
PHYSCON 2013, San Luis Potosı́, México, 26–29th August, 2013

SOLVING DISCRETE-TIME ALGEBRAIC RICCATI
EQUATIONS USING MODIFIED NEWTON’S METHOD

Vasile Sima
Advanced Research

National Institute for Research & Development in Informatics
Romania

vsima@ici.ro

Abstract
Improved algorithms for solving discrete-time alge-

braic Riccati equations using Newton’s method with or
without line search are described. The numerical re-
sults illustrate the advantages such algorithms offer, es-
pecially for improving the solutions computed by other
solvers.

Key words
Algebraic Riccati Equation; Numerical Algorithms;

Numerical Methods; Optimal Control; Optimal Esti-
mation.

1 Introduction
The numerical solution of algebraic Riccati equations

(AREs) is required in many computational algorithms
for linear systems control, filtering, model reduction,
etc. Let A, E ∈ Rn×n, B ∈ Rn×m, and Q and R be
symmetric matrices of suitable dimensions. The gen-
eralized discrete-time AREs (DAREs), with unknown
X = XT ∈ Rn×n, are defined by

0 = op(A) TX op(A) − op(E) TX op(E)

−L(X)R̂(X)−1L(X)T +Q =: R(X), (1)

where the operator op(M) represents either M or MT ,
E and R̂(X) are assumed nonsingular, and

R̂(X) := R+BTXB,

L(X) := L+ op(A) TXB, (2)

with L of suitable size. Define also G :=
BR̂(X)−1BT . Note that G depends on X (contrary
to the continuos-time case, when R̂(X) is replaced by
R), but this dependency was suppressed, for conve-
nience. An optimal regulator problem involves the so-
lution of a DARE with op(M) = M ; an optimal es-
timator problem involves the solution of a DARE with

op(M) = MT , input matrix B replaced (by duality)
by the transpose of the output matrix C ∈ Rp×n, and
m replaced by p. In practice, often Q and L are given as
CT Q̄C and L = CT L̄, respectively. The solutions of a
DARE are the matrices X = XT for which R(X) = 0.
Usually, what is needed is a stabilizing solution, Xs,
for which the matrix pair (op(A−BK(Xs)) , op(E))
is stable (in a discrete-time sense), where op(K(Xs))
is the gain matrix of the optimal regulator or estimator,
given by

K(X) := R̂(X)−1L(X)
T
, (3)

with X replaced by Xs.
Newton’s method for solving AREs has been consid-

ered by many authors, for instance, (Benner and By-
ers, 1998; Kleinman, 1968). This paper merely reports
on implementation details and numerical results. In
addition, there are contributions compared to (Benner,
1998; Benner and Byers, 1998): improved stopping cri-
teria, improved functionality (regarding generality in
the coefficient matrices and options), etc.
Newton’s method is best used for iterative im-

provement of a solution or as a defect correction
method (Mehrmann and Tan, 1988), delivering the
maximal possible accuracy when starting from a good
approximate solution. Moreover, it is preferred in im-
plementing certain fault-tolerant systems, which re-
quire controller updating.

2 Basic Theory and Newton’s Algorithms
The following assumptions are made.

Assumptions A:

1. Matrix E is nonsingular.
2. Matrix pair (op(E)−1 op(A) , op(E)−1B) is sta-

bilizable.
3. Matrix R = RT is non-negative definite (R ≥ 0).
4. A stabilizing solution Xs exists and it is unique,

and R̂(Xs) > 0.

The algorithms considered in the sequel are enhance-
ments of Newton’s method, which employ a line search

procedure attempting to reduce the residual along the
Newton direction.
The conceptual algorithm can be stated as follows:

Algorithm ND: Modified Newton method for DARE
Input: The coefficient matrices E, A, B, Q, R, and L,
and an initial matrix X0 = XT

0 .
Output: The approximate solution Xk of ARE.

