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Abstract
A continuous approximation of a discontinuous,

second-order, linear system is presented. The discon-
tinuous system includes a signum function, approxi-
mated by a saturation-type function, whose complex
dynamics is analyzed based on some recent results. A
numerical comparison between the analytical solutions
of both systems shows the accuracy of the approxima-
tion.
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1 Introduction
Piecewise-smooth (PWS) systems have attired the at-

tention of many researchers in the last years. They de-
scribe with good accuracy important phenomena and
practical systems, like friction, impacts, commutation,
sliding motion, mechanical, electronic, and even bi-
ological systems. In consequence, they appear fre-
quently in several mathematical fields, in control the-
ory and engineering, and so on. Also, they can ex-
hibit particular behaviors like equilibria intervals, slid-
ing motion, non-typical bifurcations (border collision,
grazing, sky blue, sliding, etc.), and chaotic dynamics.
An important class of PWS systems can be described

by

ẋ = Fi(x), if x ∈ Si, i = 1, · · · ,m

whereSi, i = 1, 2, · · · ,m are open, disjoint sets inRn

such that∪m
i=1S̄i = R

n, whereS̄i is the closure ofSi.
The border between the adjacent setsSi andSj can be
given by a functionHij , that is,

Σij := S̄i∩S̄j =
{

x : Hij (x) = 0
}

, i 6= j = 1, · · · ,m.

In general,Fi andHij are smooth; in this paper we will
suppose they are linear.
These systems have been analyzed with several tools,

like the convex method of Filippov [Filippov, 1988].
Furthermore, some conditions to have diverse kinds of
typical bifurcations of discontinuous systems are given
in [di Bernardoet al, 2008].
A different approach reported in many works is to

use continuous functions to approximate discontinuous
systems [Danca and Codreanu, 2001], applying well
known analytical results of ordinary differential equa-
tions. For example, [Feckan, Awrejcewicz and Olejnik,
2005] use continuous approximations to calculate peri-
odic orbits. However, discontinuous systems can have
dynamical behavior not possible to reproduce by con-
tinuous systems, and the accuracy of the approximation
is very often evaluated numerically, giving satisfactory
results in many cases.
In this paper we use a continuous approximation to an-

alyze the existence of complex, chaotic-type orbits, in
a class of second-order, piecewise-linear systems. We
approximate the discontinuous term, given by a signum
function, by a saturation function. From a comparison
of the explicit solutions of both systems, it can be ob-
served a good convergence of the approximated solu-
tion to the response of the discontinuous system. More-
over, by applying a result given by Kukučka [Kukučka,
2007], it is possible to calculate the so-called nons-
mooth Melnikov function, from which it is possible to
predict a chaotic behavior of the approximate system.
Because this system can be arbitrarily approximated to
the discontinuous system, the ability to produce com-
plex orbits of this last system can be concluded.
The paper is organized as follows. In section2 we

present the discontinuous system and its approxima-
tion. In Section3 we analyze the conditions the ap-
proximate system must satisfy to have a strange invari-
ant set. Explicit solutions of both systems are given
in Section4, and a numerical comparison of the corre-
sponding dynamical behavior is shown in Section5. Fi-



nally, in Section6 some final comments are presented.

2 Discontinuous system
We consider a class of discontinuous, second-order

systems described by

ẋ1 = x2, (1)

ẋ2 = −x1 − 2ξx2 + αsign (x1) + u (t) ,

where0 < ξ < 1, α > 0, u (t) = r sin (ωt), and the
discontinuous term is defined as

sign (v) :=







−1, if v < 0;
0, if v = 0;
1, if v > 0.

(2)

If x = (x1, x2)
T , a compact notation is given by

ẋ =

{

Ax− b+ q (t) , if x1 ∈ S−;
Ax+ b+ q (t) , if x1 ∈ S+;

(3)

where

A =

(

0 1
−1 −2ξ

)

, b =

(

0
α

)

, q (t) =

(

0
r sin (ωt)

)

,

S−(+) =
{

x ∈ R
2|x1 < (>)0

}

. The border surface is
thex2-axis, denoted byΣ =

{

x ∈ R
2|x1 = 0

}

.

