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Abstract 
This paper deals with stability preservation issue in 

methods which present an integer order model as an 
approximation of a fractional order system. First, the 
stability region of the approximating model obtained 
in these methods is determined and compared with the 
stability region of the original system. Then, one of 
the popular methods in this category (Charef's 
method) is studied from the stability preservation 
point of view. 
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1 Introduction 
Fractional calculus as an extension of ordinary 

calculus is a mathematical topic with more than 300 
years old history. Even though fractional calculus has 
a long history, its application to physics and 
engineering has been attracted lots of attention only in 
the last few decades. It has been found that many real 
world physical systems can be described by fractional 
differential equations. Some examples from fractional 
order dynamics can be found in [Podlubny, 1999b; 
Hilfer, 2001] and references therein. Also, in recent 
years fractional order dynamic systems have been 
widely studied in the design and practice of control 
systems (for example [Podlubny, 1999a; Feliu-Batlle, 
Rivas Perez, and Sanchez Rodriguez, 2007; Tavazoei 
and Haeri, 2008; Calderon, Vinagre and Feliu, 2006]). 
Although the integer order models can be considered 

as a special form of the more general fractional order 

models, there are basic differences between fractional 
order and integer order models. The main difference 
between them arises from inherent attribute of 
fractional derivatives. In fact, in contrary to the 
integer derivatives, the fractional derivatives are not 
local operators [Podlubny, 1999b]. In other words, the 
fractional derivative of a function depends on its 
whole past values. This property makes a fractional 
order model to behave like a system with an “infinite 
memory” or “long memory”. Due to this property, the 
fractional order models are not easy to simulate or 
implement [Oustaloup, 1995]. Use of the rational 
approximations of the fractional order models is a 
way to unravel this difficulty. For instance, to 
implement a fractional order controller, it is common 
to replace the controller by its integer order 
approximation [Vinagre, Podlubny, Hernandez, Feliu, 
2000; Petras, Podlubny, O'Leary, Dorcak and 
Vinagre, 2002; Charef, 2006]. These rational 
approximations have also been widely used in 
simulation of the fractional order systems [Aoun, 
Malti, Levron, and Oustaloup, 2004; Hartley, Lorenzo 
and Qammer, 1995; Li and Chen, 2004]. 
In this paper, we give a brief discussion about 

stability preservation in the methods that approximate 
a fractional order system with an integer order model. 
The paper is organized as follows. In Section 2, we 
find the stability region for the approximating models 
obtained using the rational approximation of the 
fractional operators in the frequency domain. The 
obtained stability region is compared with the stability 
region of the original system. The critical regions in 
which the stability does not preserve are determined. 
A more rigorous stability analysis on one of the 
popular methods of finding the rational approximation 



of a fractional operator i.e. the Charef's method is 
done in Section 3. Finally, conclusions in Section 4 
close the paper. 
 

2 Stability Analysis for Integer Order 
Approximation of Fractional Order Systems 
In this section, we discuss about the stability of 

integer order approximation of a fractional order 
system and compare it with the stability of the 
original system. Suppose that the original system is 
described by a fractional order model such as 
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where 0 1α< < , and ( )A s  and ( )B s  are coprime 
polynomials. We know that ( )T s α  is BIBO stable if 
and only if arg( ) / 2s απ>  for every s ∈  such that 

( ) 0A s = [Matignon, 1996]. The stable and unstable 
regions for fractional order system (1) have been 
shown in Fig. 1. Now, assume that we approximate 
system (1) using rational approximation of the 
fractional operator s α . Let the approximating filter 
for the operator sα  has the transfer function 

( ) ( ) / ( )G s p s q s= , where ( )p s  and ( )q s  are two 
coprime polynomials with real coefficients and ( )q s  
has no root with nonnegative real part. Using this 
approximating filter, the original system is 
approximated by 
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Figure 1.   Stability region of system (1). 