FOR k = 0, 1, . . . , kmax, DO

1. If convergence or non-convergence is detected, re-
turn Xk and/or a warning or error indicator value.

2. Compute Kk := K(Xk) with (3) and op(Ak) ,
where Ak = op(A) −BKk.

3. Solve in Nk the discrete-time generalized (or stan-
dard, if E = In) Stein equation (also called
discrete-time Lyapunov equation)

op(Ak)
TNk op(Ak) − op(E) TNk op(E) =

−R(Xk) . (4)

4. Find a step size tk which approximately minimizes
‖R(Xk + tNk)‖2F (with respect to t).

5. Update Xk+1 = Xk + tkNk.

END

The standard Newton’s algorithm is obtained by tak-
ing tk = 1 at Step 4 at each iteration. When the initial
matrix X0 is far from a Riccati equation solution, the
Newton’s method with line search often outperforms
the standard Newton’s method.
Basic properties for the standard and modified New-

ton’s algorithms for DAREs are stated, e.g., in (Benner,
1997), for instance:

Theorem 2.1 (Convergence for standard case). If

Assumptions A hold, and X0 is stabilizing, then the

iterates of the Algorithm ND with tk = 1 satisfy

(a) All matrices Xk are stabilizing.

(b) Xs ≤ · · · ≤ Xk+1 ≤ Xk ≤ · · · ≤ X1.

(c) limk→∞ Xk = Xs.

(d) Global quadratic convergence: There is a con-

stant γ > 0 such that

‖Xk+1 −Xs‖ ≤ γ‖Xk −Xs‖2, k ≥ 1. (5)

For continuous-time AREs (CAREs), a similar con-
vergence theorem is stated for the modified Newton’s
algorithm. The corresponding theorem does not en-
sure monotonic convergence of the iterates Xk in terms
of definiteness, contrary to the standard case (Theo-
rem 2.1, (b)). On the other hand, under mild conditions,
it states the monotonic convergence of the residuals to
0, which is not true for the standard algorithm.
For DAREs, fewer results are available for the mod-

ified Newton’s algorithm. One such result (Benner,

1997) states that if Xk is stabilizing, then Nk computed
by Algorithm ND is a descent direction for ‖R(Xk)‖2F
from Xk, unless Xk = Xs.

2.1 Algorithmic Details
If R is nonsingular, discrete-time AREs can be put in

a simpler form, which is more convenient for Newton’s
algorithms. Specifically, setting

Ã = A−BR−1LT , Q̃ = Q− LR−1LT , (6)

after redefining A and Q as Ã and Q̃, respectively,
equation (1) reduces to

0 = op(A) TX op(A) − op(E) TX op(E)

− op(A) TXGX op(A) +Q =: R(X), (7)

where the second term reduces to X in the standard
case (E = In). The transformations in (6) elimi-
nate the matrix L from the formulas to be used. In
this case, the matrix Kk is no longer computed in
Step 2, and Ak = op(A) − GXk op(A) (or Ak =
op(A) −DDTXk op(A) , where G =: DDT).
Algorithm ND was implemented in a Fortran 77

subroutine, SG02CD, following the SLICOT Li-
brary (Benner, Mehrmann, Sima, Van Huffel and
Varga, 1999) implementation and documentation stan-
dards (see http://www.slicot.org). The same
routine also solves CAREs. The implementation deals
with generalized algebraic Riccati equations without
inverting the matrix E, which is very important for nu-
merical reasons, since E might be ill-conditioned with
respect to inversion. Standard algebraic Riccati equa-
tions (including the case when E is set to In, or even
[] in MATLAB), are solved with the maximal possible
efficiency. Moreover, both control and filter algebraic
Riccati equations can be solved by the same routine, us-
ing an option (“mode”) parameter, which specifies the
op operator. The matrices A and E are not transposed.
It it possible to also avoid transposing C, for the filter
equation, but this is less important and more difficult
to implement at the SLICOT Library level, since some
existing lower-level routines do not directly cover the
transposed case. But this issue was solved in the exe-
cutable MEX-file calling the SLICOT Riccati solver.
The implemented algorithm solves either the gener-