2.1 A continuous approximate system
We approximate the discontinuous term (2) by a sat-

uration function that, forn a positive, integer number
(which will be, in general, a large number), is defined
as

satn (v) :=







−1, if nv < −1;
nv, if |nv| ≤ 1;
+1, if nv > 1.

(4)

The approximate system is then given by

ẋ =











Ax− b+ q, if x1 ∈ R− =
{

x ∈ R
2|nx1 ≤ −1

}

;
Anx+ q, if x1 ∈ Rn =

{

x ∈ R
2| |nx1| ≤ 1

}

;
Ax+ b+ q, if x1 ∈ R+ =

{

x ∈ R
2|nx1 ≥ 1

}

;

(5)
where

An =

(

0 1
αn− 1 −2ξ

)

.

3 Chaotic dynamics of the approximate system
The Melnikov method is a well known technique

to analyze the generation of homoclinic tangles of
second-order dynamical systems perturbed by a peri-
odic, small driving input. The nominal scenario as-
sumes the existence of a saddle point giving place to
a homoclinic orbit, and the existence of periodic or-
bits inside the region encircled by the homoclinic tra-
jectory. This orbit persists under small enough pertur-
bations, and after that it can be broken, giving place to a
homoclinic bifurcation, producing eventually a strange
invariant set. The Melnikov method can be used to pre-
dict this last scenario.
This method works well for differentiable systems.

However, the nominal scenario may not be produced
by nonsmooth systems, particularly the homoclinic or-
bit with an infinite evolution time. Furthermore, clas-
sical results require smoothness of the vector field, and
the application of this method to nonsmooth systems is
not adequate. Nevertheless, some recent results given
by Kukučka [Kukučka, 2007] can be applied to the ap-
proximate (nonsmooth) system described before, and
the possible generation of chaotic orbits can be pre-
dicted for this kind of systems.
Let us assume that parametersξ andr can be given by
ξ = ǫγ andr = ǫR. Then system (5) can be described
by a perturbed system given by

ẋ1 = x2, (6)

ẋ2 = −x1 + αsatn (x1) + ǫ
[

−γx2 +R sin (ωt)
]

.

Whenǫ = 0, system (6) can be described as a Hamil-
tonian system with a Hamiltonian function given by

H(x1, x2) =
x2
2

2
+ V (x1), (7)

where

V (x1) =















x2

1

2 + α
(

x1 +
1
2n

)

, if x1 < − 1
n
;

−a
x2

1

2 , if |x1| ≤ 1
n
;

x2

1

2 − α
(

x1 − 1
2n

)

, if x1 > 1
n
.

This system has three equilibrium points, two centers
at (±α, 0) and a saddle point placed at the origin, with
two homoclinic orbits described by

u0 (t) =



















(

1
n
e
√
a(t+t1),

√
a

n
e
√
a(t+t1)

)

, if t ≤ −t1;
(

α+
√

aα
n

cos t,−
√

aα
n

sin t
)

, if |t| ≤ t1;
(

1
n
e−

√
a(t−t1),−

√
a

n
e−

√
a(t−t1)

)

, if t ≥ t1;

(8)

wherea = αn− 1 andt1 = arccos
(

−
√

a
αn

)

.



3.1 Melnikov function
The Melnikov function can be calculated with the help

of the results given by Kukučka [Kukučka, 2007], sum-
marized in the Appendix. Given the symmetry of the
vector field, we can analyze the right homoclinic orbit
in the interval[0,∞); the other case is similar.
Let us describe system (5) in the following form (see

the Appendix),

x′ =

{

f− (x) + ǫg− (t, x) , if x ∈ S−;
f+ (x) + ǫg+ (t, x) , if x ∈ S+;

(9)

wheref− = (x2, ax1)
T , f+ = (x2,−x1 + α)

T , g− =

g+ =
(

0,−γx2 +R sin (ωt)
)T

. The border surface

is given by
∑

=

{

x ∈ R
2
∣

∣

∣
x1 = 1/n, x2 ∈ [0,∞)

}

,

which divides the sections S− =
{

x ∈ R
2
∣

∣

∣
0 ≤ x1 < 1/n, x2 ∈ [0,∞)

}

and

S+ =

{

x ∈ R
2
∣

∣

∣
x1 > 1/n, x2 ∈ [0,∞)

}

.

