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Abstract
In this paper we study the stochastic stability of nu-

merical solutions of a stochastic controlled Schrödinger
equation. We investigate the boundedness in second mo-
ment, the convergence and the stability of the zero so-
lution for this equation, using two new definitions of
almost sure exponential robust stability and asymptotic
stability, for the Euler-Maruyama numerical scheme.
Considering that the diffusion term is controlled, by us-
ing the method of Lyapunov functions and the corres-
ponding diffusion operator associated, we apply tech-
niques of X. Mao and A. Tsoi for achieve our task. Fi-
nally, we illustrate this method with a problem in Nu-
clear Magnetic Resonance (NMR).

Key words
Stochastic Optimal Control, Maximum Stochastic

Principle, Euler-Maruyama Scheme.

1 Introduction
The stochastic controlled Schrödinger equation de-

pending on time considerate in our study, corresponds
to a two-level quantum system describing a spin 1/2-
particle in a constant and longitudinal static electromag-
netic field in the direction of the Z axis and two randomly
time varying electromagnetic fields along the X axis and
Y axis, respectively. In general terms, that equations is:

d

dt
~ψ(t) = −iH(u(t))~ψ(t) (1)

where the state ~ψ : [0, T ] → C2 is a vector representing
the unitary ket |ψ〉, T ∈ R is the duration of the process,
u : [0, T ] → R, u(t) = u1(t) + u2(t) is the control and

the energy of the system is represented by the Hamilto-
nian H(t). In [Romero, 2020] we have considered the
following stochastic differential equation:

d~xt = (Sz + uy(t)Sy(t))~x(t)dt+ ux(t)Sx(t)~x(t)dWt

(2)
where ~xt = ~x(t) is obtained splitting real and imaginary
parts of ~ψ ,Wt = W (t) is a standard Wiener process and
Sz , Sy and Sx are the Pauli real-splitted matrices. The
optimal control problem is the following: to find controls
u1(t), u2(t) ∈ L1([0, T ],R) which steers the initial state
~x(0) of the stochastic system (2) to the final state ~x(T )
in C2 and minimizes over 0 ≤ t ≤ T the energy cost
functional of Bolza type, following:

J(u) = E
(
〈x>(T )|O |x(T )〉+

∫ T

0

(
u2

1(t)+u2
2(t)

)
dt
)

(3)
where E(f) denotes the conditional expectation with res-
pect to f , T = π√

2
and O is the observable operator

with the target informationO = ~x(T )~x>(T ), which will
allow an optimal evolution of the system.

It is known that the system (2) can be solved only
through numerical methods. The algorithm used in
[Romero, 2020] via the Euler-Maruyama scheme, seek-
ing the numerical solution of the optimal control pro-
blem mentioned, is very sensitive to the parameters va-
lues related with the NMR phenomenon.

The Euler-Maruyama method is the simplest numeri-
cal method for solving stochastic differential equations
Let || · || be the Euclidean norm in Rn and let’s consider
the trace as the norm in Rnm. Denoting xk = x(tk),
this method computes discrete approximations xk+1 =
xk(k∆t), selecting a grid of [0, T ] : 0 < t0 < · · · <
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tN = T and satisfying the following stochastic differ-
ence equation:

xk+1 = xk+S3xk∆tk+1+(S1u1(t)+S2u2(t))xk∆Wk+1

(4)
where

∆tk+1 = tk+1 − tk
∆Wk+1 = W (tk+1)−W (tk)

So, we have:

xk+1 = xk +

∫ tk+1

tk

S3xk∆tk+1

+

∫ tk+1

tk

(S1u1(t) + S2u2(t))xk∆Wk+1 (5)

Each one of these integrals approximate the correspond-
ing integrals of equation (2). In this process, we are inter-
ested in the zero solution or equilibrium position of this
equation, by using the corresponding Euler-Maruyama
numerical scheme in equation (4).

Studying the stability of the numerical schemes for
stochastic controlled Schrödinger equations and comput-
ing approximations, it’s important to analyze the choice
of step size ∆tk in order to extend, by very large time,
the stability properties to the exact solution of the corre-
sponding stochastic controlled Schrödinger equation.