alized or standard DARE (7) using Newton’s method
with or without line search. There is an option for solv-
ing related AREs with the minus sign replaced by a
plus sign in front of the quadratic term. While G is
sometimes used in the code for solving DAREs (see
below), it is not allowed to give it on input, instead
of the matrices B and R, contrary to the CAREs case.
The iteration is started by an initial (stabilizing) matrix
X0, which can be omitted, if the zero matrix can be
used. If X0 is not stabilizing, and finding Xs is not
required, Algorithm ND will converge to another solu-
tion of DARE. Either the upper, or lower triangles, not

both, of the symmetric matrices Q, G, R, and X0 need
to be stored. Since the solution computed by a Newton
algorithm generally depends on initialization, another
option specifies if the stabilizing solution Xs is to be
found. In this case, the initial matrix X0 must be stabi-
lizing, and a warning is issued if this property does not
hold; moreover, if the computed X is not stabilizing,
an error is issued. Another option specifies whether
to use standard Newton method, or the modified New-
ton method, with line search. The optimal size of the
needed real working array can be queried, by setting
its length to −1. Then, the solver returns immediately,
with the first entry of that array set to the optimal size.
A maximum allowed number of iteration steps, kmax,

is specified on input, and the number of iteration steps
performed, ks, is returned on exit.
If m ≤ n/3, the algorithm is faster if a factorization
G = DDT is used instead of G itself. Usually, the
routine uses the Cholesky factorization of the matrix
R̂(Xk), R̂(Xk) = LT

r Lr, and computes D = BL−1
r .

The standard theory assumes that R̂(Xs) is positive
definite. But the routine works also if this property
does not hold numerically for R̂(Xk), by using the
UDUT or LDLT factorization of R̂(Xk). In that case,
the implementation uses G, and not its factors, even if
m ≤ n/3.
The arrays holding the data matrices A and E are un-

changed on exit. Array Q stores matrix Q on entry and
the computed solution X on exit. The array B, stor-
ing B on input, returns the final matrix D = BL−1

r ,
if m ≤ n/3 and the Cholesky factor Lr can be com-
puted. Similarly, the array R, storing R on input, may
return either the Cholesky factor, or the factors of the
UDUT or LDLT factorization of R̂(Xs), if R̂(Xs) is
found to be numerically indefinite. In the last case, the
interchanges performed for the UDUT or LDLT fac-
torization are stored in an auxiliary integer array.
The basic stopping criterion for the iterative process is

stated in terms of a normalized residual, rk := r(Xk),
and a tolerance τ . If

rk := ‖R(Xk)‖F /max(1, ‖Xk‖F) ≤ τ, (8)

the iterative process is successfully terminated. If τ ≤
0, a default tolerance is used, defined in terms of the
Frobenius norms of the given matrices, and relative ma-
chine precision, εM . Specifically, τ is computed by the
formula

τ = min (εM
√
n
(‖A‖F (‖A‖F

+ ‖G‖F ‖A‖F + ‖E‖2F) + ‖Q‖F
)
,
√
εM). (9)

The second operand of min in (9) was introduced to
prevent deciding convergence too early for systems
with very large norms for A, E, G, and/or Q. The
finally computed normalized residual is also returned.
Moreover, approximate closed-loop system poles, as

well as min(ks, 50)+1 values of the residuals, nor-
malized residuals, and Newton steps are returned in the
working array.
For systems with very large norms of the matrices A,
E, G, or Q, and small norm of the solution X , the
termination criterion involving (9) might not be satis-
fied in a reasonable number of iterations (or never, due
to accumulated rounding errors), while an acceptable
approximate solution might be much earlier available.
Therefore, the relative residual, which includes the
norms of A, E, G, and Q in the denominator of its for-
mula, is also tested at iterations 10 + 5q, q = 0, 1, . . .,
and it might produce the termination of the iterative
process, instead of the criterion based on the normal-
ized residual. The relative residual is not tested at each
iteration in order to reduce the computation costs, and
to increase the chances of termination via the normal-
ized residual test.
Another test is to check if updating Xk is meaning-