 
Since the approximating filter ( ) ( ) / ( )G s p s q s=  is 
stable, ( ( ) / ( ))B p s q s  has no pole with nonnegative 
real part. Also, ( ( ) / ( ))A p s q s  and ( ( ) / ( ))B p s q s  

have no common root. Thus, ( ( ) / ( ))T p s q s  is stable 
if and only if ( ( ) / ( ))A p s q s  has no zero with 
nonnegative real part. For an arbitrary set M ⊆ , 
we define 

( ) { ( ) | }f M f s s M= ∈  (3) 
It can be easily verified that ( ( ) / ( ))T p s q s  is stable 

if and only if equation ( ) 0A s =  has no root in the 
area ( )G D , where 

{ }| Re{ } 0D s s= ∈ ≥  (4) 
Since ( ) ( ) / ( )G s p s q s=  is an analytic function over 
D , for obtaining the area ( )G D  it suffices to map the 
boundary of D  under function ( ) ( ) / ( )G s p s q s= . 
Let γ  be the boundary of D . We may partition γ  to 
two curves 1γ  and 2γ  which are defined as follows, 

1 { | , }s s jγ ω ω= ∈ = −∞ < < ∞  (5) 

2 { | , / 2 / 2,
}

js s re
r

θγ π θ π= ∈ = − ≤ ≤
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When ( )p s  and ( )q s  have the same degree, 2( )G γ  
is a constant number. Also since ( )p s  and ( )q s  have 
real coefficients, 1( )G γ  is a symmetrical curve with 
respect to the real axis of the s -plane. Therefore, the 
curve 1( )G γ  is the boundary between stable and 
unstable regions of the approximated model according 
to location of denominator roots of the original 
system. Fig. 2 schematically shows the instability 
region for the approximated model. If the original 
system is unstable but its unstable poles are not in the 
region ( )G D , its approximated model will be stable. 
Also, when the boundary of ( )G D  crosses the lines 
| arg( ) | / 2s απ= , the approximated model could be 
unstable, while the original system is stable. These 
two forms of inconsistencies may occur when we use 
the frequency based approximation methods. 
 

 
Figure 2.   Instability region of approximation model. 

3 Stability Preservation Problem in Charef 
Method 
In this section, we investigate the stability 

preservation problem for the Charef's method [Charef, 
2006]. In this method, the approximation for operator 
sα  with maximum discrepancy y  dB in the 
frequency band ( , )L Hω ω  is given by 
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where the poles and zeros of (7) are found to be in a 
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geometric progression. The first zero, 0z , is chosen 
using the following equation 

( / 20 )
0 10 y

cz αω=  (8) 

where ( /10 )10 1c L
ε αω ω= −  and ε is the maximum 

permitted error between the slopes of sα  and its 
fractional power zero in the frequency band 
( , )L Hω ω . The gain DK  is selected as D cK αω= . By 
fixing the first zero, 0z , the other zeros and poles are 
determined as 

0( ) , 1,2,...,k
kz ab z k N= =  (9) 

0( ) , 0,1,...,k
kp a ab z k N= =  (10) 

where ( /10(1 ))10 ya α−=  and ( /10 )10 yb α= . Also, the 
number of poles and zeros is ( 1N + ), where 
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1
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z

N
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and max 100 Hω ω= . 

Figure 3.   Stability boundary for approximated 
model, (a): all frequencies (b): low frequencies. The 
dashed lines indicate the original stability boundary. 
 
As an example, Fig. 3 illustrates the stability 

boundary for approximated models constructed based 
on the Charef's method in a special case ( 0.3α = , 

3 3( , ) (10 , 10 )L Hω ω −= , 510ε −= , and 2y dB= ). It is 
clear that if the denominator polynomial of original 
system has a root in critical regions described in the 
previous section, the original system and its 
approximated model are not the same in the sense of 
stability. In other words, the stable original system 
may have unstable approximated model and the vice 
versa. 
Now, let us investigate the stability preservation 

issue in the Charef's method more rigorously. 
Suppose 

0 : | ( ) / 2 |G jδ ω απ δ∃ > − <  (12) 

for L Hω ω ω< < . If / 2δ απ< , (12) can be written 

as 
Im( ( ))tan( ) tan( ),

2 Re( ( )) 2
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The inequalities given in (13) guarantee that the 
stability boundary settles in the sector 
| / 2 |s απ δ− < . Therefore, the allowable phase 
error of the approximating filter has a very effective 
role in the accuracy of the stability boundary. 
According to (7), phase of the approximating filter is 
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Define 
1 1( ) tan ( / ) tan ( / )k k kG j z pω ω ω− −= −  (15) 

for 0 k N≤ ≤ . It can be easily verified that 

1( ) ( /( ))k kG j G j abω ω+ =  (16) 

