepted approaches to the ac-
tive vibration control of distributed systems there are two

well-known approaches: local and modal ones. A local
or a decentralized method implies that the control action
applied at some point of the system depends entirely on
deformations or displacements of the system measured
at this particular point, thus, local sensor-actuator con-
nections are used. A modal approach is based on the
separate control of different vibration modes of the elas-
tic object, while the whole array of available sensors and
actuators is used to control each mode. Article [Belyaev
et al., 2018] gives an experimental comparison of these
two approaches for the problem of suppression of forced
bending vibrations of a cantilever metal beam. As a re-
sult of this study, the advantage of the modal method
over the local one was demonstrated in cases where it is
necessary to suppress vibrations of the object at several
resonance frequencies.

The modal approach to vibration control of elastic
systems was first formulated in [Gould and Murray-
Lasso, 1966] and further developed in [Meirovitch,
1990; Meirovitch et al., 1983]. The theoretical founda-
tions of the modal approach are also described in the au-
thor’s works [Belyaev et al., 2017; Belyaev et al., 2018;
Fedotov, 2019]. Either distributed sensors and actua-
tors as modal filters [Lee and Murray-Lasso, 1990] or
arrays of discrete control elements [Zenz et al., 2013]
can be used for tracking and control of individual vi-
bration modes of the elastic object in the modal control
system. In the latter case, there arises a problem of iden-
tifying the control object related to determining the mu-
tual influence of various control elements and different
vibration modes of the object. This problem is usually
solved either by the finite element modelling of the ob-
ject [Braghin et al., 2012; Canciello and Cavallo, 2017;
Cinquemani et al., 2015] or analytically [Biglar et al.,
2015; Song et al., 2018]. An experimental procedure for
identifying the object in order to create a modal control
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system was proposed by the author in [Belyaev et al.,
2017]. For active vibration control of distributed elastic
systems piezoelectric sensors and actuators are widely
used as control elements due to their high operational
characteristics.

The present paper continues the experimental study
[Belyaev et al., 2018] and the numerical research [Fe-
dotov, 2019]. The aim of this work is to numerically
reproduce the main experimental results and to design
new control systems that are more effective than systems
previously obtained experimentally and numerically. For
design of the control systems the optimization procedure
for the transfer function parameters in the control loops
is used, which allows one to compare the efficiency of
control systems with different parameters and choose the
best from these variants.

The first part of the article discusses the setting up of
the experimental study on the control of forced bending
vibrations of a metal beam and the results of operation
of different local and modal control systems. Then the
finite-element models of the control object are described
and the comparison of the numerical and experimental
results is presented. After that, the numerical procedure
for calculating the control results using the frequency
response functions of the object obtained by the finite-
element method and known control laws is formulated,
and the numerical results for previously designed control
systems are given. In the final section of the article, new
control systems are synthesized that are more effective
than those tested in the experiment.

2 Experimental Setup
All stages of the experimental study are described in

detail in [Belyaev et al., 2018].
The experimental setup is shown in Fig. 1. A control

object is an aluminium beam (1) 70 cm long with a rect-
angular cross-section 3 × 35 mm mounted in a vertical
position at one point at the distance of 10 cm from the
lower end. This beam experiences forced bending vibra-
tions caused by the longitudinal vibration of the piezo-
electric stack actuator (2), which is a part of the fixa-
tion connecting the beam with the stationary base (3).
For suppression of the forced beam vibrations, rectangu-
lar piezoelectric sensors (4) and actuators (5) are used.
Sensors and actuators are connected through a digital
controller that converts the measured signals into con-
trol signals in accordance with the specified control al-
gorithm.