ful. The updating is done if tk‖Nk‖F > εM‖Xk‖F . If
this is the case, set Xk+1 = Xk + tkNk, and compute
the updated matrices op(Ak+1) and R(Xk+1). Oth-
erwise, the iterative process is terminated and a warn-
ing value is set, since no further improvement can be
expected. Although the computation of the residual
R(Xk + tkNk) can be efficiently performed by up-
dating the residual R(Xk), the original data is used,
since the updating formula (see (11) below) could suf-
fer from severe numerical cancellation, and hence it
could compromise the accuracy of the intermediate re-
sults.
Often, but mainly in the first iterations, the computed

optimal steps tk are too small, and the residual de-
creases too slowly. This is called stagnation, and reme-
dies are used to escape stagnation, as described below.
The chosen strategy was to set tk = 1 when stagnation
is detected, but also when tk < 0.5, ε1/4M < rk < 1,
and ‖R̂(Xk + tkNk)‖F ≤ 10, if this happens during
the first 10 iterations; here, R̂(Xk + tkNk) is an esti-
mate of the residual obtained using (11).
In order to detect stagnation, the last computed kB

residuals are stored in an array RES. If ‖R̂(Xk +
tkNk)‖F > τs‖R(Xk−kB

)‖F > 0, then tk = 1 is
used instead. The implementation uses τs = 0.9 and
sets kB = 2, but values as large as 10 can be used by
changing this parameter. The first kB entries of array
RES are reset to 0 whenever a standard Newton step is
applied.
Pairs of symmetric matrices are stored economically,

to reduce the workspace requirements, but preserv-
ing the two-dimensional array indexing, for efficiency.
Specifically, the upper (or lower) triangle of Xk and
the lower (upper) triangle of R(Xk) are concatenated
along the main diagonals in a two-dimensional n(n+1)
array, and similarly for G and a copy of the matrix Q,
if G is used. Array Q itself is also used for (temporar-
ily) storing the residual matrix R(Xk), as well as the
intermediate matrices Xk and the final solution.

2.2 Computation of the Newton direction and step
size

The algorithm computes the initial residual matrix
R(X0) and the matrix op(A0) , where A0 := op(A) ±
GX0 op(A) . If no initial matrix X0 is given, then
X0 = 0, R(X0) = Q and op(A0) = A.
At the beginning of the iteration k, 0 ≤ k ≤ kmax,

the algorithm decides to terminate or continue the
computations, based on the current normalized resid-
ual rk (and possibly relative residual rr(Xk)). If
min(rk, rr(Xk)) > τ , a standard (if E = In) or gen-
eralized Stein equation (4) is solved in Nk (the Newton
direction), using SLICOT subroutines.
Optionally, the matrices Ak and E (if E is gen-

eral) are scaled for solving the Stein equations, and
their solutions are suitably updated. Note that the
LAPACK (www.netlib.org/lapack/) subrou-
tines DGEES and DGGES, which are called by the
SLICOT standard and generalized Stein solvers, re-
spectively, to compute the real Schur(-triangular) form,
do not scale the cefficient matrices. Just column and
row permutations are performed, to separate isolated
eigenvalues. For some examples, and no scaling, the
convergence was not achieved in a reasonable number
of iterations.
While for CAREs it is possible to find the optimal step

size, by minimizing the Frobenius norm of the residual
matrix along the Newton direction, Nk, this is compu-
tationally not attractive for DAREs. Specifically, the
optimal step size tk is given by

tk = argmin
t

‖R(Xk + tNk)‖2F . (10)

For DARE, tk is found numerically as the argument
of the minimal value in [0,2] of a polynomial of or-
der 4 (Benner, 1997). Indeed,

R(Xk + tNk) = (1− t)R(Xk)− t2Vk, (11)

where Vk = op(A) TNkGkNk op(A) with Gk :=
BR̂(Xk)

−1BT . Therefore, the minimization prob-
lem (10) reduces to the minimization of the approxi-
mate quartic polynomial (Benner, 1997)

fk(t) = trace(R(Xk + tNk)
2)

= αk(1− t)2 − 2βk(1− t)t2 + γkt
4, (12)

where αk = trace(R(Xk)
2), βk = trace(R(Xk)Vk),

γk = trace(V 2
k).

