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Abstract
In this paper we consider optimal control of drying

systems which, by nature, require a large amount of
thermal or solar energy. An optimization procedure
searches for a minimum power consumed in various
one-stage and multi-stage operations of fluidized dry-
ing. In these investigations, applications of static opti-
mization and optimal control theory are essential. For
steady one-stage systems, methods of differential cal-
culus or Lagrange multipliers are usually sufficient to
obtain the optimization solution. However, for power
minimization in multi-stage drying systems (occasion-
ally supported by heat pumps) optimal control meth-
ods are necessary. As opposed to abundant previous
research on engines, we focus here on devices of heat
pump type or separator type (energy consumers), each
of them driven either by the radiative heat exchange or
by the simultaneous transfer of energy and mass. We
outline the dynamic programming procedure applied to
these systems, and also point out a link between the
present irreversible approach and the classical problem
of minimum reversible work driving the system.
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1 Introduction
Power data and limits on power yield are important

indicators of systems’ practical potential. They refer to
various energy systems, in particular thermal, chemical
and electrochemical engines and fuel cells. Thermal
systems are easier to treat, yet, for chemical or elec-
trochemical ones the search can involve extra, diverse
aspects, such as: reaction invariants, reference compo-
nents, process control, polarization data, kinetic effi-
ciencies, stability properties, etc. Evaluation of lim-
iting (maximum) power produced by various power
generators has recently been the subject matter of the

abundant, recent research, see, e.g., books and reviews
[Szwast, 1990], [Berry et al., 2000], [Sieniutycz, 2003],
[Sieniutycz, 2007], [Sieniutycz, 2012], [Sieniutycz and
Jeżowski, 2009] which refer the reader to correspond-
ing papers by many authors.
The sufficiency of physical considerations to quantify

consumed power and irreversibility in practical pro-
cesses is the fact well known for years; it enables one to
develop irreversible thermoeconomics without a prior
knowledge of standard economics. In particular, this
sufficiency refers to mechanical energy limits which
one evaluates with the help of classical (reversible) ex-
ergy or its irreversible extensions. In agreement with
Gouy-Stodola law [Bosniakovic, 1965], all these ex-
tensions contain a minimum of the entropy generated
within the system where minimizations are with respect
to physical quantities, e. g. flows. Consequently, all ir-
reversible extensions of exergy can be obtained without
any prior considering of process economies.
Since the use of power and efficiency formulae de-

rived from analysis of power generators can be ex-
tended to units which consume power, it is interesting
to develop similar analysis for units such as thermal
and solar heat pumps, drying separators and electroly-
sers. In this paper we focus on limits of power supplied
to some thermal drying systems possibly supported by
heat pumps.
While the general principles of energy consumption

in drying and evaporation operations have been de-
scribed in monographs, their application to drying,
especially to drying driven by mechanical power, is
still insufficient. Energy policy in drying has been
reviewed; [Strumillo, 1983], [Strumillo and Lopez-
Cacicedo, 1984], and [Strumillo and Kudra, 1981].
Exergy analyses of drying began [Bosniakovic, 1965]
and [Opman, 1967]. Development of exergy costs and
related drying optimizations can be found in papers
[Szwast, 1990] and boks [Sieniutycz, 1991]. Processes
supported by mechanical energy were initiated; [Zylla
and Strumillo, 1981] have advocated use of heat pumps
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to decrease thermal energy consumption in drying.
A meaningful reduction of drying exergy could be

achieved by the optimal control of many dryers; on the
average, the potential for exergy reduction is more than
20%. Some industrial data are, however, still reported
in terms of energy (enthalpy) rather than exergy effi-
ciency, and suffer from the lack of a strong link with
well established kinetic models.
Exact modeling of dried bodies naturally involves sets

of coupled partial differential equations for temperature
and moisture content. They are derived from the ir-
reversible thermodynamic formalism using Onsager’s
theory [Luikov and Mikhailov, 1968]. Yet, solvable
models of drying are most often lumped ones and deal
with space averaged properties. Graphical and numer-
ical solutions of the balance and kinetic equations are
effective [Ciborowski, 1965].
The potential for exergy saving in drying processes

through changes in design and operation is high.
Awareness of limited energy supplies prompts signif-
icant effort in developing recovery processes. Possible
operations and design modifications involve waste heat
recovery from solids, energy recuperation from gases,
application of heat pumps for waste energy upgrading,
recycling of exhausted drying agent, combinations of
mechanical and thermal drying, and use of solar en-
ergy.
Application of processes with consumption of me-

chanical energy and application of optimal control
principles gives certain extra potential for improving
the energy economy. Some of such processes use ther-
mal separators and heat pumps. The heat pump is in
principle the only device which would allow exploita-
tion of the low-exergy sources commonly available in
nature and industry. Heat pumps increase driving en-
ergy by adding low-quality energy taken from a low-
exergy source to it to obtain energy of high quality eco-
nomically. Analysis of power-assisted processes leads
to optimization-determined bounds on the mechanical
power input and exergy dissipation.
Power limits in practical processes with finite rates

may be evaluated for power released from an engine
system or power added to energy consuming system.
Two basic models of units consuming power (consid-
ered here) may be analyzed. Steady-state models [Zylla
and Strumillo, 1981], [De Vos, 1992], refer to situa-
tions when reservoirs are infinite. Whereas dynamical
models of power-consuming units treat the case with a
finite upper reservoir and gradually increasing chemi-
cal potential of the moisture [Sieniutycz and Jezowski,
2009].
In dynamical cases Lagrangian and Hamiltonian ap-