The origin is a saddle point oḟx = f (x), and the
homoclinic orbit crosses

∑

at the timesτ1 = −t1 and

τ2 = t1 in the pointsu0 (τ1) =
(

1/n,
√
a/n

)T
and

u0 (τ2) =
(

1/n,−√
a/n

)T
. We have that the system

is Hamiltonian, then tr(Df−) = tr(Df+) = 0, and the
perturbation is periodic. Moreover, because the vector
field is continuous, a direct application of Theorem 2
of the Appendix needs only the calculation of the next
integral, equivalent to the smooth case,

M (θ) =

∫ ∞

−∞
f
(

u0 (t)
)

∧ g
(

t+ θ, u0 (t)
)

dt. (10)

A straightforward calculation of this integral leads to

M (θ) = −αγ
√
a

n

(

1 +
√
at1

)

+

+

2αR
√
a sin

(

ωt1 + arctan
(

ω√
a

)

)

(ω2 − 1)
√
ω2 + a

cos (ωθ)

Note that, ifM (θ) = 0, then it has simple zeroes if,
and only if,

∣

∣

∣

∣

∣

r

(ω2 − 1)
√
ω2 + a

∣

∣

∣

∣

∣

>

∣

∣

∣

∣

ξ

n

(

1 +
√
at1

)

∣

∣

∣

∣

. (11)

4 System solutions
In this section we obtain the solutions of the discon-

tinuous and the approximate systems, and show how
this last solution can be arbitrarily close to that of the
discontinuous system.

4.1 Discontinuous system
Because system (1) is piecewise linear, a solutionϕ

can be obtained from the general solution of nonau-
tonomous, linear systems, yielding, forx ∈ S−,

ϕ− (x0, t) =

(

φ1 − α+ a cos (ωt) + b sin (ωt)
φ2 + bω cos (ωt)− aω sin (ωt)

)

,

(12)
where

φ1 = e−ξ∆t
(

B1 cos (κ∆t) +B2 sin (κ∆t)
)

,

φ2 = e−ξ∆t
(

B3 cos (κ∆t) +B4 sin (κ∆t)
)

,

∆t = t − t0, κ =
√

1− ξ2, a = −2rξω/d, b =

r(1 − ω2)/d, d = (1 − ω2)2 + (2ωξ)
2,

B1 = α+ x10 − a cos (ωt0)− b sin (ωt0)

κB2 = x20 + ξ(x10 + α)− (aξ + b ω) cos(ωt0)

+(aω − bξ) sin(ωt0),

B3 = x20 − bω cos(ω t0) + aω sin(ωt0),

κB4 = −x20 − x10 − α+ (a+ bωξ) cos(ωt0)

+(b− aωξ) sin(ωt0).

Forx ∈ S+ we have

ϕ+ (x0, t) =

(

φ3 + α+ a cos(ωt) + b sin(ωt)
φ4 + bω cos(ωt)− aω sin(ωt)

)

,

(13)

φ3 = e−ξ∆tC1 cos (κ∆t) + C2 sin (κ∆t)

φ4 = e−ξ∆tB3 cos (κ∆t) + C4 sin (κ∆t)

where

C1 = −
(

α− x10 + a cos (ωt0) + b sin (ωt0)
)

κC2 = x20 + ξ (x10 − α)− (aξ + bω) cos (ωt0)

+ (aω − bξ) sin (ωt0) ,



κC4 = −x20 − x10 + α+ (a+ bωξ) cos (ωt0)

+ (b− aωξ) sin (ωt0) .

Because the interaction of the orbits with the disconti-
nuity surface is transversal, a complete solution can be
obtained by concatenating (12)-(13). For example, if
x0 ∈ S+ andtΣ denotes the switching time, then we
have, for an interval(t0, t0 + σ), σ > 0, where there is
only one commutation, that the solution is given by

ϕ (x0, t) =

{

ϕ+ (x0, t) , for t0 ≤ t < tΣ;
ϕ− (ξ0, t) , for tΣ ≤ t < tΣ + σ;

(14)
whereξ0 = ϕ+ (x0, tΣ).

