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Abstract This report presents a new parameter estimation method for a large class of nonlin-
ear ordinary differential systems based on center manifold theory and nonlinear Luenberger
observer. A numerical simulation shows that an unknown parameter in Lorenz system is well-
estimated by this estimator. Unlike the approach using chaos synchronization, the estimator
design does not depend on particular property of systems.

1 Introduction

In diverse fields of science, engineering and economics, systems of nonlinear ordinary differential equations
play roles in describing various phenomena, predicting its future behavior and maximizing benefit from it
(or minimizing problems caused by it). Those systems, however, include parameters that are unknown, vary
according to environment or involve large amount of uncertainty. Estimation of parameters in ode systems,
however, is a challenging problem when they are nonlinear because one cannot rely on analytic solutions.

In this report, we propose a novel approach to estimate parameters in nonlinear dynamical systems based
on center manifold theory. In recent years, one of the authors of the present report and others developed a
computationally efficient method for approximating center manifolds [6]. Using the computational technique
and a modification of Luenberger observer theory [5], an observer is constructed to estimate the states on center
part of a dynamical system. The parameters to be estimated are embeded in the center part and the observer
states converge to the values of the parameters. This method does not rely on particular structure of the systems
to be estimated and can be applied to a large class of dynamical systems.

The organization of this report is as follows. In§2, a recently developed approximation theory for center
manifolds is reviewed.§3 presents the main result on the center state estimation based on a nonlinear Luen-
berger observer. In§4, we demonstrate the proposed method using the Lorenz system. A parameter in the
Lorenz system is estimated with scalar measurement output. A relatively detailed construction of the estimator
is presented and it can be seen that no special structure of the Lorenz system is employed, which is a crucial
difference from earlier works in the parameter estimation methods using chaos synchronization [4, 2].

2 Successive approximation method of center manifolds

In this section, a recursive approximation method proposed in [6] is briefly reviewed. For detail, one refers to
the above-mentioned paper. Let us consider the following set of differential equations{

ẋ = Ax+ f (x, y)
ẏ = By + g(x, y),

(1)

where (x, y)∈Rn×Rm.

Assumption 1 A is an n×n constant real matrix whose eigenvalues have zero real parts. B is an m×m constant
real matrix and its eigenvalues have negative real part.
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From Assumption 1, it follows that for any constanta > 0, there exists a constantC1(a) > 0 such that∣∣∣eAtx
∣∣∣ 6 C1(a)ea|t||x|, (∀t∈R, ∀x∈Rn).

Also, it follows that there exist constantb > 0 andC2 > 0 such that∣∣∣e−Bty
∣∣∣ 6 C2ebt|y|, (0>∀t∈R, ∀y∈Rm)

.

Assumption 2 f : Rn×Rm→Rn, g : Rn×Rm→Rm are Cr functions(r > 2) and for all |x|6ε, |x′|6ε, |y|6ε, |y′|6ε,
there exist continuous scalar functions K1(ε), K2(ε) such that

| f (x, y)|6εK1(ε)

|g(x, y)|6εK2(ε)

| f (x, y) − f (x′, y′)|6K1(ε)(|x− x′| + |y − y′|)
|g(x, y) − g(x′, y′)|6K2(ε)(|x− x′| + |y − y′|)

where, f(0,0) = 0, g(0, 0) = 0,
(∂ f
∂x(0,0), ∂ f

∂y (0, 0)
)
= 0,

(∂g
∂x(0,0), ∂g∂y (0, 0)

)
= 0, K1(0) = 0, K2(0) = 0.

Note that Assumptions 1 and 2 are satisfied in systems withC2 smoothness. Next, we define a set of sequences
{xk(t, ξ)}, {hk(ξ)}, (k=0, 1, 2, · · · ) by the following.

x0(t, ξ) = eAtξ

h0(ξ) = 0

xk+1(t, ξ) = eAtξ +

∫ t

0
eA(t−s) f (xk(s, ξ),hk(xk(s, ξ)))ds

hk+1(ξ) =
∫ 0

−∞
e−Bsg(xk(s, ξ), hk(xk(s, ξ)))ds.

(2)

Theorem 3 Under Assumptions 1 and 2, system(1) possesses a local center manifoldy = h(x) around the
origin and hk(x) in (2) converges to the local center manifold when k→ ∞.

3 Partial state estimation using center manifold theory

In this subsection, we consider an ode system, in which the eigenvalues of the Jacobian matrix calculated at
x = 0 have zero real parts, with the following state-space representation.

ẋc = Acxc + fc(xc, xs), Re(λ(Ac)) = 0

ẋs = Asxs+ fs(xc, xs), Re(λ(As)) < 0

y = h(xc, xs) (measurement output).

(3)

The design of partial state estimator is based on a dynamical system

ẇ = Aw + bh(xc, xs), (4)

whereA is any Hurwitz matrix with the same dimension asAc and the pair (A,b) is controllable.
The composite system (3) and (4) are described as

ẋc = Acxc + fc(xc, xs)ẋs

ẇ

 = As 0

0 A

 xs

w

 +  fs(xc, xs)

bh(xc, xs)

 (5)
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Center manifold theory states that there exists a center manifold [xs w]T = [T1(xc) T2(xc)]T for the system (5)
and, locally, all trajectoriesxs(t), xc(t) andw(t) converge to the center manifold ast → ∞ (see, e.g., [1, 3]).
Note that the center manifoldw = T2(xc) satisfies the following pde.

