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Abstract
We study social systems of agents without special ad-

hoc rules in time development. Only random exchange
of resource is done among agents. Bose distribution
in units of resource holds when we cannot identify
characteristic or individuality of each agent in our sys-
tems. The Bose distribution holds even for systems
with only a few agents. Rules regarding what is ex-
changed among agents are also explicitly given.
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1 Introduction
We have so far various studies[Deguchi and Kijima,

2009; Axelrod and Cohen, 1999; Epstein and Axtell,
1996] on social systems using method of multi-agent
that was pioneered by [Schelling, 1971]. Simulation by
specified rules on element agents leads to correspond-
ing results. There are possibilities that someone can
purposely make specified rules to guide our society to
some political aim based on his simulation results. To
avoid the possible situation, we should take rules that
govern agent behavior as natural as possible. In the
literature[Oosawa, 2011], systems of agents have been
studied where they only exchange their resources by
equal chance without any ad-hoc specified rule. Dis-
tribution of resources was shown to become statistics
that we fit as Boltzmann distribution. As we also reex-
amine in the paper, even among a few agents statistics
met that of Boltzmann. Oosawa’s method is applicable
also to social systems, although he is interested mainly
in biochemistry[Kawamura and Maruyama, 1970]. In
various social statistical research, it is tacitly assumed
that we can identify who contributes to each point in
the background data. But is this identification abso-
lutely necessary? For example, in distributing a profit
obtained especially among unskilled laborers, manage-
ments are interested in numbers of them corresponding
to a level of salary rather than a detailed information

who takes how much salaries. In this paper, we take so-
cial systems of agents where we cannot identify charac-
teristic or individuality of each agent. We call such an
agent as quantum agent while the ordinary one as clas-
sical agent. We examine an exchange rule that is not
ad-hoc and that we can fit as “Bose distribution” well-
known in quantum statistics. This is done by extending
Oosawa’s method. We show appropriate dependence
of results on agent number X and resource number Y .
As identifying character of each agent is considered as
meaningless, we anticipate resource distributing under
Bose or Fermi statistics. We have no maximum units of
resource and the resulting statistics will be Bose type.
First in 2, we review the problem[Oosawa, 2011] of

sharing finite resources among finite number of agents.
After showing a rule of exchanging resource in 2.1, we
restrict ourselves to systems with resources of Y = 3
units among X = 3 agents to clarify specified numeri-
cal values as easily as possible. We give explicit calcu-
lation of trends in 2.2 according to transition matrix and
quantitative fitting of resource distribution in 2.3 as our
contribution to the problem. To individuality of each
agent, we put out of consideration in 3. We character-
ize an agent system only as an ensemble with specified
number of agents and resources. We consider in 3.1
fair exchange of resource. According to the results we
examine dynamics in 3.2 and show appropriate fitting
to “Bose distribution” in 3.3. In the studies of quantum
agents, we take a number of agents X and that of re-
sources Y as 10 ∼ 100. We also present dependence
of how appropriately the results fit to the Bose distribu-
tion on these X and Y . Summary and discussion are
given in 4. This article shows contents those presented
in a conference[Itami, 2012] with slight modifications.

2 Statistics in exchanging resource among agents
According to the literature[Oosawa, 2011], we study

a system of 3 agents where fair exchange of 3 units
of resources is done. After we show in 2.1 a rule of
exchange, system dynamics is explicitly calculated by
transition matrix in 2.2. Even for only X = 3 agents



and Y = 3 units of resources, the distribution of re-
sources is shown in 2.3 to become Boltzmann’s one.

2.1 Exchanging resource
Let us share 3 units of resource among 3 agents ac-

cording to the following rules

1. Any one of 9 combinations T → T ,T → E,T →
K , E → T ,E → E,E → K , K → T ,K → E
and K → K of agent giving to another one be-
ing given, is assumed to occur in an equal prob-
ability 1

9 . Fig.1 shows an exchange of T → E.

Figure 1. When Mr.T has a turn to give one unit of his resource

to Mr.E, we have a pattern where both Miss.K and Mr.T have no

resource while Mr.E monopolizes three units of resource.

When T gives his resource to E, E monopolizes
all resource while T and K become without any
unit of resource. Among the same agent, T → T ,
E → E or K → K , we also assume resource ex-
change that occurs also in a probability 1

9 . After
such exchange, obviously no change of state takes
place.

2. To an agent without any resource, we do not re-
quire anyone to lend a unit of resource. When
K has no unit of resource, as shown in Fig.2, an
request of K → E makes the present state un-
changed, as K has no unit.

Figure 2. When Miss.K has to give one unit of her resource, a pat-

tern of Mr.E with two units and Mr.T with one unit does not change

as she has no unit of resource.