4.2 Approximate solution
Similarly, the solutionϕn of (5) can be obtained by

concatenation of the orbits in the regionsR−, Rn, and
R+, denotedϕ−

n , ϕn
n, andϕ+

n , respectively.
Forx ∈ R− it is straightforward to obtainϕ−

n = ϕ−.
Similarly, for x ∈ R+ we haveϕ+

n = ϕ+. Finally, for
x ∈ Rn, we can obtain the expression

ϕn
n (x0, t) =

(

φ5 + a1 cos (ωt) + b1 sin (ωt)
φ6 + b1ω cos (ωt)− a1ω sin (ωt)

)

,

(15)
where

φ5 = e−ξ∆t
(

D1 cosh (κ1∆t) +D2 sinh (κ1∆t)
)

φ6 = e−ξ∆t
(

D3 cosh (κ1∆t) +D4 sinh (κ1∆t)
)

κ1 =
√

ξ2 + αn− 1, a1 = −2rξω/f,

b1 =
r
(

1− αn− ω2
)

f
, f =

(

1− αn− ω2
)2

+(2ωξ)
2
,

D1 = x10 − a1 cos (ωt0)− b1 sin (ωt0) ,

κ1D2 = x20 + ξx10 − (a1ξ + b1ω) cos (ωt0)

+ (a1ω − b1ξ) sin (ωt0) ,

D3 = x20 − b1ω cos (ωt0) + a1ω sin (ωt0) ,

κ1D4 = −x20ξ + (αn− 1)x10 + ω (aω − bξ) cos (ωt0)

+
(

(1− αn) b− aω ξ
)

sin (ω t0) .

Similar to the discontinuous system (1), a complete
solution can be obtained by concatenatingϕ−

n = ϕ−

(12), ϕ+
n = ϕ+ (13), andϕn

n (15). For example, if
x0 ∈ R+, and the orbit enters regionRn at timetn1

,
then to regionR− at timetn2

and stay there, then we
have, for an interval(t0, t0 + tn1

+ tn2
+ σ), σ > 0,

that the solution is given by

ϕn (x0, t) =







ϕ+
n (x0, t) , t0 ≤ t ≤ tn1

;
ϕn
n (y0, t) , tn1

≤ t ≤ tn2
;

ϕ−
n (z0, t) , tn2

≤ t ≤ tn2
+ σ;

(16)

wherey0 = ϕ+
n (x0, tn1

), z0 = ϕn
n (y0, tn2

).

5 Numerical results
In this section we show some numerical results ob-

tained from the explicit solutions presented in Sec-
tion 4. These results were calculated with MatLabc©.
Parameter values areξ = 0.08, α = 1, r = 1.1,
ω = π/10. The simulation interval was from0 to 140
sec, and the integration steph = 0.001 sec. Initial
conditions were set tox0 = (0.1, 0.1)

T . We obtained
the difference between the position and velocity of the
two system responses, the discontinuous and the ap-
proximate, for different values of the saturation slope
n ∈ {2, 25, 500}. These results are shown in figures
1 and 2 for the position and the velocity, respectively.
Note that, forn > 500, the difference between both
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Figure 1. Position difference between the discontinuous and the

continuous system, forn = 2, 25, 500

systems is negligible. This difference can be arbitrarily
small if n is big enough. Moreover, condition (11) is
satisfied for big values ofn. This means that the dy-
namical behavior displayed by the approximate system
can be arbitrarily close to the discontinuous system.
Figures 3-5 show some responses of the discontinuous
system, for different parameter values satisfying con-
tidition (11).
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Figure 2. Velocity difference between the discontinuous and the

continuous system, forn = 2, 25, 500
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Figure 3. Response of the discontinuous system.ci =
[0.001 , 0.01], ξ = 0.08,α = 1, r = 1.1,ω = 0.1 π
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Figure 4. Response of the discontinuous system.ci =
[0.001 , 0.01], ξ = 0.01,α = 1, r = 1.1,ω = 0.1 π

6 Conclusions
The application of a recent result about the persistence

of homoclinic orbits in a class of nonsmooth systems,
and the possibility that a homoclinic bifurcation may
occur, has permitted to analyze the complex dynam-
ics exhibited by a piecewise linear system that can be
seen as an approximation of a discontinuous system.
From a comparison of the explicit solutions of both sys-
tems, it can be observed a good convergence of the ap-
proximated solution. From this fact, the ability of this
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Figure 5. ci = [0.001 , 0.01], ξ = 0.01, α = 1, r = 2,