In [Burrage, 2000] the study of the stability of stochas-
tic numerical equations of type It is considered, but
only stochastic differential equations with multiplicative
noise in the linear scalar case are discussed and no con-
trol is considered. In [Tocino, 2005] the authors discuss
the numerical stability of stochastic differential equa-
tions and numerical methods. They use definitions of
stochastic stability and asymptotic stochastic stability of
an equilibrium position of stochastic differential equa-
tions. In our case, we prefer to use the exponential
stochastic stability, which is the one used by [Mao, 2015]
and [Tsoi, 1997], but we consider variants of the same,
more robust and adequate to the model of the controlled
stochastic Schr”odinger equation, studied here.

All of the above motivates our interest in investigating
the stability and robustness analysis of numerical com-
putations in this model.

2 Stochastic stability
2.1 Almost sure exponential robust stability and

asymptotic stability
In the choice of the optimal control to steer, with prob-

ability one, two quantum states for a stochastic quantum
system, minimizing the cost, we require some asymp-
totic stability properties and it is important to have seve-
ral stability results that allow achieving the desired task.
There are different types of exponential stochastic stabil-
ity [Mao, 1994; Khasminskii, 1981; Tsoi, 1997] and we
look for the most suitable for our optimal control prob-
lem. Our definitions of almost sure exponential robust

stability and asymptotic stability are variants in the con-
trol case, of Mao definitions for the stability of numer-
ical schemes, [Mao, 2015]. We will introduce the def-
initions of almost sure exponential robust stability and
asymptotic stability of the trivial solution of the numer-
ical scheme in equation (5), associated to the stochastic
controlled Schrödinger equation (2).

First of all, in order to addressing the concepts of
stochastic stability and to adapt the classical Lyapunov
theory, we introduce a Lyapunov function V (x, t) ∈
C2,1(Rn×R+;R+), withC2,1(Rn×R+;R+) the family
of all non-negative functions V (x, t), continuously twice
differentiable in x and once in t, defined on Rn × R+,
which allows to guarantee the stability of the solution of
the general stochastic differential equation

dxt = b(xt, t, ut)dt+ σ(xt, t, ut)dWt (6)

where , b : Rm × R+ × R→ Rmσ : Rm × R+ × R→
Rm2

, and W (t) is a one dimensional Brownian motion.
The Lyapunov function V (x, t) must satisfy, according
to Itô’s formula, the equation:

dV (x, t) = LV (x, t)dt+ Vx(x, t)σ(x, t, u)dW (7)

where L : R+×Rn → R is the diffusion operator acting
on V (x, t), defined by:

L =
∂

∂t
+

n∑
i=1

b(t, x)
∂

∂xi

+
1

2

n∑
i,j=1

(σ(x, t, u)σ>(x, t, u))ij
∂2

∂xi∂xj
(8)

It is also convenient to introduce the operator Q : R+ ×
Rn → R, which, acting on V (x, t), has the following
form:

QV (x, t) = trace [σ>(x, t, u)V >x (x, t)Vx(x, t)σ(x, t, u)
(9)

Moreover, considering the stochastic differential
system (6), we assume the following hypothesis: there
are constants C1, C2, C3, and C4, such that:

(H1) Both b(x, t, u) and σ(x, t, u) satisfy the Lipschitz
and linear growth conditions, in the x variable:

||b(x, t, u)− b(y, t, u)|| ≤ C1||x− y||
||σ(x, t, u)− σ(y, t, u)|| ≤ C2||x− y||

(H2) The controls satisfy the following estimates:
||ui(t)|| ≤ C3, i = 1, 2

(H3) For the numerical solution x0 we have following
estimates: E||x0||2 ≤ C4

Finally, we introduce the following definitions:
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Definition 1. Let p ∈ (0, 1] be arbitrary, ∆t > 0 and
{λk(t)}k a positive continuous and increasing sequence.
The numerical scheme defined by equation (5) is called
almost surely exponentially and robustly stable, if there
exists a constant r > 0, such that:

lim
k→∞

sup
1

log λk(∆t)
log ||xk||p < −r a.s.