proaches to power functionals and optimization algo-
rithms using canonical equations are effective. Finite-
rate models incorporate minimum entropy production
caused by irreversible diffusion phenomena. Model-
ing a power-assisted operation for the purpose of dy-
namic limits is a difficult task. Evaluation of dy-
namic limits requires calculation of sequential opera-

tions [Sieniutycz, 1999], [Sieniutycz, 2003], [Sieniu-
tycz, 2004a], [Sieniutycz, 2006], [Sieniutycz and Je-
zowski, 2009], where total power yield is maximized
at constraints which describe dynamics of energy and
mass exchange. The dynamical model can be continu-
ous or discrete; the latter are frequent for computational
purposes. The results are limiting work functions in
terms of end states, duration and (in discrete processes)
number of stages [Sieniutycz, 1999]. A general the-
ory of optimal discrete systems, nonlinear in time in-
tervals, has recently be published in the present journal
[Poświata, 2012]. Application of continuous theory of
optimal control has been especially fruitful for chemi-
cal reactors with power production [Sieniutycz and Je-
zowski, 2009]. Another example is an optimal feed-
back control of traveling waves in a FitzHugh–Nagumo
model [Takeuchi, Konishi and Hara, 2012].
Modeling of power generation processes is consis-

tent with general philosophy of optimization [Szwast,
1988], [Berry et al., 2000], [Sieniutycz, 2006a], [Sie-
niutycz and Farkas, 2005], [Sieniutycz and Jezowski,
2009]. Finite-rate, endoreversible models include irre-
ducible losses of classical exergy caused by resistances.
Constraints take into account dynamics of mass trans-
port and rates of moisture flux. Optimal performance
functions, which describe dynamical extrema of power
and incorporate a residual minimum entropy produc-
tion, are determined in terms of end states, duration
and (in discrete processes) number of stages [Sieniu-
tycz, 2003a], [Sieniutycz, 2004a], [Poświata, 2003],
[Poświata, 2004], [Poświata, 2005]. Processes and sys-
tems at the frontiers of cybernetics and physics which
can be benefited from the control theory can be dis-
cussed and classified [Fradkov, 2012].
Similarly like in heat systems, in drying systems en-

hanced limits follow from constrained optimization of
total supplied power. Optimization analysis leads to
the dryer’s efficiency and limiting power [Berry et al.,
2000], [Sieniutycz, 2003b], [Sieniutycz and Jezowski,
2009]. Classical reversible theory is capable of de-
termining energy limits in terms of exergy changes
[Bosniakovic, 1965], [Opman, 1967], [Berry et al.,
2000]. Unfortunately, reversible limits are too distant
from reality (real energy consumption is much higher
than the reversible lower bound and/or real energy pro-
duction is much lower than the reversible upper bound).
Yet, by introducing rate dependent factors, irreversible

thermodynamics offers more realistic limits. Con-
sequently, irreversible cycles need to be considered,
Fig. 1).
Irreversible thermodynamics of finite rates (used here

and in many other works which deal with processes of
finite durations or those in equipments of finite size
[Sieniutycz, 2003a], implies enhanced limits on the
work consumption which are stronger (higher) than
those predicted by the classical work of thermodynam-
ics. These limits are identical or closer to those used
in engineering design. In this paper we focus on limits
evaluated when work is supplied to a heat pump which
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Figure 1. Designations and comparison of two basic cycles with
power production or consumption subject to internal and external dis-
sipation: power production in an engine and power consumption in a
heat pump.

heats a drying gas. They lead to estimates of minimum
work supplied to a heat pump.
Calculations of the minimum power show that the data

differ for power generated and consumed, and depend
on parameters of the system, e. g., flux densities, num-
ber of mass transfer units, polarizations, electrode sur-
face area, average chemical rate, etc.. These data pro-
vide bounds for dryers as energy consumers, which
are more exact and informative than classical reversible
bounds.
Nomenclature
A, a — cumulative and local heat exchange area, re-

spectively
A — finite time availability, generalized exergy
B, b — classical specific exergy of controlled and con-

trolling phase
c — specific heat at the constant pressure
e — specific consumption of work, or power supply

per unit mass flux
e — economic value of exergy unit
F — cross-sectional area of the controlled system
G — mass flux (∆Gn is the mass flux through stage n)
g1,g2 — partial conductances (g is overall conduc-

tance)
HTU — height of transfer unit
I — specific enthalpy of solid phase
i — specific enthalpy of gaseous phase
l — length coordinate
M — molar mass
N, n — total number of stages and current stage num-

ber
P, p — cumulative power output and stage power out-

put
Q, q — cumulative heat flux and heat flux to a stage
R — universal gas constant
R — performance criterion of cost type
r — specific heat of evaporation
S, s — specific entropy of controlled and controlling

phase, respectively
Sσ — intensity of entropy production per unit mass

flux

T — temperature of controlled phase (fluid or solid)
T e — constant temperature of thermal reservoir or en-

vironment
T ′ — Carnot temperature as an effective inlet temper-

ature of controlling phase
T1,T2 — temperatures of upper and lower reservoirs

(usually T2 = T e and T1 ≡ T )
T1′,T2′ — upper and lower temperature of circulating

fluid
t — physical time, contact time
u = ∆T/∆τ — rate of temperature change as control

variable
V — volume of physical system
v — linear velocity of controlled phase
W ≡ P/G — total specific work output, total power

per unit mass flux
Ŵ — absolute moisture content in solid
X -absolute humidity of controlling phase
x — transfer area coordinate
α’ — overall heat transfer coefficient
β — relative humidity
γ1, γ2 — coordinates of partial conductances (γ is an

overall conductance)
η = p/q1 — first-law efficiency
θ — interval of an independent variable or time at a

stage
µ — chemical potential
µ’ — coefficient of gas utilization
ρ — mass density
σ — entropy production
τ — non-dimensional time, number of the heat trans-

fer units (x/HTU)
Φ — factor of internal irreversibility
Subscripts
a — adiabatic
C — Carnot point
d — dry state
f — fluid
g — gas, inert gas
f — fluid at flow
i — i-th state variable
k — k-th component
m — at maximum power
n — stage number
l — liquid
p — vapor
s — solid, dry solid, equilibrium with solid
v — per unit volume
w — active component, moisture
σ — dissipative quantity
1, 2 — first fluid (driving fluid) and second fluid