∂T2(xc)
∂xc

(Acxc + fc(xc,T1(xc))) = AT2(xc) + bh(xc,T1(xc)), T2(0) = 0 (6)

Next, we consider the following candidate of a state estimator forxc.

˙̂xc = Acx̂c + fc(x̂c,T1(x̂c)) +
[∂T2

∂xc
(x̂c)

]−1
b(y − h(x̂c,T1(x̂c))), (7)

wherey is the measurement output of system (3). To see that system (7) estimatesxc, we prove thatT2(x̂c) −
T2(xc) goes to 0 ast → ∞. To this end, take its time derivative

d
dt

(T2(x̂c) − T2(xc)) =
∂T2

∂xc
(x̂c) ˙̂xc −

∂T2

∂xc
ẋc

=
∂T2

∂xc
(x̂c)(Acx̂c + fc(x̂c,T1(x̂c))) +

∂T2

∂xc
(x̂c)

[
∂T2

∂xc
(x̂c)

]−1

b(y − h(x̂c,T1(x̂c)))

− ∂T2

∂xc
(Acxc + fc(xc, xs))

= AT2(x̂c) + bh(x̂c,T1(x̂c)) + b(y − h(x̂c,T1(x̂c))) − AT2(xc) − bh(xc,T1(xc)) −
∂T2

∂xc
fc(xc, xs)

+
∂T2

∂xc
fc(xc,T1(xc))

= A(T2(x̂c) − T2(xc)) +
∂T2

∂xc
{ fc(xc,T1(xc)) − fc(xc, xs)} + B{h(xc, xs) − h(xc,T1(xc))},

and then, one can conclude thatT2(x̂c) − T2(xc) → 0 whent → ∞ because the last two terms are vanishing
non-homogeneous ones due to the property of center manifold.

Here, attention must be paid to the fact that, from center manifold theory, the Jacobian matrix ofT2 is
always singular at the origin, and therefore, the observer (7) always has high-gain. It is possible to numerically
circumvent this problem although its detail is omitted.

4 Unknown model parameter estimation in Lorenz system

To demonstrate how proposed method works, we consider the Lorenz system.
ẋ1 = −σx1 + σx2

ẋ2 = βx1 − x2 − x1x3

ẋ3 = −θx3 + x1x2

(8)

where (σ, θ) = (10,8/3), but,β is unknown. Suppose that only the measurement ofx2 is available, that is,
y = x2. To embed the unknown parameter in the center part, we extend the system with obvious dynamical
systems

β̇ = 0 with β(0) : unknown, α̇ = 0 with α(0) = 1(known).

Then, we have a 5-dimensional system with a measurement

ẋ1 = −σx1 + σx2

ẋ2 = −x1x3 + βx1 − αx2

ẋ3 = −θx3 + x1x2

β̇ = 0

α̇ = 0

y = x2.
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The linearization of the system is 
−σ σ 0 0 0
0 0 0 0 0
0 0 −θ 0 0
0 0 0 0 0
0 0 0 0 0


and the system has 2-dimensional stable part and 3-dimensional center. Note that nonlinear terms arex1(β −
x3) − αx2 in the second equation andx1x2 in the third. The dynamical system (4) takes the form

ẇ =

−a1

−a2

−a3

w +
11
1

 x2

with arbitrary positivea1, a2 anda3. After coordinate transformation

xc1 = β, xc2 = α, xc3 = x2,

xs1 = x1 − x2, xs2 = x3, xs3 = w1 − x2/a1, xs4 = w2 − x2/a2, xs5 = w3 − x2/a3,

the overall system is diagonalized, corresponding to (1), as follows

ẋc = 03×3xc +

 0
0
N1

 , ẋs =


−σ

−θ
−a1

−a2

−a3


xs+


−N1

N2

−N1/a1

−N1/a2

−N1/a3


,

where,
N1 = (xc3 + xs1)(xs1 − xs2) − xc2xc3, N2 = (xc3 + xs1)xc3.

Now, the center manifold algorithm (2) is applied, with 3 iterations, to get

(
xs1

xs2

)
= T1(xc),

xs3

xs4

xs5

 = T2(xc).

The observer (7) is constructed with

y = xc3, h(x̂c,T1(x̂c)) = x̂c3, Ac = 03×3, fc =
(
0 0 N1

)T
.

Computer simulations show that the proposed method estimates parameterβ well. Fig. 1 depicts the time
responses for initial condition̂β(0) = 30, while Fig. 2 depicts those for initial condition̂β(0) = 20. The real
value ofβ is β = 31 for which the system (8) exhibits chaotic behavior. In this formulation, ˆxc2 = α̂ also
converge to the real value 1. However, sinceα = 1 is known, it is possible to include this knowledge in the
observer to get better estimation performance forβ.
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Figure 2:β = 31, β̂(0) = 20
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