The main purpose of the experimental setup is to im-
plement experimentally and compare with each other the
local and the modal approaches to active vibration con-
trol of the beam. Two sensor-actuator pairs are used for
control purposes, this allows one to realize both local
control with two feedback loops and modal control of
two vibration modes of the beam. The objective of all
the created control systems is to reduce the amplitude of
forced bending vibrations of the beam in the frequency
range, which includes the first and the second resonance

frequencies. The quality of control is determined by the
vibration amplitude of the point at the upper end of the
beam, which is measured by a laser vibrometer.

Figure 1. The experimental setup.

The actuators and sensors used are the rectangular
patches of piezoelectric material with the dimensions
50 × 30 × 0.5 mm covered by electrodes on both
sides. The operation of such elements in control-
ling the Bernoulli-Euler beam vibrations is described in
[Preumont, 2006]. When an electric voltage is applied to
the actuator electrodes, the piezoelectric layer stretches
or contracts, leading to the bending deformation of the
beam sector, which the actuator is attached to. Thus, the
action of the actuator on the beam is equivalent to ap-
plying to the two sections of the beam (end sections of
the actuator) a pair of bending moments opposite in sign.
The operation of the sensor is similar: when the sector
of the beam to which the sensor is attached is deformed,
the sensor material is stretched or compressed in the lon-
gitudinal direction, which leads to the appearance of an
electric voltage on the sensor electrodes measured as the
sensor signal. For maximum efficiency of control of the
first and the second bending modes of the beam, the sen-
sors and the actuators are located on the most deformed
regions of the beam when these modes are active. The
coordinates of the first and the second sensor-actuator
pairs, counted from the lower end of the beam:

110.5 mm 6 x1 6 160.5 mm,
377.5 mm 6 x2 6 427.5 mm.

In order to design the control systems, it is necessary
to measure frequency response of the control object. In
total, nine frequency response functions (FRFs) were ob-
tained in the frequency range from 1 Hz to 2 kHz: one
FRF for each of the three external excitations (one of
two patch actuators, the stack actuator) and each of the
three measured signals (one of two sensors, the vibrom-
eter). In addition, in order to create a modal control
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(a)

(b)

Figure 2. FRFs of the beam with and without control for different
control systems at the first (a) and the second (b) resonances (experi-
ment).

(a) (b)

Figure 3. Finite element beam models: the first one with one-
dimensional beam elements (a) and the second one with three-
dimensional solid elements (b).

system, it is necessary to determine matrices that spec-
ify linear transformations of the measured and the con-
trol signals (mode analyzer and synthesizer, [Gould and
Murray-Lasso, 1966]), providing separate control of the
first and the second bending modes of the beam. These
matrices were received from experiments in resonance
regimes, carried out in accordance with the identifica-
tion procedure described in [Belyaev et al., 2017]. Af-
ter that, different control laws were synthesized using
the frequency response design method [Dorf and Bishop,
2011; Franklin et al., 2006] based on the measured FRFs
of the system in order to suppress forced bending vibra-
tions of the beam.

As a result of experimental selection of the most ef-
fective control laws, two local and one modal system
were obtained. Their transfer functions are too long to
be given here; they are given in [Belyaev et al., 2018].
To measure the efficiency of the designed control sys-
tems, the frequency response of the beam was measured
for excitation with the stack actuator and measuring the
vibration amplitude of the point at the upper end of the
beam using the vibrometer. The measured FRFs for dif-
ferent control systems in the vicinity of the first and the
second resonances are shown in Fig. 2.

Local system #1 provides the reduction of the vibra-
tion amplitude at the first resonance by 12.7 dB, but it
fails to suppress the second resonance (amplitude grows
by 4.8 dB). Local system #2 is efficient at the second
resonance, providing the decrease in the vibration ampli-
tude by 18.9 dB, but it works worse at the first resonance
(reduction by 5.2 dB). The modal system is effective at
both resonances: the decrease in the vibration amplitude
is 15.7 and 17.9 dB, respectively. Therefore, the advan-
tage of the modal approach over the local one is demon-
strated in cases where it is necessary to suppress forced
vibrations of the object at several resonance frequencies.
This result is explained by the fact that in the modal con-
trol system, in contrast to the local one, each control cir-
cuit is tuned to operate efficiently at specific resonance
frequency and uses for this purpose all available sensors
and actuators.