(reservoir fluid)
* — modified quantity
Superscripts
e — equilibrium with environment
f — final state
i — initial state
n or N — from n-th stage or from N-th (last) stage
’ — driving state or inlet state of controlling phase
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2 Imperfect Performance Coefficients of Power
Consumption

Usually, performance coefficients of power consum-
tion units, such as heat pumps, dryers, separators, etc.,
are reciprocals of efficiencies power-production units
(engines) modulo to a sign. By evaluating entropy pro-
duction in an infinitesimal cycle σs (the sum of external
and internal parts) as the difference between the outlet
and inlet entropy fluxes we find in terms of the first-law
efficiency η

Sσ =
dQ1(1−η)

T2
− dQ1

T1
=

dQ1

T2

(
1−η − T2

T1

)
(1)

where T1 and T2 are temperatures of the two reservoirs,
respectively, Fig. 1. Equation (1) states that the devia-
tion of engine’s efficiency from the Carnot efficiency is
related to the entropy production. This property leads
us to an important analytical formula for the real effi-
ciency, suitable in process optimization. To derive this
efficiency formula we note that the thermal efficiency
of a real thermal engine or heat pump can always by
written in the form

η = 1− dQ2

dQ1
. (2)

In terms of the factor of internal irreversibilities

Φ ≡ 1+T1′
dσ int

s

dQ1

the entropy balance of working medium takes a form

Φ
dQ1

T1′
=

dQ2

T2′
. (3)

The factor Φ can be found from the internal entropy
production within the machine. As Φ is often a compli-
cated function of the operating variables, an averaged
Φ over the cycle is used, treated as the process constant.
In terms of unknown temperatures of circulating fluid
T1′ and T2′ and internal irreversibility Φ real efficiency
η follows as

η = 1− dQ2

dQ1
= 1−Φ

T2′

T1′
(4)

This equation simplifies, of course, to the Carnot for-
mula in terms of both primed T when internal entropy
source vanishes (the so-called endoreversible opera-
tion). We stress that no special assumptions were made
to derive Eq. (1) and the first equality of Eq. (4).
Now, following many earlier works [Berry et al.,

2000], [Sieniutycz, 2003a], [Sieniutycz, 2003b], [Sie-
niutycz and Jezowski, 2009], a quantity called Carnot

temperature T ′ is introduced that satisfies the thermo-
dynamic relation

T ′ ≡ T2
T1′

T2′
. (5)

The name Carnot temperature is used for the quan-
tity T ′ simply because the efficiency of an internally
reversible engine expressed in terms of T ′ and T2 satis-
fies the Carnot formula, see Eq. (6) below. Note that,
in agreement with Eq. (5), temperature T ′ characterizes
the effect of the temperature ratio for circulating fluid,
T1′/T2′, in the thermal machine. After using Eq. (5) in
Eq. (4) thermal efficiency η in terms of temperature
T ′ assumes a simple, pseudo-Carnot form [Sieniutycz,
2003a]

η = 1−Φ
T2

T ′ . (6)

Equation (6) is suitable to evaluate fluxes of power
production or consumption in various steady and un-
steady systems. Yet, to get a heat flux one must apply
a definite model of heat exchange [Berry et al., 2000].
For power consumption systems, Eq. (6) is usually

applied in the form of its negative reciprocity which
describes the so-called coefficient of performance, a
quantity applied to assessment of heat pumps, refrig-
erators and other power consumers.

3 Thermal and Mechanical Power
In this paper we analyze the so-called active systems,

i.e. those capable of power production or consump-
tion. Comparison of mathematical models of thermal
engines with those of other active systems leads to con-
clusions about a formal link between models of various
active energy systems.
To enhance modeling generality we use here a de-

scription of the thermal unit with conductances g1 and
g2 that are functions of T1 and T2. This allows us to
describe active nonlinear processes, in particular those
with radiation. Variable coefficients of heat transfer are
α1(T1) and α2(T2). The entropy balance for the internal
part of the machine

g2(T2)(T2′ −T2)T−1
2′ −Φg1(T1)(T1 −T1′)T

−1
1′ = 0 (7)

proves that T ′ is a single unconstrained control. We use
Eq. (5) to insert T2′ = T1′T2/T ′ into Eq. (7). We then
obtain T1′ in terms of T ′

T1′ = (Φg1T1 +g2T ′)(Φg1 +g2)
−1 (8)

and the corresponding equation for T2′ , which is

T2′ = T2
T1′

T ′ (9)
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The driving energy flux follows as

q1 = g1(T1 −T1′) = g′(T1 −T ′) (10)

and the second heat flux is

q2 = q1(1−η) (11)

where η is defined by the pseudo-Carnot expression
(6).
In Eq. (10) an overall conductance, g′, appears, de-

fined as

g′(Φ,T1,T2)≡ g1g2(Φg1 +g2)
−1 = (g−1

1 +Φg−1
2 )−1.

