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Abstract In general F; andH;; are smooth; in this paper we will
A continuous approximation of a discontinuous, suppose they are linear.

second-order, linear system is presented. The discon- These systems have been analyzed with several tools,

tinuous system includes a signum function, approxi- like the convex method of Filippov [Filippov, 1988].

mated by a saturation-type function, whose complex Furthermore, some conditions to have diverse kinds of

dynamics is analyzed based on some recent results. Atypical bifurcations of discontinuous systems are given

numerical comparison between the analytical solutions in [di Bernardoet al, 2008].

of both systems shows the accuracy of the approxima- A different approach reported in many works is to

tion. use continuous functions to approximate discontinuous
systems [Danca and Codreanu, 2001], applying well
known analytical results of ordinary differential equa-

Key words _ o tions. For example, [Feckan, Awrejcewicz and Olejnik,
Discontinuous system; piecewise-linear systems; con-,005] yse continuous approximations to calculate peri-
tinuous approximation; strange invariant. odic orbits. However, discontinuous systems can have

dynamical behavior not possible to reproduce by con-
tinuous systems, and the accuracy of the approximation
is very often evaluated numerically, giving satisfactory
results in many cases.

In this paper we use a continuous approximation to an-
alyze the existence of complex, chaotic-type orbits, in
a class of second-order, piecewise-linear systems. We
approximate the discontinuous term, given by a signum
function, by a saturation function. From a comparison
of the explicit solutions of both systems, it can be ob-
served a good convergence of the approximated solu-
tion to the response of the discontinuous system. More-
over, by applying a result given by Kukucka [Kukucka,
2007], it is possible to calculate the so-called nons-
mooth Melnikov function, from which it is possible to

1 Introduction

Piecewise-smooth (PWS) systems have attired the at-
tention of many researchers in the last years. They de-
scribe with good accuracy important phenomena and
practical systems, like friction, impacts, commutation,
sliding motion, mechanical, electronic, and even bi-
ological systems. In consequence, they appear fre-
quently in several mathematical fields, in control the-
ory and engineering, and so on. Also, they can ex-
hibit particular behaviors like equilibria intervals,dli

ing motion, non-typical bifurcations (border collision,
grazing, sky blue, sliding, etc.), and chaotic dynamics.
An important class of PWS systems can be described

b . . : .
y predict a chaotic behavior of the approximate system.
Because this system can be arbitrarily approximated to
t=Fi(zx), ifxeS,i=1,---,m the discontinuous system, the ability to produce com-
plex orbits of this last system can be concluded.
whereS;, i = 1,2,- - ,m are open, disjoint sets " The paper is organized as follows. In sectmve

present the discontinuous system and its approxima-
tion. In Section3 we analyze the conditions the ap-
proximate system must satisfy to have a strange invari-
ant set. Explicit solutions of both systems are given
in Section4, and a numerical comparison of the corre-
Yy =8n8;={x:Hy(x)=0},i#j=1,---,m. spondingdynamical behavioris shown in Sectofi-

such that, S; = R", whereS; is the closure of;.
The border between the adjacent s&teind.S; can be
given by a functiort;;, that is,



nally, in Sectior6 some final comments are presented.

2 Discontinuous system

3 Chaaotic dynamics of the approximate system

The Melnikov method is a well known technique
to analyze the generation of homoclinic tangles of
second-order dynamical systems perturbed by a peri-

We consider a class of discontinuous, second-orderodic, small driving input. The nominal scenario as-

systems described by

1)

:.CI = T2,

To = —T1] — 25%2 + asign (5171> +u (t) )

where0 < ¢ < 1, a > 0, u(t) = rsin (wt), and the
discontinuous term is defined as

—1,if v < 0;
sign (v) :=<¢ 0, if v=0; (2)
1, ifv>0.

If x = (z1,22)T, a compact notation is given by

. JAr—b+q(t),if xy €5
x_{Az+b+q(t),ifz1€S+; (3)

where

0 1 0

(810 (oo~ ()

S~ = {z € R?|z; < (>)0}. The border surface is
thez,-axis, denoted by = {z € R?|z; = 0}.

2.1 A continuous approximate system

We approximate the discontinuous term (2) by a sat-
uration function that, forn a positive, integer number
(which will be, in general, a large number), is defined
as

—1,if nv < —1;
nv, if jnv|] <1;
+1, if nv > 1.