In order to solve the minimization problem (10), a cu-
bic polynomial (the derivative of fk(t)) is set up, whose
roots in [0,2], if any, are candidates for the solution of
the approximate minimum residual problem. The roots
of this cubic polynomial are computed by solving an
equivalent 4-by-4 standard or generalized eigenprob-
lem, following (Jónsson and Vavasis, 2004).

Actually, for DAREs, the true fk(t) is not a polyno-
mial, but a rational function, and the above formulas
are obtained by replacing its denominator by the second
order Taylor series approximant at t = 0. The approxi-
mation is useful when t is small enough. For instance,
if |t| < 1/‖GkNk‖, where ‖ · ‖ is any submultiplica-
tive norm, then R̂(Xk+1) := R+BT (Xk+ tkNk)B is
nonsingular, if R̂(Xk) is nonsingular. Since tk is cho-
sen from the interval [0,2], the condition above is satis-
fied if ‖GkNk‖ < 1/2. It can be shown (Benner, 1997)
that if Xk is stabilizing, then either Nk is a descent
direction for ‖R(X)‖2F , or Xk = Xs. But the stabi-
lizability property is not guaranteed, at least for t ∈
[0, 2]. When ‖GkNk‖ is large (usually, at the begin-
ning of the iterative Newton’s process), the step sizes
tk could be too small, and the progress of the iteration
could be too slow. A backtracking approach, proposed
in (Benner, 1997), can be used to increase the speed of
the iterative process. Specifically, in a hybrid strategy,
both standard Newton step and the step corresponding
to the approximate line search procedure are computed,
and that step which gives the smallest residual is se-
lected, provided there is a sufficient residual decrease.
Otherwise, the step size is reduced until a sufficient de-
crease is eventually obtained. If this is not the case, or
stagnation is detected, then a standard Newton step is
used.

3 Numerical results
This section presents some results of an extensive per-

formance investigation of the solvers based on New-
ton’s method. The numerical results have been ob-
tained on an Intel Core i7-3820QM portable com-
puter at 2.7 GHz, with 16 GB RAM, with the rela-
tive machine precision εM ≈ 2.22 × 10−16, using
Windows 7 Professional (Service Pack 1) operating
system (64 bit), Intel Visual Fortran Composer XE
2011 and MATLAB 8.0.0.783 (R2012b). A SLICOT-
based MATLAB executable MEX-function has been
built using MATLAB-provided optimized LAPACK
and BLAS subroutines.
A first set of tests refer to DAREs (7) with initial ma-

trices E, A, B, Q, and R randomly generated from a
uniform distribution in the (0,1) interval, with n and m
set as n = 200 : 200 : 1000, m = 200 : 200 : n
(in MATLAB notation). The generated matrix E was
then modified by subtracting 100·norm(E) from the di-
agonal. The generated matrices Q and R were mod-
ified by adding n and m, respectively, to the diago-
nal entries, and then each of them was symmetrized,
by adding its transpose. The matrix L was set to zero.
(Randomly generated L have also been tried.) We then
used the MATLAB function dare from the Control
System Toolbox (MATLAB, 2011) with inputs A, B,
Q, R, L, and E, and stabilized A using A := A−BF ,
where F is the feedback gain matrix returned by dare.
A new Riccati solution was computed by dare using
the modified A and the other matrices. This allowed

us to set to zero the initial matrix X0. Fifteen DARE
problems have been generated. For each DARE, vari-
ous options have been tried (e.g., use either the upper or
lower part of symmetric matrices, or use the two values
of op(M)). The default tolerance has been used.
Fig. 1 presents the normalized residuals for the ran-

dom examples solved using Newton solver with line
search, and dare. Fig. 2 presents the CPU times
(computed using the MATLAB pair functions tic and
toc). The y-axis is scaled logarithmically, for better
clarity, since the CPU times vary significantly.