(12)
This is, in fact, a suitably modified overall conduc-

tance of an inactive heat transfer which uses given par-
tial conductances, g1 and g2.
From Eqs. (6) and (9) propelling mechanical power p

= ηq1 follows

p = q1η = g′(Φ,T1,T2)(T1 −T ′)(1−Φ
T2

T ′ ) (13)

where the overall effective conductance g′ is defined by
Eq. (12). Optimal control T ′ ensuring the upper bound
for power production in engine modes is

T ′
opt = (ΦT1T2)

1/2. (14)

As an interesting digression, we point out that T ′
opt is

also the optimal temperature of a solar collector max-
imizing its exergy output when T1 and T2 are, respec-
tively, the collector’s stagnation temperature and ambi-
ent temperature, and Φ = 1.
Equation (13) also serves to minimize the work supply

in a process with drying agent heated by heat pumps,
as described in Section 5. In that case we need to de-
termine a lower bound for power consumption in heat
pump modes. Note, however, that Eq. (14) is invalid
and useless for heat pumps.

4 Dryers with Optimally Controlled State of Inlet
Gas

In this section we introduce optimal operations of dry-
ing with controlled inlet gas state. An example of such
traditionally controlled drying (with no heat pumps) is
multistage fluidized drying schematized in Fig. 3. In
this operation each single stage can be modeled in two
ways (pseudo-homogeneous and non-homogeneous),
as shown in Fig. 2 below.
Dealing with multi-stage application, we consider a

cascade composed of fluidized dryers, in which each
stage may be governed by either of two models in
Fig. 2. It is assumed that – macroscopically – a pul-
verized solid contacts cross-currently with a gas, as in

Figure 2. Two ways of modeling of fluidized drying. Case A:
[Szwast, 1990] and [Sieniutycz, 1991], case B: [Poświata, 2005].
The scheme allows simultaneous treatment of the batch fluidization
and the fluidization in a horizontal exchanger as the continuous limit
of the cascade.

Fig. 3. It may also be assumed that drying process oc-
curs either in the first or in the second drying period.
The virtue of cascade models is that any gas or solid

parameter or any stage property may explicitly change
with the stage number of the cascade. Therefore, it is
unnecessary to assume that, e. g., the evaporation en-
thalpy, thermal coefficient, etc. is the same for each
stage of the dryer cascade. This property is especially
useful when dealing with difficult models which admit
only numerical solving.
The multistage idea means, of course, the repetition

of the single-stage operation in next stages. The gas
leaving a stage is released to the atmosphere; similarly,
the outlet solid from a stage flows to the dryer of the
next stage. Such process may be continued.
A typical question is: how many stages are there in

the system? The answer to this question is possible by
making the economical analysis. In practice it suffices
to limit cascade calculations to several stages and ac-
cept as the last computational stage the one beyond of
which the sum of the operational cost and investment
cost stops to decrease. As the investment cost of the
cascade grows linearly with its total number of stages,
the optimal number of stages is usually limited to a few
stages.
Yet, there are also cascades created for purely compu-

tational tasks of continuous systems (dryers, reactors,
etc.) They are composed of stages which are small
computational units rather than real apparatuses. In
those cases there is no cost optimization versus total
number of stages. Suitable number of stages is then
found by division of the systems holdup time by the
holdup time interval at one stage.
For relatively efficient stages, we may assume that the

outlet solid and the outlet gas are in the equilibrium due
to a large specific solid area.
Cascade in Fig. 3 refers to operation in which every

drying agent is heated before the dryer by a medium
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Figure 3. A crosscurrent cascade of fluidized dryers.

with purposely adjusted state, in order to achieve suf-
ficiently high drying temperatures within the stages.
These cascades imply optimization problems in which
process controls are inlet parameters of heating gas
(temperatures and humidities) and gas flows across
each stage. In these problems explicit input fluxes of
mechanical power are not considered as possible con-
trols. A discrete optimization algorithm with a con-
stant Hamiltonian is a frequent optimization tool in
this case [Szwast, 1988], [Berry at al, 2000],[Poświata,
2005]. Optimization criteria for cascades in Fig. 3 in-
volve exergy costs or economic costs necessary to drive
drying operation [Szwast, 1990], [Sieniutycz, 1991],
[Poświata, 2003], [Poświata, 2004].
The block scheme of Fig. 3 may also constitute a mul-

tistage representation of a dynamic process with power
production. It applies then to batch fluidized drying in
which the controlled entity is a load of solid, whereas
the controlling inputs are gas streams with variable in-
let states and flows.
In the both cases considered above, the set X =
{I,W,τ}) describes an enlarged (time containing) state
vector of the dried solid, and u refers to a set of con-
trols, i. e. gas temperatures, gas humidities and gas
flows.
Methods of dynamic programming and maximum

principle can be applied to accomplish multistage op-
timization of the above drying processes [Sieniutycz,
1991], [Sieniutycz, 2006b], [Sieniutycz and Jezowski,
2009]. While an original continuous problem (if exists)
is governed by the Hamilton-Jacobi-Bellman (HJB)
theory, its discrete counterpart is described by dynamic
programming, (DP), [Berry at al., 2000]. Dynamic
programming offers description in terms of wave-fronts
which, in the drying case, are surfaces of constant ex-
ergy input per unit mass of gas. On the other hand,
the method of maximum principle (or a similar method
of variational calculus) constitutes the description in
terms of process trajectories. For a multistage drying
process, its discrete model describes multistage evo-
lution of drying, and leads to the optimal function of
driving exergy. This function can be determined ei-
ther in terms of the solid state and the number of trans-
fer units τ , or in terms of Hamiltonian h. The latter
quantity, the same for each point of an optimal path,
is a common measure of the optimal process intensity.
While the number τ measures the residence time of the
solid phase, the quantity h quantifies the minimal irre-
versibility in the system.

