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Abstract
The rapid development of information technology

leads to the fact that the number of users in
telecommunication networks is constantly growing
along with the need to improve the quality of ser-
vice. Network tra�c prediction is an important task
in this area, as it underlies network diagnostics and
e�cient use of its resources. Various linear and non-
linear methods such as neural networks are actively
used to analyze temporal and spatial relationships
and forecast network tra�c. However, most of
them cannot accurately describe the dynamics of
the network, as the importance of di�erent nodes
changes over time, which complicates the topology.
This article proposes to modify autoregressive and
gradient boosting models to detect spatial features
and work with data with network structure in
order to solve the above problem. Experimental
results on three publicly available datasets with
network tra�c show that the proposed methods
are superior to their one-dimensional counterparts
and can compete with the most modern solutions.
Additionally, it was found that the logarithmic
transformation signi�cantly increases the accuracy
of the forecast, and models based on decision
trees are superior to autoregressive ones. Also,
increasing the size of the training sample does
not always improve the accuracy of the forecast.
Moreover, singular spectrum analysis is superior
to exponential smoothing and moving average for
Internet tra�c. The performance of the proposed
models achieved MAPE values of 4.4% and 8.9%
on the PeMSD7 dataset for gradient boosting and
autoregression methods, respectively.

Thus, using these models as a forecasting tool will
help optimize complex network systems and improve
the quality of their service.
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1 Introduction
With the advent and development of computer

technology and the Internet, a huge number of de-
vices are connected to the network, which leads to
an increase in its scale and complexity, on the other
hand, user requirements for communication quality
are only growing. By properly allocating network
resources, you can optimize routing, thereby reduc-
ing communication delays, preventing network con-
gestion, and ensuring quality of service. However,
network diagnostics, anomaly detection, and e�ec-
tive use of available tools require accurate prediction
of key network metrics such as tra�c, latency, calls,
etc. Thus, network tra�c prediction is the basis for
improving the quality of network service.
From the point of view of telecommunications, net-

work tra�c is a matrix that describes the amount
of data �ow between all pairs of network nodes at a
given time. The problem of network tra�c predic-
tion can be formulated as predicting a given matrix
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at a certain point in time in the future based on
historical data.
A large number of works are devoted to the

problem of predicting network tra�c. Some of
them use classical statistical methods ([Tikunov and
Nishimura, 2007; Yang et al., 2018]), but currently
there is a tendency to use machine learning algo-
rithms ([Troia et al., 2018; Chen et al., 2016; Cortez
et al., 2012]), among which graph neural networks
stand out ([Yu et al., 2018; Lu et al., 2019; Jiang
and Luo, 2022]). The main problem of state-of-
the-art solutions is the complexity of the model:
they usually have many layers with a huge number
of connections, require a lot of time and computa-
tional resources for training, and tuning parameters
can be quite complicated. Being black box mod-
els, they also lack interpretability and explainability
compared to statistical methods. Most of the papers
reviewed are related to road tra�c ([Chen et al.,
2016; Yu et al., 2018; Lu et al., 2019; Jiang and
Luo, 2022]), while network tra�c prediction remains
understudied despite great interest and demand in
branch. This can be explained by the greater com-
plexity of network tra�c time series: their dynamics
is much more stochastic and noisy, and links be-
tween nodes can be discontinuous. However, net-
work tra�c prediction has a wider scope, including
network optimization, control and fault detection,
while tra�c prediction is usually limited to solving
transport problems.
In general, the methods used to solve this prob-

lem can be divided into two groups: linear and
nonlinear. Linear methods, such as autoregres-
sive [Tikunov and Nishimura, 2007; Yang et al.,
2018], model the characteristics of time series
based on mathematical statistics. Nonlinear pre-
diction models include wavelet analysis [Deineko,
Zhanna, 2017; Rumaih et al., 2002], Bayesian net-
works [Maarten et al., 2014], neural networks [Troia
et al., 2018; Chen et al., 2016; Cortez et al.,
2012], convolutional neural network [Ghaderzadeh
et al, 2021] and other methods of arti�cial intel-
ligence [Ghaderzadeh and Aria, 2021] and deep
learning [Gheisari et al, 2023]. Since one linear
or nonlinear model cannot accurately describe the
dynamics of network tra�c, recently combined
methods [Lu et al., 2019] based on neural networks
capable of modeling spatial and temporal depen-
dencies (for example, graph neural network) are
increasingly used to solve such problems. However,
these methods create a static adjacency matrix
to model the network topology, while spatial
dependencies can be dynamic, i.e. the importance
of di�erent nodes will change over time, which
complicates the network structure. As a result, this
approach can seriously limit the ability to model
complex network tra�c.

