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Abstract
The brain is in a state of processing information 24

hours a day. There are millions of processes proceeding
in it accompanied by various spectra of rhythms. This
paper tests the hypothesis that the slow delta rhythm ex-
cites the gamma rhythm oscillations. Unlike other pa-
pers, we determine the slow rhythm spectrum not at the
hypothesis stage but during the experiment. We design
algorithms of filtration, envelope extraction, and correla-
tion coefficient calculation for signal processing. More-
over, we examine the data on all electroencephalogram
channels, which allows us to make a more reasonable
conclusion. We confirm that a slow delta rhythm excites
a fast gamma rhythm with an amplitude-phase type of in-
teraction and calculate a delay between these two signals
equal to about half a second.
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1 Introduction
The human brain processes information almost contin-

uously throughout life. In [Neske, 2016], the authors
noted that the cerebral cortex and thalamus exhibit quite
diverse and rich activity even during the most inactive
periods of human life. This activity manifests itself in
slow (up to 1 Hz) neural oscillations. There are confir-
mations that these oscillations are generated by vast en-
sembles of synchronized neurons working as a whole.
Such an organization provides the possibility of such
complex cognitive processes as memory, thinking, and

decision-making [Papadimitriou et al., 2020; Buzsáki,
2010; Folschweiller and Sauer, 2021].

The interaction between its various areas provides the
brain work consistency through neural oscillations, i.e.
electrical activities of different frequencies. There is a
generally accepted classification of brain ranges, which
includes high-frequency bands (alpha (8 − 12 Hz), beta
(12−30 Hz), gamma (30−150 Hz)), and low-frequency
(theta (4−8 Hz) and delta (0−4 Hz)). Gamma rhythms,
in turn, are divided into rough (30 − 80 Hz) and high
gamma (80 − 150 Hz) signals [Moran and Hong, 2011;
Gonzalez Burgos et al., 2015]. However, the latter is
usually very noisy and does not lend itself very well to
analysis. There are enough studies that reveal the in-
dependent activity of different rhythms in different sit-
uations [Carmichael et al., 2017; Clayton et al., 2018;
Ghosn et al., 2020]. Moreover, studies are suggest-
ing a direct coupling between rhythms bands [Chuder-
ski, 2016; Canolty and Knight, 2010; Abubaker et al.,
2021]. Also, there are works revealing the connection
between various human states and deviations in the brain
rhythms. For instance, abnormalities as post-stroke ef-
fects [Kiselev et al., 2019] or as a consequence of the ag-
ing [Frolov and Pitsik, 2021]. Rhythms diversity could
be provided even by the human personality traits and
mental abilities while doing some tasks [Pisarchik et al.,
2018]. Thereby, we decide to research works studied
when the coupling deviations manifest themselves.

While investigating research on the rhythms coupling,
we were particularly interested and inspired by [Moran
and Hong, 2011]. It reveals the concept of synchronous
deviations in the slow and fast bands in schizophre-
nia: against the background of slow rhythms anoma-
lies, anomalies in gamma rhythm appeared. One more
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Figure 1. a: Unfiltered fragment of the ECoG recordings. The high-
resistance electrode recording is indicated by the blue color, whereas
the red one indicates the low-resistance electrode recording. b: Filtered
fragment of the ECoG recordings. The high-frequency gamma rhythm
x(t) is represented by blue, whereas red represents the low-frequency
signal y(t)

work about that conducting a bit later also interested us
in [Gonzalez Burgos et al., 2015].

Nevertheless, how the fast and slow processes in the
brain interact is still a mystery. This interaction can be
accomplished in a variety of ways [Buzsáki and Wang,
2012; Osipova et al., 2008], including amplitude cor-
relations [Bruns and Eckhorn, 2004; Mohamed et al.,
2004], phase to phase synchronization [Sauseng et al.,
2019; Palva, 2005; Li et al., 2018], phase to frequency
principle [Jensen and Colgin, 2007] and phase to power
locking [Park et al., 2016; Köster et al., 2018; Berman
et al., 2015].