Let us examine the following 10 patterns, from a1 to
d4, of resource distribution to study statistics of the
distribution. In the following formula (NT , NE, NK),
NX shows units of resource that Mr./Miss.X holds.

a1 = (3, 0, 0)
b1 = (2, 1, 0)
b2 = (2, 0, 1)

c1 = (1, 2, 0)
c2 = (1, 1, 1)
c3 = (1, 0, 2)
d1 = (0, 3, 0)
d2 = (0, 2, 1)
d3 = (0, 1, 2)
d4 = (0, 0, 3)

According to the above symbols, Fig.1 means a transi-
tion c1 → d1 and Fig.2 a transition of c1 → c1. When
we ignore individuality of each agent, only 3 patterns
will be considered instead of 10, a1 to d4, as shown in
3.1.

2.2 Representation of exchanging resource by
transition matrix

Transition according to the foregoing rules is ex-
pressed by a matrix among 10 patterns

PCl =
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(1)

This matrix PCl enables us to calculate a probability px

that the agent system takes a state x at time n + 1 as

⎡
⎢⎢⎣

pa1

pb1

· · ·
pd4

⎤
⎥⎥⎦

n+1

= PCl

⎡
⎢⎢⎣
pa1

pb1

· · ·
pd4

⎤
⎥⎥⎦

n

(2)

Fig.3 shows a time trend that starts an initial state
generated using appropriate uniform random numbers.
We see that a weight of any state approaches to 0.1 =
1
10 . Starting with any initial state gives the same result
as the transition matrix defined by (1) satisfies

(PCl)n −→
n→∞

1
10

× 110 (3)

where 1N is a N dimensional square matrix with every
element being 1.

2.3 Boltzmann distribution
As a result that every state a1,b1,· · · ,d4 occurs in an

equal probability, distribution for units of resource k is
fitted by the following one by Boltzmann

ρBltz(k) ≡ CBltz × e−βBltzk (4)



Figure 3. Probabilities of each state a1 to d4 vary according to

the transition matrix (1). All probabilities approach to 0.1 = 1
10 ,

where 10 is the number of these states.

3 Agent that has no individuality
Studies above discussed showed that by fair exchange

of resource among agents

1. every pattern of resource distribution occurs
in an equal probability: principle of a priori
probabilities

2. as a result of the equality, resource distribution fits
Boltzmann distribution

It is the point that the literature[Oosawa, 2011] em-
phasizes that at first distribution of resource unit fol-
lows Boltzmann distribution while principle of equal a
priori probabilities comes last. In our fair exchange,
Boltzmann distribution does work without assuming
principle of equal a priori probabilities.
After we characterize our system by “occupation

number” in 3.1, exchanging resource is described as
state transition in 3.2. We see in 3.3 that statistics of
resource distribution is approximated by Bose distribu-
tion for Y units of resource among X agents.

3.1 Resource exchange among agent without indi-
viduality

Let us assume that agent has no individuality. How
many units which agent has does not appeal us. We
are interested only in how many agents have their own
units of resource. This situation reduces a number 10
of states given in 2.1 to the following 3 states. In the
following |N0, N1, N2, N3 > indicates the state where
we have N0 agents without any unit of resource, N1

ones with 1 unit, N2 ones with 2 units and N3 agents
who monopolize 3 units of resource.

α = |2, 0, 0, 1 >
β = |1, 1, 1, 0 >
γ = |0, 3, 0, 0 >

For example, Fig.1 shows a transition of β → α when
we paint any face of Teturo, Eric and Karin that char-
acterize his/her individuality into black. A transition
corresponding to Fig.2 is equal to β → β.

3.2 State transition
We examine dynamics that governs state transitions

similarly as in 2.2.We take into account that our agents
have no individuality. Exchange of resource only by
1 unit allows the following 10 patterns. For example,
0 → 1 shows an operation (N0 → N0− 1,N1 → N1 +
1,N2 → N2 and N3 → N3) that we reduce a number
N0 of agents without any resource by 1, while a number
N1 of agents who have 1 unit is increased by 1.