3 Finite Element Modeling
One of the objectives of this work is to reproduce

numerically the results obtained in the experiment de-
scribed in the previous section. To this end, the mechan-
ical system under consideration was modeled in ANSYS
finite element software.

In total, two finite element models of the system were
created: the first one constructed of one-dimensional
beam elements and the second one constructed of three-
dimensional solid elements. The appearance of both
models is shown in Fig. 3.

The first model is much simpler than the second one:
it contains only 161 elements and 283 nodes, while the
second has 3534 elements and 21088 nodes. The differ-
ences between these two models are the following: in the
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first model the beam fixation is modeled by two springs
(longitudinal and torsional), and the piezoelectric effect
is not modeled directly. Instead of this, the actuator ex-
citation is specified by an application of forces and mo-
ments, and the sensor signal is calculated from the longi-
tudinal deformation of the piezoelectric material. In the
second finite element model, the beam fixation is mod-
eled entirely with the stack actuator and additional el-
ements, and the piezoelectric effect is modeled directly
by setting the properties of the piezoelectric material. In
both models, the same damping coefficient of 0.002 is
used for all vibration modes.

Using the finite element method, it is necessary to ob-
tain the nine frequency response functions of the control
object that were measured within the experiment. To do
this, a harmonic analysis of the system is performed in
the frequency range from 1 Hz to 2 kHz, where a har-
monic excitation is applied either to the piezostack actu-
ator (to the beam fixation point in the one-dimensional
model), or to one of the piezopatch actuators. As the re-
sults for each of the simulations, the voltage at the elec-
trodes of both sensors is measured, as well as the trans-
verse displacement of the point at the upper end of the
beam.

This gives the FRFs similar to those measured exper-
imentally. Fig. 4 shows one of these functions, corre-
sponding to the excitation of the beam vibrations using
the first actuator and measuring the signal using the sec-
ond sensor. Different lines correspond to the two finite
element models and the experimental data. It can be seen
that the numerical results are in good agreement with the
experiment. The model with three-dimensional elements
gives a slightly more accurate result than the one with
one-dimensional elements, therefore it is used in the fur-
ther study.

Figure 4. FRFs of the beam corresponding to the 1st actuator and the
2nd sensor (experiment and simulation).

4 Calculation of Control Results
Based on the results of finite element modeling, it is

necessary to obtain numerically the FRFs of the beam

corresponding to different control systems tested in the
experiment. These functions are derived from the exist-
ing FRFs of the beam without control in accordance with
the mathematical procedure described below.

Let three excitation sources act simultaneously on the
beam, namely, the electric voltage Ud applied to the
stack actuator, U1 applied to the first patch actuator,
and U2 applied to the second patch actuator. Three
quantities are measured: the transverse displacement of
the point at the upper end of the beam w, the voltage at
the electrodes of the first sensor Y1 and of the second
sensor Y2. The measured values are expressed through
the applied excitations using the transfer functions
Hd, H
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Let the control actions U1 and U2 depend on the mea-
sured signals Y1 and Y2 of the sensors as follows:

U1 = −R11Y1 −R12Y2,
U2 = −R21Y1 −R22Y2.

In this case, using simple mathematical transforma-
tions, we can express the displacement of the point at the
upper end of the beam w in terms of the voltage applied
to the stack actuator Ud:
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This method allows one to calculate the transfer func-
tions of the system with control based on the known
transfer functions of the system without control and se-
lected control laws. The FRFs stack actuator-vibrometer
obtained in this way nearby the first and the second res-
onances for different control systems synthesized within
the experiment is shown in Fig. 5.