The power-to-power link has a weaker cross-frequency
correlation [Bruns and Eckhorn, 2004] and is commonly
thought of in the context of a single rhythm [Buzsáki
and Wang, 2012]. The problem of zero-lag phase syn-
chronization in phase to phase synchronization exists
[Fell and Axmacher, 2011]. The phase-to-power rela-
tionship is particularly relevant since a low-frequency
signal (e.g. delta, theta, or alpha) can generate the high-
frequency rhythm (e.g. gamma). This knowledge can
be exploited with biological neuron models to simulate
an excitable system that produces high-frequency oscil-
lations. This paper continues the research presented at
the DCNA 2021 conference [Sevasteeva and Plotnikov,
2021].

The rest of this paper is organized as follows: In Sec. 3,
the signal processing tool is developed: Subsec. 3.1
considers the filtering system construction, while Sub-
sec. 3.2 deals with envelope extracting algorithms. Then
in Sec. 4, the data analysis is performed: time delays
between considered signals are evaluated and the experi-
ment results are presented. Section 5 presents the results
of the simulation of gamma rhythm using the modified
FitzHugh-Nagumo (FHN) model. Finally, the conclu-
sions are drawn in Sec. 6.

2 Data description
The simple anesthetized. Wistar rat ECoG was

recorded during acute experiments. Low-resistance elec-
trode recordings typically contain predominantly slow
dynamics and essentially no high-frequency rhythms,
because high-frequency signals are restricted by tiny ar-
eas, but low-frequency signals need synchronous activity
across wide areas of the brain (see [Furth et al., 2013]).
The gamma rhythm was recorded using the Neuronexus
E32−600−10−100 multi-electrode array with 32 reg-
istration sites of 100 µm each (site impedance is 500kΩ)
and cross-site 600 µm intervals. These features allow
for the recording of a stable gamma rhythm (30−80 Hz)
on a small scale with sufficient localization, even under
general anesthesia.

This multi-electrode array was implanted in the left
hemisphere, near the sensory cortex. Gold plated screw
electrodes (impedance 25−50kΩ) were utilized to gather
the low-frequency signal. Over the cerebellum, one of
these screws was employed as an indifferent electrode.
Low-resistance electrodes, as expected, produced a slug-
gish rhythm during anesthesia, i.e., the characteristic
low-frequency oscillations seen during sleep and anes-
thesia.

On three rats, three trials with a total duration of 128
seconds and a sampling rate of 2 kHz were conducted.
At this work, we were considering an experiment taken
from only one rat, since biologists decided that two of
the three experiments were not very successful and noise
got into the data.

3 Tools development
This section examines the various existing approaches,

taking into consideration their flaws. It proposes a uni-
versal instrument for signal filtering and envelope ex-
traction. Now let us illustrate experimental data to bet-
ter understand these techniques. It is a 128-s. electro-
corticogram (ECoG) with thirty-two channels: twenty-
eight from high-resistance electrodes and four from low-
resistance electrodes. A sample rate of 2 kHz is pro-
vided. In Fig. 1a, an unfiltered segment of the ECoG
recordings is shown. The blue color indicates the high-
resistance electrode recording, whereas the red one indi-
cates the low-resistance electrode recording. The high-
resistance electrode recording will be utilized to obtain a
gamma rhythm, while the low-resistance electrode data
will be used to get a slow delta rhythm.

3.1 Filtering
The initial stage in the analysis is to identify the signals

that fall within a suitable frequency range. We consider
Filters in both FIR and IIR forms. The first type of fil-
ter was later abandoned because the order of such filters
is too high to provide the necessary band characteristics
[Mitra, 2001]. As a result, [Rabiner, 1975] was chosen
as the IIR filter having the cleanest amplitude-frequency
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response at pass-band frequencies. The amplitude re-
sponses of several IIR-filters are shown in Fig. 2a. A
zero-shift filter was implemented [Mitra, 2001] to pre-
vent producing nonlinear phase shifts that are crucial in
ECoG signal processing while making Butterworth filter
amplitude response sharper. In Fig. 2b, the amplitude-
frequency responses of the Butterworth and zero-phase
filters are demonstrated. In contrast to the first one, the
second filter has no nonlinear phase shifts and has more
stark amplitude responses, as shown in this diagram.