Definition 2. Let ∆t > 0 and f : R → R a continuous
and increasing function. The numerical scheme defined
by equation (5) is called asymptotically stable if there
exists a constant l > 0, such that:

lim
k→∞

sup
log f(xk)

k
< −l

Definition 1 is a strong variant of the definition of al-
most sure exponential stability given in [Tsoi, 1997],
which generalizes it in the case where the diffusion term
depends on the control, due to the use of λk(t) func-
tion. The generalization proposed by Definition 2, with
respect to the definition in [Tsoi, 1997], [Mao, 2015] and
[Mora, 2017], consists on smoothing the effect of the
norm of xk, through the use of the function f .

2.2 Main results
In this section we present the boundedness in sec-

ond moment, the convergence, the asymptotic stabil-
ity and the almost sure exponential and robust stability
of the zero solution for the Euler-Maruyama numerical
scheme, using our definitions.

Theorem 1. Let xk be the numerical solution of the
Euler-Maruyama method of system ( 2). Under assump-
tions (H1), (H1) and (H3), there exist a positive constant
M0, such that:

E|xk|2 ≤M0|x0|2

Proof. let us introduce the processes

Z1(t) =

∞∑
k=0

xk1[k∆t,(k+1)∆t](t)

So, using (6):

xk+1 = x0 +

∫ tk+1

0

b(Z1(s))ds+

∫ tk+1

0

σ(Z1(s))dWs

Hence

|xk+1| ≤ 3|x0|2 + 3
∣∣∣ ∫ tk+1

0

b(Z1(s))ds
∣∣∣2

+3
∣∣∣ ∫ tk+1

0

σ(z1(s))dWs

∣∣∣2 (10)

By the linear growth conditions (H1)-(H3), the Holder’s
inequality and properties of the Itô integral, we deduce

that there exists K, such that

E|xk+1|2 ≤ 3[|x0|2+K2(tk+1+1)

∫ tk+1

0

E|z1(s)|2]ds

(11)
Consequently, for tk+1 ≤ T , we get:

E|xk+1|2 ≤ 3|x0|2 + 3K(T + 1)∆t

k∑
j=0

E|xj |2

Furthermore, by the Gronwall’s inequality, this implies
that:

E|xk+1|2 ≤ 3|x0|2e3TK2(T+1)

Therefore, we conclude:

E|xk+1|2 ≤M0|x0|2

where M0 = 3e3TK2(T+1).

Theorem 2. Let xk be the numerical solution of the
Euler-Maruyama method of system ( 2) and X(t) its ex-
act solution. Under assumptions (H1)-(H3), for T and
∆t defined in the Euler-Murayama scheme we have the
following estimates, where P is a constant:

E|xk −X(tk)| ≤ P 1
2 (∆t)

1
2 e(T+1)(C1+C2)

Proof. Let’s define Z1(t) =
∑∞
k=0 xk1[k∆t,(k+1)∆t](t)

Using (6) we get, for ≤ tk+1 ≤ T and x0 6= X(0):

xk+1 −X(tk+1) = x0 −X(0)

+

∫ tk+1

0

[b(Z1(s))− b(X(s))]ds

+

∫ tk+1

0

[σ(Z1(s))− σ(X(s))]dW (s)

Hence it follows that

E|xk+1 −X(tk+1)|2 ≤ E|x0 −X(0)|2

+E|
∫ tk+1

0

[b(Z1(s))− b(X(s))]2ds

+

∫ tk+1

0

[σ(Z1(s))− σ(X(s))]|2dW (s)

We then apply the inequality

|a+ b+ c|2 ≤ 3|a|2 + 3|b|2 + 3|c|2

and Schwarz’s inequality to get:

E|xk+1 −X(tk+1)|2 ≤ 3∆tE|x0 −X(0)|2

+ 3E
∣∣∣ ∫ tk+1

0

[b(Z1(s)− b(X(s))]ds
∣∣∣2

+ 3E
∣∣∣ ∫ t]k+1

0

[σ(Z1(s)− σ(X(s))]dW (s)
∣∣∣2
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Using Itô’s isometry:

E|xk+1 −X(tk+1)|2 ≤ 3∆tE|x0 −X(0)|2

+ 3T

∫ tk+1

0

E|b(Z1(s))− b(X(s))|2ds

+ 3

∫ tk+1

0

E|σ(Z1(s))− σ(X(s))|2ds

We may utilize the Lipschitz’s assumption (H1) to find
that:

E|xk+1 −X(tk+1)|2 ≤ 3∆tE|x0 −X(0)|2

+ (3T + 3)

∫ tk+1

0

(C1 + C2)E|Z1 − x(s)|2ds

≤ 3∆tE|x0 −X(0)|2

+ (3T + 3)(C1 + C2)

k∑
j=0

E|xj −X(tj)|

Assuming that the size of the difference between initial
conditions is P : |x0 − X(0)| ≤ P , the discreet Gron-
wall’s inequality implies that:

E|xk+1 −X(tk+1)| ≤ (3P )
1
2 (∆t)

1
2 e(T+1)(C1+C2)

(12)

Corollary 1. Assuming the conditions of Theorem 2, the
probability P that the error E is small, tends to 1:

lim
t→∞

P
(
||xk −X(tk)|| ≤ ∆

1
4
t

)
≥ 1 (13)

Proof. Defining the error as E∆t = E||xk −X(tk)||, by
(12) in the Theorem 2, we have:

E∆t
≤ (3P )

1
2 (∆t)

1
2 e(T+1)(C1+C2) (14)

and we know by Markov inequality that:

P
(
||xk −X(tk)|| ≥ ∆

1
4
t

)
≤ E∆t

∆
1
4
t

≤ (3P )
1
2 (∆t)

1
2 e(T+1)(C1+C2)

so, if we put M = (3P )
1
2 (∆t)

1
2 e(T+1)(C1+C2) and we

consider the event:

||xk − (Xtk)|| ≥ ∆
1
4
t M

we have:

P
(
||xk −X(tk)|| ≤ ∆

1
4
t

)
≥ 1−M∆

1
4
t

By taking t→∞, we conclude the expression (13).

Lemma 1 (Exponential martingale inequality). Let
α, β be any positive numbers. Let X(t) be a solution
of the stochastic differential equation (6). If there exists

a Lyapunov function V (x, t) ∈ C2,1(Rn × R+;R+),
satisfying equation (7) for a diffusion operator LV (x, t),
then

P
[

sup
0≤t≤T

[ ∫ T

0

(
σ>(x, t, u), V (x, t)

)
dW (s)

− α

2

∫ T

0

trace
[
σ>(x, t, u)V (x, t)>V (x, t)σ(x, t, u)

]
ds
]

> β
]
≤ e−αβ

Proof. For the demonstration, see for example [Fried-
man, 1976].

Theorem 3. Let p ∈ (0, 1] be arbitrary. Assume that
the conditions of Lemma 1 are satisfied and let {xk}k
a Markov process. If there exists a Lyapunov function
V (x, t) ∈ C2,1(Rn × R+;R+), a positive continuous
and increasing sequence {λk(t)}k, λ : R → R+, with
λk(t) ≥ 1, a continuous and non-negative function g :
R→ R, such that:

a) LV (x, t) < −g(t)V (x, t), ∀t ∈ R+

b) ||xk||pλk(t) < V (x, t), ∀t ∈ R+ ∀k ∈ N

then, the numerical scheme defined in equation (4) is al-
most surely exponentially and robustly stable.