The result of the local system #1 is the decrease in the
vibration amplitude at the first resonance by 15.1 dB and
an increase in the amplitude at the second resonance by
1.4 dB. The result of the local system #2 is the decrease
in the vibration amplitude at the first and the second res-
onances by 7 and 19.5 dB, respectively, while for the
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(a)

(b)

Figure 5. FRFs of the beam with and without control for different
control systems at the first (a) and the second (b) resonances (simula-
tion).

modal system, the reduction is 18.3 and 19.3 dB, respec-
tively. It should be noted that both the given numerical
values and the obtained curves are close to the experi-
mental results.

5 Design of New Modal Control Systems
The next stage of the work is devoted to the follow-

ing task: it is necessary to synthesize a new, most effec-
tive control system, based on the FRFs of the object ob-
tained numerically. This system should be modal, since
in the problem under consideration the modal approach
gives better results than the local one, as shown earlier
in the experimental study. In contrast to the experimen-
tal study, during the synthesis of the control laws, the
effectiveness of the created systems is defined not exper-
imentally, but numerically, which is much simpler and
faster. For this reason, it becomes possible to test a large
number of different variants of the transfer functions and
choose the most effecient one, that is, to take the transfer
function ensuring the greatest decrease in the amplitude
of forced vibrations of the beam at the first and the sec-

ond resonances.
The synthesis of optimal control laws for active vibra-

tion control of distributed elastic systems is a complex
and creative task. This issue is addressed in [Cazzu-
lani et al., 2012; Kim et al., 2011] considering funda-
mental control strategies such as PPF (positive position
feedback), NDF (negative derivative feedback) and some
others. In the present study, more complex control laws
are used in order to achieve greater efficiency.

The transfer functions for each loop of the designed
control systems is constructed using three different fil-
ters. The first one is a low-pass filter, which reduces the
signal amplitude at high frequencies and thus increases
the stability of the closed-loop system. The second one
is an inverse notch filter, which raises to the desired value
the phase of the control signal in the working frequency
domain so that at the required resonance frequency the
control action has the opposite phase with the external
excitation and can effectively compensate it. The third
one is a notch filter, which reduces the amplitude of the
signal at the resonance frequency where the risk of in-
stability is the highest, and thus allows one to raise the
overall gain value.

In order to create the most effective control systems,
a special algorithm in Matlab language is used, which
finds the optimal parameters of the filters used in each
feedback loop. This algorithm calculates and compares
with each other the control results for different sets of pa-
rameters of these filters. At first, it is necessary to spec-
ify the ranges for each of the varied parameter. Then,
for each set of the parameters within the specified range,
the algorithm finds the optimal gain value in the control
loop, which provides the most effective vibration sup-
pression and at the same time does not cause instability
in the closed-loop system. The control results are calcu-
lated from the FRFs of the beam using the procedure for-
mulated in the previous section, and the stability of the
system is analyzed using the Nyquist criterion. Finally,
the algorithm compares the control results for the sys-
tems under consideration and selects the most efficient
from them. This method allows one to obtain the best
control laws within the considered class of functions;
however, it does not guarantee that more efficient laws
cannot be received by using more complicated filters.

Previously, based on numerical results without using
the specified optimization procedure, a modal control
system #2 was obtained; this result is presented in [Fe-
dotov, 2019]. Transfer functions of the first and second
control loops of this system are the following:

R
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)
,

R
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)/(
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+1.5 · 106s4 + 4.1 · 108s3 + 4.2 · 1011s2+

+3.4 · 1013s + 2.6 · 1016
)
.
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As a result of the above optimization procedure, a new
control system is proposed with the following transfer
functions:

R
(3)
1 (s) =

(
172s4 + 1.5 · 104s3 + 4.2 · 108s2+

+1 · 1010s + 3.9 · 1011
)/(
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+2.7 · 106s3 + 1.5 · 109s2 + 1.3 · 1010s + 5.4 · 1012

)
,

R
(3)
2 (s) =

(
1.1 · 105s4 + 2.4 · 106s3 + 1.3 · 1011s2+
+1.3 · 1010s + 4.7 · 1013

)/(
s6 + 374s5+

+1.7 · 106s4 + 4.6 · 108s3 + 6 · 1011s2 + 8 · 1013s+
+6.2 · 1016

)
.