Figure 2. a: The band-pass Chebyshev type I (red), elliptic (green),
and Butterworth (blue) filter amplitude responses. The order of the
filters is equal to four. 35 and 85 Hz are the bandwidth restric-
tions. b: The band-pass Butterworth (blue) and zero-phase (red) filter
amplitude-frequency responses. The order of the filters is equal to four.
30 and 85 Hz are the bandwidth bounds.

The recording of the high-resistance electrode is digi-
tally band-pass-filtered in the frequency domain between
30 and 85 Hz to obtain a gamma rhythm. This filtered
fast-frequency signal will be denoted as x(t). One can
see in Fig. 1b that there are periods of gamma activa-
tion and extinction of approximately 1 s. duration, i.e.
the whole period approximately equals 2 s. Hence, we
choose the frequency domain for the low-resistance elec-
trode recording between 0 and 0.5 Hz, i.e. identify the
slow exciting signal as a delta rhythm, to show the cor-
relation between this low-frequency signal and gamma
activation and extinction. We denote this filtered low-
frequency signal as y(t). It can also be noticed that there
is a connection between x(t) and y(t): the first one ac-
tivates when the second one is above zero and extinct
else. To find the numerical measure of two signal in-
terdependence, we should somehow transform the high-
frequency signal x(t).

To receive a gamma rhythm, the recording of the high-
resistance electrode is digitally band-pass-filtered in the
frequency domain between 30 and 85 Hz. x(t) is the
notation for the filtered fast-frequency signal. There are
intervals of gamma activation and extinction of roughly
1 s. duration in Fig. 1b, i.e. the entire period is approxi-

mately 2 s. To demonstrate the association between this
low-frequency signal and gamma activation and extinc-
tion, we chose a frequency domain for the low-resistance
electrode recording between 0 and 1 Hz, i.e. identify
the slow exciting signal as a delta rhythm. The notation
y(t) denotes this filtered low-frequency signal. It is also
worth noting that there is a link between x(t) and y(t):
the first one activates when the second one is above zero,
and the latter is extinct otherwise. We must somehow
transform the high-frequency signal to determine the nu-
merical measure of two signal dependency. It is defined
by oscillation activation and extinction intervals that al-
ternate. Thereby, the upper envelope should be calcu-
lated to run around these activation and extinction inter-
vals.

3.2 Extracting envelope
We select the frequency band for slow signals between

0 and 1 Hz. It corresponds to the estimated period of
bursts and attenuations of the fast signal. It is reason-
able to assume that this value should also characterize
the envelope of our fast signal.

Figure 3. a: Two fast-signal peak envelopes with a peak distance of
1000. The blue color denotes the signal y(t), the green color indi-
cates the envelope with the initial time t0, and the red color denotes
the envelope with the initial time t0 + 0.5s. b: Two signal y(t)
envelopes obtained from the same imf -components of two EMDs.
The blue color denotes the signal y(t), the red color denotes the re-
ceived imf -component for the current interval, and the green color
denotes the broader interval. c: y(t) Hilbert transform and filtered
version of that transformation. The signal y(t) is denoted by blue,
the Hilbert transform envelope of y(t) is denoted by violet, and the
filtered Hilbert envelope is denoted by green.

The following methods were initially considered: em-
pirical mode decomposition (EMD) [Gupta, 2019],
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peak-envelope, and Hilbert transform [Panter, 1965]
with with some additions. The peak approach neces-
sitates determining the peak-between distance (the fre-
quency at which the peaks will be incorporated as com-
ponents of the future envelope) and the initial point. Be-
cause the gamma rhythm is a high-frequency signal, it is
evident that the starting envelope point impacts the final
curve. The difference (shift) between two envelope ini-
tial points equals 0.5 s. provides completely different re-
sults. A demonstration of this fact can be seen in Fig. 3a.
As a result of these findings, we decided to disregard the
peak-envelope technique.