To perform dynamic programming optimization (DP
optimization) of the original exergy cost

RN = ∑bnθ n (15)

an augmented cost is defined (n=1...N)

R′N = ∑(bn +h)θ n (16)

in which the term hθ n plays the role of the investment
cost at stage n. The basic function of the dynamic pro-
gramming algorithm, i. e. optimal performance func-
tion R∗N(In,W n,h), is defined as

R∗N(In,W n,h)≡ minR′N ≡ min∑(bn +h)θ n (17)

This function is evaluated by Bellman’s recurrence
equation of dynamic programming (DP), subject to the
discrete state equations

In−1 = ϒn
I (I

n,W n,θ n), (18)

W n−1 = ϒn
W (In,W n,θ n) (19)

as process constraints. The transformation functions ϒn
I

and ϒn
W in state equations (18) and (19) are derived by

combining energy and mass balances with appropriate
kinetic relationships at stage n [Sieniutycz, 1991].
Forward DP algorithm is applied, [Berry at al,

2000]. For the minimum exergy cost defined as
R∗N(In,W n,h) ≡ minR′N , Bellman’s recurrence equa-
tion has the following form

Re∗n(In,W n,h)≡

≡ min{(bn +h)θ n +R∗n−1(In−1,W n−1,h)} (20)

where the inlet coordinates (In−1,W n−1) are expressed
in terms of the outlet state coordinates (In,W n) with the
help of state equations (18) and (19).
In the dynamic programming procedure a computer

generates tables of optimal controls and optimal costs
by solving Bellman’s recurrence equation for the opti-
mal performance function modified by the presence of
Lagrange multiplier, h. The presence of the multiplier
h reduces the problem dimesionality, i. e. eliminates
time τ from the state vector, the effect which improves
the computational accuracy.
The references cited provide details regarding optimal

control parameters and optimal exergy criteria. Here
are main summarizing results referred to the “exergy
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optimization” in which the total input of gas exergy
is the optimization criterion to be minimized. Mul-
tistage fluidized drying in the first drying period pro-
ceeds mainly at the first stage. Fixed cost defined by
the number of stages in the cascade decides about the
advisability of applying of cascade in practical drying.
When the Lewis factor or the ratio of resistance coeffi-
cients of mass and heat transfer equals 1, optimal driv-
ing forces are virtually independent of hydrodynamics
and kinetics. Only optimal gas flow-rate strongly de-
pends on hydrodynamics and kinetics in the bed.
Optimal driving forces of transfers involved depend

on the parameter ζ which describes the ratio of prices
of thermal and chemical exergies, whereas the optimal
gas flow rate is independent on that parameter. For low
values of ζ driving forces increase with stage number n
because the optimal inlet gas humidity decreases with
n. For large ζ driving forces decrease with n because
lowered values of equilibrium gas humidity caused by
decreasing solid temperatures Ts are not compensated
by a very slow decrease of the inlet gas humidity. Opti-
mal gas flow rates θg rapidly decrease with a coefficient
of investment costs. One may observe that parameter ζ
in practice does not influence gas flow rate, and only in-
fluences driving forces of mass and heat transport pro-
cesses [Szwast, 1990], [Sieniutycz, 1991], [Poświata,
2003], [Poświata, 2004], [Poświata, 2005].

5 Power Consumtion for Drying with Heat Pumps
Let us now consider a power-assisted operation in

which a drying agent is heated before each dryer by a
heat pump, in order to achieve a sufficiently high tem-
perature. In this case the gas leaving the previous stage
enters the heat pump and dryer of the next stage, Fig. 4.
The properties of the heat pump as the heating device
are important in this analysis, the better COP results in
more efficient heating. This example again refers to a
non-ideal fluidized drying in which one stage can be
modeled in two ways (pseudo-homogeneous and non-
homogeneous), Fig. 2.
As shown in Fig. 4 a stage of this complex multi-step

operation often comprises not a single dryer but rather
an appropriate group of various units which is repeated
when the process proceeds from one step to another.
This is just the case of a multi-stage drying operation,
in which gas at each stage is heated with a heat pump
and then is directed to a dryer (note that only one stage
of that operation is shown in Fig. 4). In the considered
case a continuous drying process occurs in a co-current
dryer. The purpose is to minimize the work consump-
tion in, say, the two-stage operation by a suitable choice
of the intermediate moisture content between the first
and the second stage.
One may ask: how many heat pumps (and stages) are

there in the optimal system? Again, as in the exam-
ple of the previous section, the answer is possible by
making the economical analysis, and terminate cascade
calculations when sum of operational and investment

Figure 4. A scheme of one-stage drying operation with a heat pump
1 and a continuous co-current dryer D1 with falling particles. The
multistage idea means, of course, repetition of this single-stage set in
the next stages.

cost stops to decrease. As the investment cost grows
remarkably with number of stages, the optimal number
of stages is usually limited to a few stages.
The balances of mass and heat yield

rGs

cGg
(W 0 −W 1) = (T 1

1 −T 1), (21)

T 1
1 −T 1 =− r

c
(X1

1 −Xs(T 1)), (22)

whereas power consumed at a single stage per unit flow
of gas, e1, is described by an expression

e1 =− p
Gg

= c
(

1− T e

T 1
1 +u1

)
u1θ 1 (23)

where u1 =−q1/g > 0 is a measure of the energy sup-
ply in the temperature units, g is the overall conduc-
tance, and q1 is the energy supply to the drying gas in
the condenser of the heat pump.
In an introductory analysis we may assume absence

of internal irreversibilities within heat pump. If this
assumption cannot be omitted, the performance coef-
ficient of the support heat pump contains imperfection
factor Φ, as shown below. For the first stage