Now, we define ( )kF jω  by 

( ) ( 10 )k kF j G j ωω =  (17) 

From (16) and (17), 

1( ) ( ( log( )))k kF j F j abω ω+ = −  (18) 

Therefore, one can write 

0

0
0

( ) ( )

( ( log( ))

N

k
k

N

k

F j F j

F j k ab

ω ω

ω

=

=

=

= −

∑

∑
 (19) 

It is straightforward to prove that ( )kF jω  is a 
symmetrical function with respect to the line 

log( )k kz pω = . 
In [Charef, Sun, Tsao and Onaral, 1992], it has been 

shown that if the number of poles and zeros tends to 
infinity i.e. N →∞  or equivalently 1ab → , the 
slope of amplitude of approximation (7) is the same as 
that of the original operator sα  i.e. 20 /dB decα . 
Now, we analyze the phase of approximation (7) 
when the number of poles and zeros tends to infinity. 
From (19), we have 
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According to (11), 
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Since 0 ( )F jω  is a symmetrical function with respect 

to the line 0 0log( )z pω = , the maximum of 

max 0
0log( / )z

F
ω

ω ω−∫  ( )j dω ω  occurs at 



0 max 0log 0.5log( / )oz p zω ω= + . Also, it is obvious 

that the maximum of ( )kG jω  in 0 max( , )zω ω∈  is 
equal to the maximum of ( )kF jω  in 

0 max(log , log )zω ω∈ . Thus, the maximum of 
( )kG jω  where N →∞  (i.e. 1ab → ) equals to 
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Let assume 10ωη =  and use the equality ( )a ab α= , 
then (23) can be written as 
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Using the first L'Hopital rule, (24) equals to 
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Equation (25) gives an interesting property for the 
approximating filters resulted from the Charef's 
method when N →∞ . According to equation (25), 
we know that 

{ }
1

max lim ( )
2ab

G j πω α
→

<  (26) 

This means that the instability region of the original 
system includes the instability region of its 
approximated model. In other words, while the stable 
fractional order systems necessarily have stable 
approximating model if N →∞ , unstable fractional 
order systems may have stable approximating models. 
Fig. 4 shows the maximum phase of the 
approximating filters resulted from the Charef's 
method for fractional operator 0.3s  with different 
orders. 
 

Figure 4:   Maximum phase of the approximating 
filters for fractional operator 0.3s  for different numbers 

of poles and zeros. 
 
4 Conclusion 
In this paper, we investigated the stability problem 

for integer order approximation of commensurate 

fractional order transfer functions. We showed that 
the stability boundary of the approximating model of 
a fractional order system, achieved via using filter 

( )G s  to approximate the fractional differentiator, is 
the curve { }( ) |G jω ω−∞ < < ∞  in the complex 
plane. This point emphasizes the importance of the 
phase accurateness of the approximating filter in the 
stability preservation of the frequency domain 
methods of finding rational approximation for 
fractional order systems. It was demonstrated that if 
the approximating filter is not chosen properly, the 
original system and its approximated model may be 
different in the sense of stability. In this case, the 
numerical simulation results are not validated and 
may lead to wrong consequences. Some of these 
wrong conclusions presented in the previous literature 
have been reported in [Tavazoei and Haeri, 2007a; 
Tavazoei and Haeri, 2007b]. Also, in this paper we 
analyzed the Charef's method in the sense of stability 
preservation. We showed that when number of poles 
and zeros in approximating filters resulted from the 
Charef's method tends to infinity, the approximation 
model of a stable fractional order system is 
necessarily stable. 
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