EMD methods show promising results. Still, it is nec-
essary to select a suitable number of components (in-
trinsic mode functions or imf -component) for envelope
manually for each experiment concerning the duration
of the analyzed signal. Applying this method to two in-
tervals (one containing the other) may give different re-
sults at their intersection when considering the same imf -
component. An illustration of this situation can be seen
in Fig. 3b. Therefore, despite EMD advantage in iso-
lating the envelope directly from the experimental sig-
nal, we had to abandon this approach due to its non-
universality. Also, this method is computationally ex-
pensive compared to the others. The Hilbert transform
also works well and does not need individual customiza-
tion. However, it provides a too detailed envelope. Since
that, the low-pass zero-phase filter was implemented to
the Hilbert transform envelope. Denote the envelope of
the gamma rhythm by e(t).

EMD approaches produce good results, but only after
the manual settings. For each experiment, depending on
the duration of the examined signal, it is necessary to se-
lect an appropriate number of envelope components (in-
trinsic mode functions or imf -component). When evalu-
ating the same imf -component, applying this approach to
two intervals (one including the other) may yield differ-
ent results at their intersection. In Fig. 3b, you can see an
illustration of this circumstance. As a result, even though
EMD had the advantage of separating the envelope di-
rectly from the experimental signal, we had to forsake
it due to its non-universality. In addition, as compared
to the others, this method is computationally expensive.
The Hilbert transform is also an effective method and
does not require personalization. It does, however, pro-
duce an overly comprehensive envelope. Since then,
the Hilbert transform envelope was passed through the
low-pass zero-phase filter. The envelope of the gamma
rhythm is denoted by e(t). The envelope calculation re-
sult (obtained with the final approach benefit) is shown
in Fig. 3c and is highlighted in green.

4 Data Analysis
This section explores the interconnectedness of fast

and slow processes in the brain. As previously stated,
several principles of cross-frequency interactions ex-
ist, and we use the signal-envelope correlation as an

alternate method to detect coupling between gamma
and low-frequency cycles in this study. We demon-
strate that when the low-frequency signal has a posi-
tive phase, faster gamma oscillations occur; when the
low-frequency rhythm is in the negative phase, gamma
oscillation death appears. Unlike the methodologies in
[Bruns and Eckhorn, 2004; Canolty et al., 2006; Os-
ipova et al., 2008], our study not only obtains relatively
good correlation values but identifies the frequency of
the stimulating slow rhythm via experiment analysis.
Also, we analyze the time delay between the slow sig-
nal and the gamma signal envelope e(t).

Firstly, we evaluate mean value of the slow rhythm and
fast-one envelope:

ȳ =
1

|T |
∑
t∈T

y(t), ē =
1

|T |
∑
t∈T

e(t), (1)

where T is an array of the signal measurements [0; 128]
s., and |T | is its cardinality, since these signals are dis-
crete; After the mean evaluation, we should center the
signals:

yc(t) = y(t)− ȳ, ec(t) = e(t)− ē. (2)

And then, we normalize it to compensate for the signal
amplitudes difference :

yn(t) =
1

max
t∈T
|yc(t)|

yc(t), en(t) =
1

max
t∈T
|ec(t)|

ec(t).

(3)
So, the values of converted signals now fall into the

[−1; 1] range. We can now calculate the numerical value
of signal interdependence. We utilize the Pearson corre-
lation coefficient for this. This coefficient is a statistical
measure of linear correlation between two signals with
a value ranging from −1 to 1. We compute the correla-
tion coefficient for different time delays, assuming that
the interaction of rhythms may not occur instantly.