ω = 0.1 π

kind of systems to produce chaotic-like orbits can be
concluded. However, to prove that the discontinuous
system had the usual properties defining a system as
chaotic deserves a more profound analysis.
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A Melnikov method for discontinuous systems
Let us consider the system

ẋ = f (x) + ǫg (t, x) , t ∈ R, x ∈ R
2 (17)

wheref (g) : G → R
n, G := J ×G′ ⊂ R× R

n, and
f andg satisfy the following assumptions,

(i) f andg have the form

f (t, x)
(

g (t, x)
)

=

{

f− (g−) if x ∈ S−
f+ (g+) si x ∈ S+

(18)

whereG′ is partitioned in two disjoint, open sub-
setsS−, S+ by a surfaceΣ, such thatG′ =
S− ∪Σ∪S+. The surfaceΣ is defined by a scalar
functionH : G′ → R, H ∈ Cr, r ≥ 1. The sub-
setsS− y S+, and the surfaceΣ can be defined



by

S− =
{

x ∈ G′|H (x) < 0
}

S+ =
{

x ∈ G′|H (x) > 0
}

∑

=
{

x ∈ G′|H (x) = 0
}

(19)

(ii) The normal to the surfaceΣ is given by

n (x) =
[

DH (x)
]T

, x ∈ Σ (20)

and it is chosen in such a way thatn (x) 6= 0 for
eachx ∈ Σ.

(iii) There exist functionsh− (k−) : J × D− → R
n

andh+ (k−) : J×D+ → R
n with the properties

(a) S− ∪ Σ ⊂ D−, S+ ∪ Σ ⊂ D+, whereD−
andD+ are domains inRn.

(b) h− (k−) ∈ Cr, h+ (k+) ∈ Cr

(c)

h− (k−) = f− (g−) , ∀t ∈ J, ∀x ∈ S−

h+ (k+) = f+ (g+) , ∀t ∈ J, ∀x ∈ S+

(21)

Moreover, the following conditions hold,

1. The systeṁx = f− has an saddle pointx0 ∈ S−.
2.

tr (Df−) = tr (Df+) = 0 (22)

in their respective domains.
3. g is aT -periodic function, that is, there existsT >

0 such that

g (t+ T, x) = g (t, x) (23)

4. Letu0 (t) be the homoclinic trajectory of the equi-
librium x0, which has at least one transversal in-
tersection withΣ.

Theorem: 1. The functiond (ǫ, θ)1, ǫ ∈ (−ǫ4, ǫ4), θ ∈
R, can be expressed as

d (ǫ, θ) =
ǫ

∥

∥f+
(

u0 (t)
)∥

∥

M (θ) +O
(

ǫ2
)

, (24)

where

M (θ) =

∫ ∞

−∞
f
(

u0 (t)
)

∧ g
(

t+ θ, u0 (t)
)

dt

+

2i0−1
∑

j=1

[

∆u
(

j + 1, τj , θ
)

−∆u
(

j, τj , θ
)

]

+
2k
∑

j=2i0

[

∆s
(

j + 1, τj , θ
)

−∆s
(

j, τj , θ
)

]

(25)

1whered is a length of the projection of the vectoruu
ǫ,θ

(0) −
us
ǫ,θ

(0) to line L.

Finally, we have the next theorem.

Theorem: 2. Let ǫ0 be small enough, and all the con-
ditions (18)-(23) satisfied.

(i) If there exists a numberθ0 ∈ R such that

M (θ0) = 0, DM (θ0) 6= 0, (26)

then there exists a mappingCr−1 θ : (−ǫ0, ǫ0) →
R such that

θ (0) = θ0 y d
(

ǫ, θ (ǫ)
)

= 0, ∀ǫ ∈ (−ǫ0, ǫ0) .
(27)

(ii) System (17) has a homoclinic solutionx (ǫ, t), cor-
responding to theT -periodic solutionϕǫ,0 (0, ξǫ),
for eachǫ ∈ (−ǫ0, ǫ0).