0 5 10 15
10−12

10−11

10−10

10−9

10−8

Example #

No
rm

al
ize

d
re

sid
ua

ls

Normalized residuals

Newton
dare

Figure 1. The normalized residuals for random examples using
Newton solver with line search and dare; n = 200 : 200 :
1000, m = 200 : 200 : n.

0 5 10 15
10−1

100

101

102

103

Example #

CP
U

tim
e

Elapsed CPU time

Newton
dare

Figure 2. The CPU times for random examples using Newton
solver with line search and dare; n = 200 : 200 : 1000,
m = 200 : 200 : n.

Similar results have been obtained using standard
Newton solver. For both variants, the new solver was
always faster and more accurate than dare. Note that
for this set of tests, the problems with op(M) = MT

and E = In usually needed more iterations and CPU
time for Newton solver than those with op(M) = M .
The Euclidean norm of the vectors of normalized

residuals (one normalized residual for each example)

and the mean number of iterations are shown in Table 1,
both for E general and E = In (in the upper and lower
part, respectively). Using the hybrid strategy, the same
values as for the standard solver have been obtained.

Table 1. Normalized residuals 2-norms and mean number of itera-
tions for random examples.

E general L. search Standard dare

‖r1:15‖2 8.7 · 10−11 8.6 · 10−11 6·10−9

1
15

∑15
1 kis 2 2 −

E = In L. search Standard dare

‖r1:15‖2 4.1 · 10−9 5.9 · 10−9 1.3·10−5

1
15

∑15
1 kis 20.4 3.7 −

Other tests have been performed for linear systems
from the COMPleib collection (Leibfritz and Lipin-
ski, 2004). This collection contains 124 standard
continuous-time examples (with E = In), with several
variations, giving a total of 168 problems. For testing
purposes, these examples have been considered in this
paper as being of discrete-time type. The performance
index matrices Q and R have been chosen as identity
matrices of suitable sizes. The matrix L was always
zero. All but 16 problems (for systems of order larger
than 2000, with matrices in sparse format) have been
tried. However, 63 problems didn’t satisfy the needed
conditions, and couldn’t be solved by the MATLAB
function dare, which gave the error message “There
is no finite stabilizing solution”. These examples have
been omitted. Most often we used the default tolerance.
In a series of tests, we used X0 set to a zero matrix,

if A is stable; otherwise, we tried to initialize the New-
ton solver with a matrix computed using the algorithm
in (Armstrong and Rublein, 1976), and when this al-
gorithm failed to deliver a stabilizing initialization, we
used the solution provided by dare. A zero initializa-
tion could be used for 6 stable examples. Stabilization
algorithm was tried on 82 unstable systems, and suc-
ceeded for 55 examples. Failures occurred for 27 ex-
amples. Both standard and modified Newton’s method,
with or without balancing the coefficient matrices of
the Stein equations were tried.
Due to paper length restrictions, only the elapsed CPU

times are shown, in Fig. 3. The ratio of the sum of the
CPU times for dare and the modified Newton solver
was about 1.95 (and 2.5 for the hybrid strategy). The
standard Newton solver was even faster, the ratio being
3.6.
Clearly, a good initialization could improve the behav-

ior of the Newton solver. When the solution returned
by dare was used for all COMPleib examples, and
with the tolerance set to εM , the new solver still not
improved the dare results for 5 examples. Alternative

0 20 40 60 80 100
10−4

10−3

10−2

10−1

Example #

CP
U

tim
e

Elapsed CPU time

Newton
dare

Figure 3. The elapsed CPU time needed by the Newton solver with
line search and MATLAB dare for examples from the COMPleib
collection.

algorithms, including evolutionary ones (e.g., (Zelinka
et al., 2010)), might be tried for initialization.
Fig. 4 shows the relative residuals for Newton solver

with line search, initialized by dare, and with toler-
ance τ = εM . Newton solver often significantly re-
duces the residuals, compared to dare. Five examples
need further investigation. Similarly, Fig. 5 shows the
CPU times of the Newton solver with line search.