COP1 =

−
(

1−Φ1 T e

T ′1

)−1

=−
(

1−Φ1 T e

T 1
1 +u1

)−1

(24)

and for the stage n

COPn =
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−
(

1−Φn T e

T ′n

)−1

=−
(

1−Φn T e

T n
1 +un

)−1

. (25)

Substituting into Eq. (23) the temperature following
from Eq. (22)

T 1
1 = T 1 +

r
c
(Xs(T 1)−X1

1 ), (26)

and taking into account that X1
1 = X0 [also Xn

1 =
Xn−1 = Xs(T n−1), for n = 2, . . . ,N] we find the me-
chanical energy consumption at the first stage

e1 = c
(

1− ΦT e

T 1 + rc−1(Xs(T 1)−X0)+u1

)
u1θ 1.

(27)

Figure 5. Changes of gas states in a multistage work-assisted dry-
ing operation. Primed states refer to temperatures of circulating flu-
ids in heat pumps which heat gases supplied to dryers 1,2, . . . ,n.

Equation (27) is transformed further in view of the
link between u1 and θ 1 (consider difference constraint
describing ∆T n = unθ n for n = 1) with u1θ 1 = T 1 +
rc−1(Xs(T 1)−X0)−T 0.
In terms of the “adiabatic temperature function”

T a(T 1)≡ T 1 + rc−1Xs(T 1) (28)

the work expression takes the final form

e1 = c

(
1− ΦT e

T a1 − rc−1X0 + T a1−rc−1X0−T 0

θ 1

)
×

×
(
T a1 − rc−1X0 −T 0) (29)

where T a1 ≡ T a(T 1). An analogous function, but with
the shifted superscripts, is valid for the second stage

e2 = c

1− ΦT e

T a2 − rc−1X1
s + T a2−rc−1X1

s −T 1

θ 2

×

×
(
T a2 − rc−1X1

s −T 1) (30)

where X1
s ≡ Xs(T 1) and T a2 ≡ T a(T 2). The constraint

X1 =Xs(T 1) resulting from the phase equilibrium at the
outlet of first dryer is incorporated in the second work
expression. In terms of the adiabatic temperature at the
second stage

e2 = c

(
1− ΦT e

T a2 − rc−1X1
s + T a2−T a1

θ 2

)(
T a2 −T a1)

(31)
where T a1 ≡ T a(T 1)and T a2 ≡ T a(T 2).
The sum of both specific works, R2 = ∑en = e1 + e2,

represents total power per mass unit of gas flow, or to-
tal specific work consumed in the two stage process
considered. In the associated optimization problem,
R2 is the thermodynamic cost of the two stage sys-
tem that should be minimized. For a fixed holdup time
τ2 = τ1 + τ2 there are two free controls: θ 1 and T 1.
The procedure searches for an optimal interstage tem-
perature T 1 and an optimal heat transfer area of the first
heat pump a1 present in the control variable θ 1. The
requirement of a sufficiently low final moisture content
in solid defines amount of the evaporated moisture per
unit time. Thus power minimization is easy for two
stage system. The optimization can be generalized to
N-stage cascade system, as outlined below.
Dynamic programming or discrete maximum princi-

ple are applied to accomplish multistage optimization
of the present cascade system in which each stage may
contain a dryer and its support heat pump [Sieniutycz,
1991], [Sieniutycz, 2006b], [Sieniutycz and Jeżowski,
2009]. Optimal work can be determined either in terms
of end process state and number of transfer units τ or
in terms of this state and the Hamiltonian h. The lat-
ter quantity, is a measure of the optimal process inten-
sity. While the nondimenional number of transfer units
τ measures the residence time of drying gas, the quan-
tity h quantifies a minimal irreversibility in the system.
For a cost or exergy performance function, the en-

larged cost, modified by presence of Lagrange multi-
plier h, and defined as the sum

R′N ≡ ∑
n
(en +hθ n) (32)

is minimized, where en is intensity of original costs at
stage n, h is Lagrange multiplier or time penalty, and
θ n is time interval at the n-th stage.
When total power is the original optimization cri-

terion, a computer generates tables of optimal con-
trols and optimal costs by solving Bellman’s recur-
rence equation for the optimal performance function
R∗N(T n,Xn,h)≡ minR′N or

R∗N(T n,Xn,h)≡ min∑
n
(en +hθ n) (33)
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Bellman’s recurrence equation has the following form

R∗n(T n,Xn,h)≡min(en+hθ n+R∗n−1(T n−1,Xn−1,h))
(34)

where the outlet state variables from stage n are not ar-
bitrary but are expressed in terms of inlet state variables
in the way defined by the state transformations.

T n−1 = ϒ′n
T (T

n,Xn,θ n), (35)

Xn−1 = ϒ′n
X (T

n,Xn,θ n) (36)

which are designated with primes since they are not
identical with those of the previous section. The gas
state vector Y n = (T n,Xn) in these formulas comprises
the temperature and concentration, whereas controls un

and vn are rates of change for state variables in the con-
sidered system.
The presence of the Lagrange multiplier h is associ-

ated with absence of time variable τn within the set of
state coordinates (dimensionality reduction). Some of
end coordinates (T 0, X0) and (T N , XN) may be fixed,
but total duration, τN , must be free, consistent with the
dimensionality reduction. For an assumed h an optimal
duration follows as a function of fixed end values of
state Y n and total number of stages, N. Accuracy of DP
results is much better after the state variable τn is elim-
inated, i. e. when the problem is described by only two
state variables, T n and Xn. The recurrence equation
(34) also serves to generate numerical generalizations
of function R∗n when both transfer coefficients and heat
capacities vary along the process path, and an analyti-
cal solution cannot be obtained.