Proof. We define processes z1(t) and z2(t) as following:

z1(t) =

∞∑
k=0

xk1[k∆t,(k+1)∆t](t)

z2(t) =

∞∑
k=0

xk+11[k∆t,(k+1)∆t](t)

for xk satisfying the equation (4). On the other hand, we
can use the equation (7) and Ito’s formula, to get

dV (z2(t), t) = Vt(z2(t), t)dt+ Vx(z2(t), t)dz2

+
1

2
trace

[
σ>(x, t, u)Vxx(x, t)σ(x, t, u)

]
The expression:

d log V (z2(t), t) =
1

V (z2(t), t)

[
dV (z2(t), t)

−1

2

1

V (z2(t), t)
dV 2(z2(t), t)

]
implies that:

log V (z2(t), t) = logV (xk, k)+∫ tk+1

0

1

V (z1, s)

[
LV (z1(s), s)− 1

2

QV (z1(s), s)

V (z1(s), s)

]
ds+∫ tk+1

0

1

V (z1, s)

n∑
k=1

(S2u2(tk+1) + S1u1(tk+1))xk1[k∆s,(k+1)∆s]
∂V

∂z1
dWs

(15)
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Let‘s use Lemma 1, taking T = tk+1, β = 2 logC,
α = 1 and

σ(x, t, u) =
(
S2u2(tk+1)+S1u1(tk+1)

)
xk1[k∆t,(k+1)∆t](t)

to obtain that the probability of the following event E :

sup
0≤t≤T

∫ tk+1

0

(S1u1(tk+1) + S2u2(tk+1))xk1[k∆t,(k+1)∆t](t)Vx(x, t)dW (s)−

1

2

∫ T

0

(
(S1u1(tk+1) + S2u2(tk+1))xk1[k∆t,(k+1)∆t](t)

)2

V 2
x (x, t)ds > 2 logC

is P (E) ≤ C−2 Then, by Borel-Cantelli lemma, there
is a random integer k0 such that, for all k ≥ k0, the
following inequality is hold:∫ tk+1

0

(S1u1(tk+1) + S2u2(tk+1))xk1[k∆t,(k+1)∆t](t)Vx(x, t)dW (s)−

1

2

∫ T

0

(
(S1u1(tk+1) + S2u2(tk+1))xk1[k∆t,(k+1)∆t](t)

)2

V 2
x (x, t)ds ≤ 2 logC

Now, we can use the equation (15) to get:∫ tk+1

0

1

V (z1(s), s)

n∑
k=1

(
S2u2(tk+1)

+ S1u1(tk+1)
)
xk1[k∆s,(k+1)∆s]

∂V

∂z1
dW

− 1

2

∫ tk+1

0

QV (z1(s), s) ≤ 2 logC

hence, by hypotheses (a) and (b), this turns out:

log V (z2(t), t) ≤ log V (x0, 0)−
∫ tk+1

0

g(t)dt+2 logC

(16)
Also, from (b), it follows that:

1

log λk(∆t)
log ||xk||p ≤

log V (x0, t)

log λk(∆t)
−
∫ tk+1

0
g(t)dt

log λk(∆t)
+

2 logC

log λk(∆t)

Finally, because sequence {λk(t)}k is increasing and
g(t) is non-negative, there exists r > 0, such that

lim
k→∞

sup
1

log λk(∆t)
||xk||p < −r a.s.

concluding the proof.

Theorem 4. Let f : R → R be a function continuous
increasing, ∆t > 0 and suppose that there exists a Lya-
punov function V (x, t) ∈ C2,1(Rn × R+;R+) and a
constant r > 0, such that:

a) f(xk) ≥ V (x, t), ∀t ∈ R+, ∀k ∈ N
b) LV (xk) < −rV (x, t), ∀t ∈ R+

then, the numerical scheme defined by (4) is asymptoti-
cally stable.

Proof. Let V (x, t) and f as in the hypothesis. Similarly
to proof of theorem 3, there exist r, C constants, such
that, using equation (16) and hypothesis b), we can write:

log V (z2(t), t)

k
≤ 1

k

[
log V (x0, 0)− rtk+1 + 2 logC

]
and, using a), hence it follows that:

log f(xk)

k
≤ 1

k

[
log V (x0, 0)− rtk+1 + 2 logC

]
By taking k → ∞, the first and the third term in right
hand of (17) tend to 0 and, because tk+1 ≥ k + 1, there
exist l > 0, such that:

lim
k→∞

1

k
log f(xk) ≤ −l

and this implies the conclusion.