0 → 0
0 → 1
1 → 0
1 → 1
1 → 2
2 → 1
2 → 2
2 → 3
3 → 2
3 → 3

We calculate how each state α, β and γ changes. Re-
garding a method of calculation Fig.4 shows an ex-
ample how the state α changes by a transition 0 →
1. According to (a) in this Fig.4 we must take

Figure 4. The transition of 0th level to 1st level for the state α
is shown in (a). In the transition, first one of the agents in the 0th

level goes up to 1st level as shown in (b). To conserve total units of

resource, we have two options of 1© and 2©, which lead to the
state β or α as shown in (c), respectively.

one(encircled gray mass) of N0 = 2 to upper state re-
sulting (b). As an agent system denoted in (b) has 4
units of resource, we must reduce, by 1 level, recource
by any one of agents. Candidates that we can lower his
level are only 1© or 2©. Probability of choosing one
of these two agents is equally 1

2 . (c) shows the results
when 1 unit of 1© or 2©is lowered. A state α changes
in an equal probability to β or α according to a transi-
tion 0 → 1. Calculation for all transitions for all states
gives the following transition matrix

PQm =

⎡
⎣
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1
10

0 1
10

9
10

⎤
⎦ (5)



Use of this transition matrix allows us to calculate a
probability px where the agent system takes a state x
as follows

⎡
⎣

pα

pβ

pγ

⎤
⎦

n+1

= PQm

⎡
⎣

pα

pβ

pγ

⎤
⎦

n

(6)

Time trends are calculated as thin solid line(a state
α),dashed line (β) and dotted line(γ) in Fig.5.In the
Fig. we overwrite by thick lines “direct” simulation
by uniform random number starting with an appropri-
ate initial condition. We easily see that both thick and
thin lines converge to a common value of 1

3 . Similarly
to (3), that thin lines converge to 1

3 is a result of

(PQm)n −→
n→∞

1
3
× 13 (7)

Figure 5. Trends according to transition matrix and probabilistic

simulation are simultaneously drawn. Approaching to the equal

probability 1
3 are seen in both trends.

3.3 Bose distribution
In generalizing these results above, we assume prin-

ciple of equal a priori probabilities even when a
number X of agents or resource units Y increase.
When we restrict ourselves to processes where Y units
of resource are exchanged among X agents we be-
lieve that lengthy but straightforward calculation in
larger values of X or Y directly proves the principle.
Under an assumption that the principle of a priori equal
probabilities holds both in quantum agents without in-
dividuality and ordinary classical agents, we calculate
distributions of resource units. The results are shown
in Fig.6, where (a) corresponds to quantum agents
while (b) to classical agents. We set agent number as

Figure 6. Number density of systems of quantm agents are given

in (a) that is approximated by Bose distribution, while in (b) that of

classical agents is approximated by Boltzmann distribution. We set

here Y = 20 tips distributed over X = 100 agents.

X = 100, and total units of resource Y = 20. In these
Figures (a) and (b), we set Bose distribution as

ρBose(k) ≡ 1
1

CBose
eβBosek − 1

(8)

In both (a) and (b), we show Boltzmann distribution
defined by (4) as dashed line and Bose distribution
of (8) as dotted line. These overwriting show that
in (a) resource distribution among quantum agents is
close to Bose distribution, while the distribution close
to Boltzmann’s one in (b). How close these are can

Figure 7. Sum of squared error in number distribution of quantum

agents from Bose distribution and Boltzmann distribution are given

in (a). Figure (b) shows those for classical agents.

be expressed quantitatively by square residual sum that
are given in Fig.7. This Fig.7 explicitly presents that
quantum agents can be expressed by Bose distribu-
tion while cannot be expressed as Boltzmann distribu-
tion. Oppositely classical agents can be represented by
Boltzmann distribution, while it is difficult to see this
as Bose distribution. These calculations above restrict
us to take agent number X = 100 and resource units
Y = 20. Now let us examine how the residuals de-
pends on these values of X and Y . These are writ-
ten in Fig.8, where in (a) Y = 5, while in (b) residual
error for Y = 20 are plotted for each agent number



Figure 8. Dependence of error on the number of agents are shown

in (a) and (b) for quantum agents. For classical agents we show (c)

and (d). Two systems of total energy = 5 and = 20 are calculated.

X ≤ 100. Residual error monotonically decrease as
increase of agent numbers. Also this decrease in com-
paring (a) with (b) is seen for more units of total re-
source. These observation of the data is consistent with
intuition.

4 Summary and discussion
Among agents without any individuality, we exam-

ined a fair share of resource in a similar way adopted
in the literature[Oosawa, 2011]. We cannot identify
an agent, who has a specified number of units of re-
source. The fair sharing led the result that resource dis-
tributes among agents according to “Bose” distribution.
The results for quantum agents were obtained as vari-
ous simulation showed the principle of a priori equal
probabilities. Error of fitting to Bose distributions was
shown to decrease as a number X of agents of total
units Y of resource increase. In various social statis-
tical research, it is tacitly assumed that we can iden-
tify who contributes to each point in the background
data. It is interesting that what can be claimed when
individuality is completely eliminated. Furthermore
we have an interesting argument[Tanji, 1977] that even
“rice grain” that we tacitly believe their individuality
can probably obey Bose or “Fermi” statistics. It is nec-
essary to examine what relation is laid between such
argument and our present research.
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