6 Power Consumption Limits in
General Thermochemical Systems

Heat pumps and HP-supported dryers are typical rep-
resentatives of systems driven by the consumed power.
A general thermokinetic theory of power consumers
can be developed based on systems’ thermodynamic
and kinetic properties, as outlined below.
Consider power consumption in a linear thermochem-

ical system with possible electric fluxes (case of elec-
trolysers). Assume that a two reservoir arrangement
is sufficient to accomplish a separation process or heat
pump heating. Both these operations need for their run-
ning some instantaneous power supplied to the system.
In terms of total resistances of upper and lower parts of
two-reservoir system

Rs = R1s +R2s, Rn = R1n +R2n, Rel = R1e +R2e,
(37)

and after considering coupled transfer of heat, mass,
and electricity, power expression reads

p = (T1′ −T2′)Is +(µ1′ −µ2′)In +(ϕ1′ −ϕ2′)Ie =

(T1 −T2)Is +(µ1 −µ2)In +(ϕ1 −ϕ2)Ie (38)
+RssI2

s +RnnI2
n +ReeI2

e +RsnIsIn +RseIsIe +RneInIe

where non-primed quantities refer to bulk states and
primed ones to the active, power-consuming part of the
system. As shown by this equation, general thermo-
dynamic framework allows for at least rough assess-
ment of power consumption limits in thermo-electro-
chemical systems of the simplest, standardized topol-
ogy (with no counterflows). This topology corresponds
to power consumption unit (e. g. heat pump) immersed
between two reservoirs, one with high potentials and
one with low ones, as described in a number of pub-
lications. The reason why this power assessment can
only be rough is explicit in Eq. (38) or a like which has
ignored information about the topological structure of
many various flows in the system. Let us also add that
possible electrolysers are here described by the formal-
ism of inert components rather than by the ionic de-
scription.
For simplicity, Eq. (38) assumes that active (power

consuming, primed) driving forces involve only: one
temperature difference, trivial chemical affinity and the
operating voltage as the difference of the electric po-
tentials ϕ . Total power consumption (38) is the sum of
thermal, substantial and electric components.
Equation (38) constitutes the simplest account of

thermo-electro-chemical separators and heat pumps;
indeed it does not contain any topology parameter.
Complex configurations of flows contacting such as
countercurrent contacting that may exist in fuel cell
electrolyzers are not taken into account in Eq. (38).
Linear systems described by this equation are those
with constant (current independent or flux indepen-
dent) resistances or conductances. They satisfy Ohm
type or Onsager type laws linking thermodynamic
fluxes and thermodynamic forces (dissipative driving
forces which are represented by products RikIk in Eq.
(38)). While many thermal separation systems and fuel
cell electrolyzers are nonlinear, i. e. possess current de-
pendent resistances, the dependence is often weak, so a
linear model can be a good approximation. Below, by
applying Eq. (38) we shall attempt to develop a simple
evaluation of power limits for heat pumps and separa-
tion systems under the specified assumptions.
After introducing the enlarged flux vector I =
(Is, In, Ie), the enlarged vector of potentials µ =
(T,µ,ϕ) and the related resistance tensor R, Eq. (38)
can be written in a simple form

p = (µ1 −µ2)I+R : II. (39)

The bulk driving forces µ1 − µ2 are given constants,
whence, in systems with constant resistances, we are
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confronted with a simple minimization problem for a
quadratic power consumption function p. While the
dimensionality of the potential vector µ will often be
quite large in real systems, the structure of Eq. (39)
will be preserved whenever the power expression will
be considered in the above matrix-vector notation.
Minimum power corresponds with vanishing par-

tial derivatives of function p. The optimal (power-
minimizing) vector of currents at the minimum power
point of the system can be written in the form

Imp =−1
2

R−1(µ1 −µ2)≡−1
2

IF . (40)

This result means that power-minimizing current vec-
tor in separators and heat pumps is equal to the nega-
tive of one half of the purely dissipative current at the
Fourier-Onsager point. The latter point refers to the
system’s state at which no power production occurs.
Consistently, Eqs. (39) and (40) yield the following

result for the minimum power input to heat pump or
thermal separation system

pmp =−1
4
(µ1 −µ2)R−1(µ1 −µ2) (41)

(negative power supply follows because the engine
convention is always used, in which power released is
positive).
In terms of the purely dissipative flux vector at the

Fourier-Onsager point, where neither power production
nor power consumption occurs, the above limit of min-
imum power is represented by an equation

pmp =−1
4

R : IF IF . (42)

The minus sign corresponds again with the engine
convention which requires that power supplied to the
system is negative.
On the other hand, power dissipated at the Fourier-

Onsager point is

pF = R : IF IF . (43)

Comparison of Eqs. (42) and (43) proves that, in
linear thermo-electro-chemical separators with power
support, at least 25% of power dissipated in the natu-
ral transfer process must be supplied as power surplus
in order to run a power-consuming system. Yet, this
general result cannot, probably, be exact in arbitrary
systems of complex topology and with nonlinearities,
where significant deviations may be expected.
In fact, the present result describes the largest (most

disadvantageous) power surplus that can be approxi-
mately applied to real heat pumps, dryers, electroly-
sers, and other separation systems. For these systems

significant deviations from Eqs. (40)–(42) are nonethe-
less expected depending on nature of nonlinearities and
topology variations, and also on topology improve-
ments to include countercurrent contacting. Despite of
limitation of the result (42) to linear cases, its value is
significant because it shows the order of magnitude of
thermodynamic limitations in power consumption sys-
tems.
The analysis presented here proves that a link exists

between the mathematics of heat pumps, separators and
electrolysers, and also that, possibly, the theory of elec-
trolysers can be unified with the theory of thermal and
chemical separators and heat pumps. All these sys-
tems are power consumers. However, serious topolog-
ical differences between these systems may occasion-
ally render them quite dissimilar.
Explanation of some physical effects is in order.