3 Example
In this section, we shall discuss an example from

NMR to illustrate our theory. We consider the following
stochastic optimal control problem, see [Romero, 2020]:
To find controls u1(t), u2(t), which steers the initial con-
dition x(0) = (1, 0, 0, 0) of stochastic system (2) to the
final state x(

π√
2

) = (0, 0, 0, 1)) minimizing, on the tra-

jectory x(t), the cost functional (3). We will apply The-
orem 3 and Theorem 4 to demonstrate the almost sure
exponential robust stability and the asymptotic stability
of the zero solution of (2), respectively.
Let M1,M2,M3 be real constant such that:

u1(t) + u2(t) ≤ M1

u′1(t) + u′2(t) ≤ M2

2 + 4(u2
1(t) + u2

2(t)) ≤ M1

Let consider k ∈ N and r ∈ R, such that:

r < − M3

kM2
M1 (17)

We define the following Lyapunov function:

V (x, t) = (u1(t) + u2(t))rk||xk(t)||2 (18)

Let consider the function g : R→ R given by:

g(t) = −
(
rk

M2

u1(t) + u2(t)
+M3

)
(19)

and the sequence {λk(t)}k of functions λk : R → R+

defined as:

λk(t) =
(
u1(t) + u2(t)

)rk
(20)
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Figure 1. The stochastic optimal controls u1(t), u2(t), obtained in
[Romero, 2020], using Euler-Maruyama scheme.

Figure 2. The optimal stochastic trajectory steering initial state, the
North Pole on Bloch sphere to to final state, the South Pole, on Bloch
sphere.

and consider the controls obtained in [Romero, 2020],
given by:

u1(t) = −1

2
Λ(t)S1x(t)

u2(t) = −1

2
Λ(t)S2x(t)

where Λ(t) is the adjoint state to x(t).

Therefore, in this case, r < −10

k
.

We compute the corresponding diffusion operator
LV (x, t), associated to V (x, t):

LV (x, t) =

(u1 + u2)rk||x||2
(
rk
u′1 + u′2
u1 + u2

+ 2 + 4(u2
1 + u2

2)
)

Clearly,

rk
u′1 + u′2
u1 + u2

+ 2 + 4(u2
1 + u2

2) ≤ rk M2

u1 + u2
+M3 < 0

so, we have

LV (x, t) < −g(t)V (x, t), ∀t ∈ R

and, for p ∈ (0, 1]:

||xk(t)||pλk(t) < V (x, t), ∀t ∈ R ∀k ∈ N

Therefore, the conditions of the Theorem 3 are satis-
fied and we conclude that the solution of the Euler-
Maruyama numerical scheme defined by equation (2) is
almost surely exponentially and robustly stable, for all
sufficiently small step sizes ∆tk.
On the other hand, we can use the Lyapunov function
V (x, t) given by equation (18) and to take f(x) = x
to apply the Theorem 4 to conclude that the solution of
the Euler-Maruyama numerical scheme is also asymp-
totically stable.
Figure 1 shows the optimal stochastic controls obtained
in [Romero, 2020], using Euler-Maruyama scheme,
where we can see the choice M1 = M2 = 2 and
M3 = 10 and Figure 2 shows a computer simulation of
the optimal stochastic trajectory on the Bloch sphere of
the trivial solution x = (x1, x2, x3, x4) of the numerical
scheme in the stochastic controlled Schrödinger equation
(2).

4 Conclusion
In this paper, we focus on the stability properties

of zero solution for a numerical scheme type Euler-
Maruyama applied to two-level stochastic quantum sys-
tem. Based on two new definitions for the almost sure
exponential robust stability and asymptotic stability, we
have demonstrated these kind of stability of the trivial
solution for a stochastic controlled Schrödinger equa-
tion, generalizing the definitions given in [Tsoi, 1997],
[Mao, 2015] and [Mora, 2017], in the case where the dif-
fusion term depends on the control. Our definitions guar-
antees the robustness of these solutions. We have applied
these results in a Nuclear Magnetic Resonance prob-
lem, which numerical solution was studied in [Romero,
2020], obtaining almost sure exponential robust stability
and asymptotic stability for zero solution of the numeri-
cal scheme type Euler-Maruyama.
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