(4)

sat, (v) ==

The approximate system is then given by

Ax —b+q, if xleR_:{xeR2|nx1§—1};

=< Apz+q, ifx GR":{xER2||nx1| < 1};
Az +b+gq,if 21 € RT = {$6R2|n:p1 > 1};
(5)
where

sumes the existence of a saddle point giving place to
a homoclinic orbit, and the existence of periodic or-
bits inside the region encircled by the homoclinic tra-
jectory. This orbit persists under small enough pertur-
bations, and after that it can be broken, giving place to a
homoclinic bifurcation, producing eventually a strange
invariant set. The Melnikov method can be used to pre-
dict this last scenario.

This method works well for differentiable systems.
However, the nominal scenario may not be produced
by nonsmooth systems, particularly the homoclinic or-
bit with an infinite evolution time. Furthermore, clas-
sical results require smoothness of the vector field, and
the application of this method to nonsmooth systems is
not adequate. Nevertheless, some recent results given
by Kukucka [Kukucka, 2007] can be applied to the ap-
proximate (nonsmooth) system described before, and
the possible generation of chaotic orbits can be pre-
dicted for this kind of systems.

Let us assume that parametgi@ndr can be given by
¢ = ey andr = eR. Then system (5) can be described
by a perturbed system given by

(6)
o = —x1 + asat, (x1) + € [—'yzg + Rsin (wt)} .

:.CI = T2,

Whene = 0, system (6) can be described as a Hamil-
tonian system with a Hamiltonian function given by

(7)
where

.2 .

FAoa(m+5),if o <2
if |$1|§%§

), if $1>%.

zy
a3
2

Ty _ 1
2 @ (xl 2n

This system has three equilibrium points, two centers
at (£a,0) and a saddle point placed at the origin, with
two homoclinic orbits described by

(le\/a(t*Ftl)’ \/_Ee\/a(tﬂl)) , ift < —ty;
<a+ 29 cost, 7,/%Sint) , It <t
(Lot —Lemvatmt)) it > ty;

8

ug (t)

(63

wherea = an — 1 andt; = arccos (—w/i).



3.1 Melnikov function

The Melnikov function can be calculated with the help
of the results given by Kukucka [Kukucka, 2007], sum-
marized in the Appendix. Given the symmetry of the
vector field, we can analyze the right homoclinic orbit
in the intervall0, co); the other case is similar.

Let us describe system (5) in the following form (see
the Appendix),

|

wheref_ = (22,ax1)”, f1 = (zo, —21 +a)", g_
g+ = (0, —vx9 + Rsin (wt))T. The border surface

is given by>" = {:c € RQ}xl =1/n,z9 € [0,00)},

f-(x)+eg- (t,x), If €857, )
fo(x) +egy (t,2), if 2€8T;

which divides the sections S~
{IE € R? ‘ 0<x < 1/n,$2 € [0,00)}

and

St = {IL' € RQ‘xl > 1/n,x9 € [0,00)}.

The origin is a saddle point of = f (z), and the
homoclinic orbit crossey at the times; = —¢; and

T = t; in the pointsug (11) = (1/n, \/E/n)T and

ug (12) = (1/n,—\/6/n)T. We have that the system
is Hamiltonian, then D f_) = tr(D fy) = 0, and the
perturbation is periodic. Moreover, because the vector
field is continuous, a direct application of Theorem 2

of the Appendix needs only the calculation of the next
integral, equivalent to the smooth case,

M(@):/_

A straightforward calculation of this integral leads to

f(uo(t)) Ag(t+06,uo(t))dt. (10)

oo

M(@):f%ﬁ(lJr\/Etl)wL

2aR+/asin (wtl + arctan (%))

* (w2 —1)Vw?+a

cos (wh)

Note that, if M (6) = 0, then it has simple zeroes if,
and only if,

r

(W2 —-—1)Vw?+a

. a1

>‘%(1+\/5ﬁ1)

4 System solutions

In this section we obtain the solutions of the discon-
tinuous and the approximate systems, and show how
this last solution can be arbitrarily close to that of the
discontinuous system.