While the power ratios involving Eqs. (42) and (43)
can be regarded as efficiency measures, they should
not be confused with commonly used, popular per-
formance coefficients, especially first law-based coef-
ficients. There are several definitions of performance
coefficients, based on first or second laws, proposed for
measuring and comparing performance of separation
processes. Only second-law-based performance coef-
ficients are entirely correct measures which show how
close the process approaches a reversible process.

7 Final Remarks
The example presented shows how to optimize a dry-

ing operation with gas heated by a sequence of heat
pumps. The optimization criterion is the power con-
sumption, the optimal solution should assure the min-
imum of consumed power. The optimal transfer areas
are close in value, the optimal temperatures constitute
an increasing sequence. The optimal work supplied to
the two-stage system decreases distinctly with the total
transfer area.
While the present modelling and particular numerical

results are limited to multistage operations with heat
pumps and continuous co-current dryers with falling
particles, after suitable modifications, our approach can
be extended to different and more complex configura-
tions.
The practical application of concrete energy sources

for drying technology is supported following the theo-
retical recommendations by introducing the irreversible
thermodynamic analysis of the cycles [Mansoori and
Patel, 1979], [Berry at al., 2000]. Upper and lower
limits for the coefficient of performance of solar ab-
sorption cooling cycles have been derived from the first
and second laws [Mansoori and Patel, 1979]. These
limits depend not only on the environmental tempera-
tures of the cycle components but also on the thermo-
dynamic properties of refrigerants, absorbents and mix-
tures thereof. Quantitative comparative studies of dif-
ferent refrigerant-absorbent combinations are now pos-
sible.
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The approach of the finite time thermodynamics
(FTT) applied in the context of heat pumps has raised
an interesting discussion in which its followers and op-
ponents may find lots in common regarding some is-
sues, but also disagree about the others. For exam-
ple, a renewed and eloquent criticism of the FTT ap-
proach was published [Gyftopoulos, 1999], in addi-
tion to a presence of a stream of publications regard-
ing FTT. Many of the latter papers contain in-depth
derivations of the power expression and the Curzon–
Ahlborn-Novikov efficiency (CAN efficiency), includ-
ing thorough explanations of connection between the
CAN efficiencies and typical efficiencies of real heat
engines [Chen et al, 2001] and heat pumps [Li et al,
2010]. In fact, both types of publications quote some
experimental data to support their own conclusions and
final stand-point [De Vos, 1992], [Berry et al., 2000],
[Chen et al., 2001].
The theoretical estimation of minimum work sup-

plied to a heat pump used in drying technology ought
to be compared with the experimental energy con-
sumption criteria. Szwast’s exergy optimizations in a
class of drying systems with granular solids [Szwast,
1990],[Berry et al., 2000] show an agreement of ca
25% between the calculated and experimental con-
sumptions of the propelling exergy. Perhaps the most
careful use of the experimental data is given by De Vos
who illustrated the practical usefulness of CAN theory
for engines on the example of the quantitative descrip-
tion of the nuclear power plant Doel 4 in Belgium and
explained the difference between the predicted value of
engine’s optimal efficiency (ηCAN = 0.293) and the ex-
perimental thermal efficiency (η = 0.350). By simple
economical considerations De Vos also explained why
the actual efficiency of the engine is larger than its CAN
efficiency [De Vos, 1992].
The analysis presented here proves that a common

thermodynamic ground exists for thermal engines and
thermal separators, and also that, to some extent, the
theory of thermal separators can benefit from the the-
ory of thermal engines. Yet the topological differences
of both systems may occasionally render both of them
quite dissimilar, which, of course, imposes limits for
the exploitation of the theory of thermal engines in sep-
aration problems.
A digression can be made to engine systems, which

are, in principle, beyond the subject of the present in-
vestigation, yet they use a power equation similar to
Eq. (38), but with a negative sign of dissipative (re-
sistance containing) terms. In the vast literature of en-
gines (power generators) abundant information can be
found regarding their efficiency coefficients based on
the first law, such as theoretical reversible efficiency
or popular fuel-to-electricity efficiency. These efficien-
cies can sometimes generate numerical values greater
than 100%, depending on whether the change in en-
tropy of overall chemical reaction involved is positive
or negative. See, for example, a paper [Rao et al., 2004
] on various efficiency definitions for FC engines. The

fuel cell efficiencies, η = ∆G/∆H or −W/∆H, which
are often applied to fuel cell engines, can easily achieve
numerical values much higher than 0.25 [power ratio
of Eqs. (42) and (43)]. They are first-law efficien-
cies defined in a different way than the power ratios
Pmp/PF derived from Eqs. (42) and (43). For engines,
these power ratios represent specific, second-law power
yield efficiencies of the simplest standardized thermo-
electro-chemical process. They are not equivalent, nei-
ther theoretically nor numerically, with the most com-
mon fuel-to-electricity efficiencies of engines. Other
second law efficiencies can also be defined for engines.
One of the most correct and practical definition of ef-
ficiency for a fuel cell engine operating near ambient
temperature is the ratio of the actual voltage to the re-
versible voltage, [Li, 2006].
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