ρ(τ) =

∑
t∈T̂

yn(t+ τ)en(t)√∑
t∈T̂

y2n(t+ τ)
∑
t∈T̂

e2n(t)
, (4)

where τ is a delay, T̂ is a subset of T , which contains
elements of the analyzed time interval [30; 100] s. The
beginning and the end of the experiment are cut off due
to the possible presence of interference during the instal-
lation of equipment and the beginning of its removal. A
closer study of the graphs shows that our signal fluctu-
ates at 0.5 Hz, i.e. the possible delay τ belongs to the
interval [−2; 2] s. (± period of the signal).

The effect of cross-correlation ρ on the delay τ be-
tween the slow and fast signal envelope one can see in
Fig. 3. The maximum cross-correlation value is 0.662,
corresponding to a delay of τ = −0.456 s. That means



CYBERNETICS AND PHYSICS, VOL. 10, NO. 4, 2021 269

that the high-frequency gamma rhythm behavior is de-
termined by the phase of the slow signal 0.456 s. ago.
Another argument for this statement is that the corre-
lation curve has explicit negative minima for positive
τ = 0.566, i.e. two researched signals enter the opposite
phase after about a half of the slow signal y(t) period. It
is worth noting that the period of function ρ(τ) is around
2 s., which is the same as the period of the delta rhythm
y(t).

Figure 4. a: Scatter plot of maximum and minimum correlation coef-
ficients and relative time shifts for each channel. Dotted line illustrated
average correlation values and time shifts across all channels. b: Scat-
ter plot of correlation values and time shifts for each 20-s. interval
(5-s. increment) across [30; 100] s. range.

We receive confirmation of the stated hypothesis but
only for the one channel. Now it is logical to make
the same steps for other channels and compare what we
would take. The pipeline of this step is there: we filter
each channel, center and normalize it, evaluate correla-
tion coefficient for τ ∈ [−2; 2] s., and took the maximum
values of the positive and negative correlation (modulo),
as well as the corresponding shift times. Then we eval-
uate the mean correlation coefficient and shift time for
positive and negative ones. The result scatter plot one
can see in Fig. 4. The dotted lines draw the average
correlation values (0.66 for positive correlation values,
−0.75 for negative values) and time shifts (−0.446 s. for
positive correlation values, 0.586 s. for negative values)
across all channels. Even though there are minor differ-
ences in time delays for different channels, the envelope
correlation with delta signal is greater than 0.62 for each
channel. It is worth noticing that these results were re-
ceived with almost the whole experiment period analy-
sis. Hence, we indicate that our statement is correct. We
take the channel with a correlation value more than the
average and time shifts nearest to the average shift to the
following analysis. We choose the channel based on the
positive correlation values because these results are the

direct hypothesis confirmation.

Figure 5. a: Dependence of the cross-correlation ρ between the low-
frequency signal yn(t + τ) and the high-frequency signal envelope
en(t) on the delay τ between two signals. b: Dependence of the
delayed envelope value en(t) (green) on the low-frequency signal
yn(t− 0.456) (red).

After choosing the best channel, we divide our signals
from [30; 100] s. range into 20-s. intervals in 5-s. incre-
ments, that is [30; 50] s., [35; 55] s., . . . , [80; 100] s., and
evaluate correlation within them. We do that because for
the next modeling much computation power is needed.
And making simulation longer than 20 s. is computa-
tionally expensive. The criteria for selecting the interval
for analysis are the same for selecting the channel (high
correlation, proximity to the average shift). The best re-
sult was obtained for the [35; 55] s. interval. Correla-
tion has the value ρ = 0.74 and the time delay equals
τ = −0.456 s. Figure 5 presents the dynamics of two
processed signals, namely centered, normalized and de-
layed envelope of gamma rhythm en(t) and centered and
normalized delta rhythm yn(t− 0.456) during the cho-
sen time interval. One can see that the raising of the en-
velope value, i.e. the emergence of gamma oscillations,
is highly dependent on the increase of the delta rhythm
value. The fact that a slow delta signal can excite fast
gamma oscillations is thus established.