The results of both designed systems in comparison
with the modal control system obtained in the experi-
ment are presented in Fig. 6. As before, to determine the
quality of control, the frequency response of the beam is
analyzed at the first and the second resonances. In the
figure, system #1 was obtained within the experiment,
system #2 was designed within the numerical study with-
out using the optimization procedure, and system #3 was
synthesized using this procedure.

(a)

(b)

Figure 6. FRFs of the beam with and without control for different
modal control systems at the first (a) and the second (b) resonances
(simulation).

As can be seen from Fig. 6, system #2 gives a rather
small advantage in comparison with system #1: the de-
crease in the vibration amplitude at the first and the sec-
ond resonances is 23 and 20.7 dB, respectively, against
18.3 and 19.3 dB. At the same time, system #3 is much
more efficient, providing the amplitude reduction at the
first and the second resonances by 28.9 and 29.2 dB. This
means that the proposed method for the synthesis of con-
trol systems using the optimization procedure gives good
results.

All the numerical results for different control systems
obtained in the present study are summarized in Table 1.
For each control system, the difference between the res-
onance amplitudes of vibration of the upper endpoint of
the beam with and without control at the first and the
second resonances is presented. For local systems #1
and #2 as well as for modal system #1 both experimental
and numerical data are listed, while for modal systems
#2 and #3 only simulation results are given since these
two systems were not tested experimentally.

Table 1. Change in the level of endpoint vibrations of the beam for
different control systems (experiment and simulation)

Control system ∆w1, dB ∆w2, dB

Local #1
exp. −12.7 4.8

sim. −15.1 1.4

Local #2
exp. −5.2 −18.9

sim. −7 −19.5

Modal #1
exp. −15.7 −17.9

sim. −18.3 −19.3

Modal #2 sim. −23 −20.7

Modal #3 sim. −28.9 −29.2

6 Conclusion
In the framework of the present study, a numerical sim-

ulation of a cantilevered metal beam with piezoelectric
sensors and actuators was performed. An experimen-
tal study of this system is described in [Belyaev et al.,
2018]. Two finite element models of the system are cre-
ated: a simplified model with one-dimensional beam el-
ements and a more complex one with three-dimensional
solid elements. The frequency response functions ob-
tained as a result of the analysis of these models for dif-
ferent variants of excitation and measurement are close
to experimental, while the result received for the second
model turned out to be more accurate.

Based on the frequency response of the control object
obtained numerically, solutions to the problem of beam
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vibrations in the presence of control were derived for dif-
ferent control systems tested in the experiment. As a re-
sult of using each of the control systems, a decrease in
the vibration amplitude of the point at the upper end of
the beam at the first and the second resonances of bend-
ing vibrations of the beam was analyzed. The results of
using these systems obtained numerically turned out to
be slightly more efficient than the experimental ones, but
in total, they are in good agreement with each other.

Numerical modeling of the control object made it pos-
sible to design new modal control systems that are more
efficient than the systems synthesized within the exper-
iment. The efficiency of modal system #2 described in
[Fedotov, 2019] is slightly higher than the efficiency of
experimental modal system #1, while system #3, synthe-
sized in the framework of the present study, gives a sig-
nificantly better result. Namely, system #3 provides the
level of beam vibrations approximately 10 dB lower than
system #1 at both resonances. The result obtained is ex-
plained by the fact that system #3 was created using the
optimization procedure for the parameters of the transfer
functions in the control loops. Therefore, the proposed
method allows one to create active control systems that
effectively reduce the amplitude of the forced vibrations
of a distributed elastic object.
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