4.1 Discontinuous system
Because system (1) is piecewise linear, a solugon
can be obtained from the general solution of nonau-
tonomous, linear systems, yielding, forc S—,
(12)

$1 — o+ acos (wt) + bsin (wt)
¢2 + bw cos (wt) — aw sin (wt)

o (20,1) = <
where

P = e At (Bj cos (kAt) + By sin (kAt))

¢o = e 52! (By cos (KAL) + Bysin (kA))

At =t —tg, K V1-E€2 a —2réw/d, b =
r(1—w?)/d, d=(1—-w?)?+ (2w,

B; = a+ x1, — acos (wty) — bsin (wtg)

KBg = g, + &(x1, + ) — (a€ 4+ bw) cos(wtyp)
+(aw — bE) sin(wtp),

B3 = x9, — bw cos(w tp) + aw sin(wtyp),

KBy = =29, — 11, — @ + (a + bw§) cos(wto)
+(b — awf) sin(wty).

Forz € ST we have

¢3 + a + acos(wt) + bsin(wt)
¢4 + bw cos(wt) — aw sin(wt)

¢" (z0,1) = ( )(,

13)

¢3 = e AL cos (KAL) + Cysin (kAL)

¢4 = e 2By cos (kAt) + Cy sin (KAL)
where
C1 = — (o — w1, + acos (wtg) + bsin (wip))

kC = xoy + & (x1, — @) — (a€ + bw) cos (wip)
+ (aw — bE) sin (wty) ,



kCy = —a, — x1, + a + (a + bwf) cos (wtp) k1Dy = —x9,& + (an — 1) 21, + w (aw — bE) cos (witp)
+ (b — awf) sin (wtp) . +((1—an)b—aw§) sin (wto).

Similar to the discontinuous system (1), a complete
solution can be obtained by concatenating = ¢~
(12), o7 = o+ (13), andp? (15). For example, if
xo € RT, and the orbit enters regioR" at timet,,,,
then to regionkR~ at timet,,, and stay there, then we
have, for an intervalto, to + tn, + tn, + ), 0 > 0,
that the solution is given by

Because the interaction of the orbits with the disconti-
nuity surface is transversal, a complete solution can be
obtained by concatenating (12)-(13). For example, if
zg € ST andts denotes the switching time, then we
have, for an intervalty, to + o), o > 0, where there is
only one commutation, that the solution is given by

(20, 1) = ot (2o, ), for to <t < ty; O (z0,t) , to <t <ty
@ (Zo, 0 (60;15)7 for ty <t <ty +o0; ©On (aco,t): (pz (yo,t)7 tnl StStn2; (16)
(14) o (20,1) s tny <t <ty + 07

wheregy = ™ (20, ts).

whereyo = ¢}t (20, tn, ), 20 = @} (Yo, tns)-
4.2 Approximate solution
Similarly, the solutionp,, of (5) can be obtained by 5 Numerical results

concatenation of the orbits in the regioRs, R", and In this section we show some numerical results ob-
R, denotedp;,, ¢y, andy;’, respectively. tained from the explicit solutions presented in Sec-
Forz € R™ itis straightforward to obtaip,, = ¢. tion 4. These results were calculated with Mat{Sab
Similarly, forz € Rt we havep;” = . Finally, for Parameter values ae = 0.08, @ = 1, r = 1.1,
x € R", we can obtain the expression w = 7/10. The simulation interval was fromito 140
sec, and the integration stép = 0.001 sec. Initial
. 5 + a1 cos (wt) + by sin (wt) condi_tions were set toy = (O.1,_Q.1)T. We obtgined
on (2o, t) = <¢6 + byw cos (wt) — aywsin (wt)) ) the difference between the position and velocity of the

(15) two system responses, the discontinuous and the ap-
where proximate, for different values of the saturation slope
n € {2,25,500}. These results are shown in figures
1 and 2 for the position and the velocity, respectively.
¢5 = e A" (Dy cosh (k1 At) + Do sinh (k1 At)) Note that, forn > 500, the difference between both

Pg = eSO (D3 cosh (k1At) + Dy sinh (/ﬁAt))

k1 =& +an—1, a1 = —2réw/f,

r(l—omwa)

f

2
2
b = , f:(l—om—wQ) +(2wé)”,
Figure 1. Position difference between the discontinuous the
continuous system, far = 2, 25, 500