5 Modeling
A single cognitive unit is a closely connected collec-

tion of active neurons (cell ensemble), and the spike ac-
tivity of such a group is the basic unit of neural cod-
ing. Oscillators are synchronized clusters of neurons that
generate high-frequency oscillations and the gamma-
rhythm is a high-frequency rhythm. By the way, re-
cent studies [Panteley and Lorı́a, 2017] have shown that
the neurons cluster oscillations could be described by
the same equations as a single neuron with noise addi-
tion. To design a model of such oscillators for simula-
tion of gamma rhythm, we modify a simple model of
neuron dynamics, namely the FitzHugh-Nagumo (FHN)
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[FitzHugh, 1961; Nagumo et al., 1962] model. Introduce
a two dimensional model based on FHN model:

u̇(t) =
δ

ε

[
u(t)− u3(t)

3
− v(t) + ξ(t) + y(t+ τ)

]
,

v̇(t) = δ [u(t) + a− bv(t)] .
(5)

where u and v denote an oscillator potential and a re-
covery variable, respectively. The value for neuron dy-
namics is ε = 0.8, and the time scaling coefficient is
δ = 325. The value of δ is chosen to make the sys-
tem (5) equation oscillate at the same frequency as the
gamma rhythm (neural oscillation between 35 and 80
Hz). y(t + τ) is a low-frequency delta rhythm with
τ = −0.456, and ξ(t) is a “neuronal” noise, which is
supposed to be an unbiased Gaussian white noise, which
is a mathematical representation of many natural phe-
nomena. The parameters a and b are constants.

We employ evolutionary algorithms [Libelli and Alba,
2000; Fu et al., 2017] to determine the right values of
parameters a, b. We fix b = 0.8 and adjust the value of
the threshold a between 0.55 and 1.4 for this reason; the
original system (5) has a stable equilibrium point with
these values. We simulate the dynamics of the system
(5) and determine its normalized and centered envelope
esim for each value of the threshold a. The Pearson cor-
relation coefficient is a statistical measure of linear cor-
relation between high-frequency signal envelope en and
simulated signal envelope esim that we employ for this
purpose. The maximum correlation value is 0.63, corre-
sponding to the a = 1.05 threshold.

Figure 6. Dynamics of the system (5) potential u(t) and its enve-
lope (indicated by cyan color) in relation to the high-frequency gamma
rhythmx(t) and its envelope (marked by blue color) (marked by green
color). The low-frequency delta rhythm y(t) is indicated by the red
color. ε = 0.8, δ = 325, a = 1.05, b = 0.8, τ = −0.456
are the system parameters. Zeros are the starting conditions.

The simulation results are shown in Fig. 6. The
system (5) dynamics are seen to be dependent on the
low-frequency signal y(t) value: when y(t) is high
enough, the system exhibits self-sustained periodic fir-
ing, whereas when y(t) is low, the system exhibits oscil-
lation death. The firing times of the system (5) coincide

with the activation periods of the gamma rhythm x(t).
As a result, the FHN model may be used to simulate the
gamma rhythm.

6 Conclusion
This paper investigated the relationships between fast

gamma rhythm and slow brain rhythm. A delta rhythm
was discovered as the low-frequency signal. We used
signal processing to analyze ECoG recordings from ba-
sic Wistar rats, and found that the delta rhythm modifies
the gamma rhythm with a time delay of about 0.5 s. The
formation of gamma oscillations is triggered by increas-
ing this low-frequency signal value, whereas reducing it
causes gamma rhythm oscillation death, confirming the
phase-amplitude link. These results came from the ex-
perimental data, not just for one channel, but all chan-
nels.

In addition, we constructed a model for gamma rhythm
simulation based on the FHN model, fine-tuned its pa-
rameters. We demonstrated that it could regulate high-
frequency signals such as gamma rhythm with delta
rhythm as the system input.

In future studies, we plan to model the experiment on
networks of biological neurons, inspired by the results of
works [Dzhunusov and Fradkov, 2011], [Plotnikov and
Fradkov, 2019]. Our plans also include the analysis of
two noisy experiments using the developed tools.
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Buzsáki, G. (2010). Neural syntax: Cell assemblies,
synapsembles, and readers. Neuron, 68 (3), pp. 362–
385.
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