4 Conclusion
Basic theory and improved algorithms for solving

discrete-time algebraic Riccati equations using New-
ton’s method with or without line search have been pre-
sented. The numerical results for discrete-time AREs
illustrate the advantages of using such algorithms.

Acknowledgements
The cooperation with Peter Benner and the NICONET

support are much acknowledged.

0 20 40 60 80 100
10−20

10−15

10−10

10−5

100

Example #

Re
la

tiv
e

re
sid

ua
ls

Relative residuals

Newton
dare

Figure 4. The relative residuals for examples from the COMPleib
collection, using Newton solver with line search, initialized by
dare solution and with tolerance εM . The relative residuals for
the MATLAB dare are also shown.

0 20 40 60 80 100
10−4

10−3

10−2

10−1

Example #

CP
U

tim
e

Elapsed CPU time

Newton
dare

Figure 5. The elapsed CPU time needed by the Newton solver with
line search, initialized by dare solution, and with tolerance εM ,
for examples from the COMPleib collection. The elapsed CPU time
needed by the MATLAB dare is also shown.

References
Armstrong, E. S. and Rublein, G. T. (1976). A stabi-

lization algorithm for linear discrete constant systems.
IEEE Trans. Automat. Contr. AC-21(4), pp. 629–631.

Benner, P. (1997). Contributions to the Numerical So-
lution of Algebraic Riccati Equations and Related
Eigenvalue Problems. Dissertation, Fak. für Mathe-
matik, Techn. Universität Chemnitz–Zwickau.

Benner, P. (1998). Accelerating Newton’s method for
discrete-time algebraic Riccati equations. In A. Beghi,
L. Finesso and G. Picci, eds, Mathematical Theory of

Networks and Systems, Proc. of the MTNS-98 Sympo-

sium held in Padova, Italy, July, 1998, pp. 569–572.
Benner, P. and Byers, R. (1998). An exact line search

method for solving generalized continuous-time alge-
braic Riccati equations. IEEE Trans. Automat. Contr.

43(1), pp. 101–107.
Benner, P., Mehrmann, V., Sima, V., Van Huffel, S. and

Varga, A. (1999). SLICOT — A subroutine library in
systems and control theory. In B. N. Datta, ed., Ap-

plied and Computational Control, Signals, and Cir-

cuits, Vol. 1, ch. 10, Birkhäuser, Boston, pp. 499–539.
Jónsson, G. F. and Vavasis, S. (2004). Solving polyno-

mials with small leading coefficients. SIAM J. Matrix

Anal. Appl. 26(2), pp. 400–414.
Kleinman, D. L. (1968). On an iterative technique for

Riccati equation computations. IEEE Trans. Automat.

Contr. AC–13, pp. 114–115.
Leibfritz, F. and Lipinski, W. (2004), COMPleib 1.0
– User manual and quick reference, Technical report,
Dep. of Mathematics, University of Trier, Germany.

MathWorks (2011). Control System Toolbox User’s

Guide. Version 9. The MathWorks, Inc.
Mehrmann, V. and Tan, E. (1988). Defect correc-

tion methods for the solution of algebraic Riccati
equations. IEEE Trans. Automat. Contr. AC–33(7),
pp. 695–698.

Zelinka, I., Celikovsky, S., Richter, H. and Chen, G.,
eds (2010). Evolutionary Algorithms and Chaotic Sys-

tems. Springer.