Dy = x1, — aq cos (wtp) — by sin (wtp) ,

systems is negligible. This difference can be arbitrarily

small if n is big enough. Moreover, condition (11) is

K1D2 = 22, + 21, — (1€ + brw) cos (wto) satisfied for big values of. This means that the dy-

+ (a1w — b1&) sin (wto) , namical behavior displayed by the approximate system

can be arbitrarily close to the discontinuous system.
Figures 3-5 show some responses of the discontinuous
system, for different parameter values satisfying con-

D3 = x9, — byw cos (wtp) + ajwsin (witp) , tidition (11).
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Figure 2. Velocity difference between the discontinuoud #re
continuous system, far = 2, 25, 500

Figure 3. Response of the discontinuous systemc; =

[0.001,0.01,6 =0.08,a=1,r=11,w=017

Figure 4. Response of the discontinuous systemc; =
[0.001,0.01,6 =0.0l,a=1,r=11,w=017

6 Conclusions

Figure 5. ¢; = [0.001, 0.01),¢ = 0.01, = 1,7 = 2,
w=01m

kind of systems to produce chaotic-like orbits can be

concluded. However, to prove that the discontinuous

system had the usual properties defining a system as
chaotic deserves a more profound analysis.
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A Melnikov method for discontinuous systems
Let us consider the system

i=f(x)+eg(t,x), tcR zcR? a7)
wheref (g) : G - R"*,G:=J x G’ C R x R", and

f andg satisfy the following assumptions,

() fandg have the form

The application of a recent result about the persistence
of homoclinic orbits in a class of nonsmooth systems,
and the possibility that a homoclinic bifurcation may
occur, has permitted to analyze the complex dynam-
ics exhibited by a piecewise linear system that can be
seen as an approximation of a discontinuous system.
From a comparison of the explicit solutions of both sys-
tems, it can be observed a good convergence of the ap-
proximated solution. From this fact, the ability of this

renen) ={f 005 TEE 69

whereG’ is partitioned in two disjoint, open sub-
sets S_, S; by a surfaceX, such thatG’ =
S_UXUS4. The surfaces is defined by a scalar
functionH : G’ — R, H € C",r > 1. The sub-
setsS_ y S, and the surfac& can be defined



by

S_={zeGH(z) <0}

Sy ={zeG'H(z)>0} (19)
Z ={z € G'|H (z) =0}
(i) The normal to the surfack is given by
n(z)=[DH ()", zeX  (20)

and it is chosen in such a way thafz) # 0 for
eachz € ¥.
(iii) There exist functionsi_ (k_) : J x D_ — R"
andhy (k_) : Jx D4 — R™with the properties
@ sS-_uxcD_,S5.UX C Dy, whereD_
andD, are domains irR"™.
(b) ho (k=) € C", hy (ky) e C™
(c)

f-(g-),Vte JVz e S_

f+ (g+) ,Vf S J,V.T S S+
(21)

Moreover, the following conditions hold,

1. The systemi: = f_ has an saddle poinf € S_.
2.
tr(Df-) =tr(Dfy) =0 (22)

in their respective domains.
3. gis aT-periodic function, that is, there exisis>

0 such that

gt+T,x)=g(tx) (23)

4. Letuyg (t) be the homoclinic trajectory of the equi-

librium zq, which has at least one transversal in-
tersection with®.

Theorem: 1. The functiond (¢, )}, € € (—e4,€4),0 €
R, can be expressed as

S T O

o=

2ip—1

+ ) [Au (+1,75,0) — A (j,rj,e)} 25)

j=1

M) +0 (62) . (29)

f(uo (£)) A g (t+6,uo(t))dt

2k
+ 30 (AT G+ 1, 0) - A% (o, 6)]

J=21i0

lwhered is a length of the projection of the vectat , (0) —
u? 4 (0) toline L.

Finally, we have the next theorem.

Theorem: 2. Let¢y be small enough, and all the con-
ditions (18)-(23) satisfied.

(i) If there exists a numbel, € R such that

M (60) =0, DM (60)#0,  (26)

then there exists a mappidg —! 0 : (—eg, g) —
R such that

6(0)=06 y d(e0(e) =0, Vee (—ep,€0).
(27)

(i) System (17) has a homoclinic solutiarie, ), cor-
responding to th&-periodic solutiony. o (0, &),

for eache € (—e¢q, €p).