It is important to remember that network traf-
�c can switch between di�erent dynamic modes, so
it is necessary that the predictive model can adapt
to sudden changes. In other words, the prediction
model must be supplemented with an online adap-
tation algorithm. Online gradient descent ([Yang
et al., 2018; Chen et al., 2019]) can be used as an
adaptation algorithm. Gradient descent is a �rst-
order iterative optimization algorithm for objective
function minimization that is widely used in ma-
chine learning. Online gradient descent is a variant
based on batch or stochastic gradient descent, with
the batch variant having more stable convergence.
But gradient descent has a signi�cant drawback: it
can converge to a local minimum and saddle points
(the global minimum is guaranteed to be found only
if the objective function is convex). Another online
adaptation method is the sliding window method
[Mehmood et al., 2021]. The sliding window method
is a transformation algorithm based on the shift of
an interval with values that allows you to generate
subsamples of a time series for training and testing
a predictive model. The process of this method is
as follows: the window is shifted along the sequence
per unit of observation, where each position forms a
new sample.
To solve the problem of predicting network tra�c,

this paper proposes to modify a number of linear
and nonlinear methods, adding to them the ability
to process spatial information. As an algorithm for
online adaptation of models, we will use the sliding
window method. The article also analyzes various
data �ltering methods to reduce the impact of noise
on models. The contribution of this paper is sum-
marized as follows:

1. We focus on network (Internet) tra�c, as its
forecasting is of greater interest and demand
from the industry. At the same time, com-
pared to transport problems, network tra�c is
more complex: the dynamics of time series is
stochastic and very noisy, and connections be-
tween nodes can be discontinuous.

2. Unlike most works devoted to short-term fore-
casting of time series, we are not limited to one-
or two-stage forecasting, but are trying to ex-
plore the predictive ability of our models for tens
and even hundreds of time steps.

3. Numerous experiments with three sets of real
network and road tra�c data con�rm that
the implemented models that process spatial
features are superior to their one-dimensional
counterparts, and they are also able to compete
with state-of-the-art solutions.

The rest of the article is organized as follows: Sec-
tion 3 is devoted to selected prediction algorithms
and their modi�cations for working with network
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tra�c. The results of computational experiments
and discussions are listed in Section 4. Finally, in
Section 5 we draw a conclusion.

2 Algorithms description
In this paper, we restrict ourselves to two groups

of time series forecasting models: statistical and de-
cision tree based methods.
Statistical models such as ARIMA, autoregression,

exponential smoothing, etc. are based on a large
theoretical base and have been successfully used in a
number of areas [Brockwell et al., 2002; Lutkepohl,
Helmut, 2005] where prediction is part of decision
making and the model must provide information for
probabilistic estimation risk.
The second group of methods is very e�ective in

solving time series forecasting problems, which is
demonstrated on large datasets of various types. For
example, 4 of the top 5 models in the ¾M5 Compe-
tition¿ were based on LightGBM [Makridakis et al.,
2022]. Therefore, we will test their e�ectiveness for
time series of network tra�c.
To add spatial information, we will use tra�c from

nearest neighbors for both groups of models.

2.1 Autoregressive models
The autoregressive model, AR(p), assumes that

the Xt time series can be estimated as a linear com-
bination of previous p lags (1).

Xt = c+

p∑
i=1

φiXt−i + ϵt, (1)

where

Xt is time series value corresponding to a certain
unit of tra�c at time t, for more information,
see Section 3.1.
a = [c, φ1, . . . , φp]

T is model parameters,
ϵt is white noise.

The multivariate version of the model, V AR(p),
di�ers only in that it uses a multivariate time series,
Xt = (X1

t , X
2
t , ..., X

N
t ), where N is the dimension of

the network system.
Real time series are characterized by some season-

ality with one or more periods, so it is necessary to
be able to include this part of the information in the
model. Seasonal autoregressive models can be ob-
tained in two alternative ways: either using seasonal
order (2) or using seasonal dummies (3).

Xt = c+

p∑
i=1

φiXt−i +

l∑
i=1

νiXt−iT + ϵt, (2)

where l is the seasonal order, which determines how
many seasons we have to look back in period T ∈ Z.

Xt = c+

p∑
i=1

φiXt−i +

T∑
i=1

nitvi + ϵt. (3)

where nit is a binary variable that equals 1 if
t mod T = i, otherwise nit = 0.

2.2 Gradient boosting methods
Boosting is an ensemble algorithm that builds a

strong model using a set of weak ones, while gradi-
ent boosting is a special case, treating it as an opti-
mization problem in a function space. Well-known
boosting algorithms such as XGBoost, LightGBM
and CatBoost use fk decision trees as weak mod-
els (4).

X̂
(K)
t =

K∑
k=1

fk(Xt−1, ..., Xt−i), fk ∈ F , (4)

where

X̂
(K)
t is the value of the time series predicted by

the ensemble with K weak models;
K is a number of trees;
F is the set of all possible decision trees;
fk is a function associated with a decision tree
in the function space F .

3 Experiments
We tested a number of combinations of smoothing

algorithms (logarithmic, exponential, singular spec-
trum analysis [Hassani, Hossein, 2007]) and predic-
tion algorithms on three available datasets: Abilene,
Totem, PeMSD7. In addition, we aimed to study
the in�uence of spatial information on the accuracy
of the models. For all algorithms and datasets, we
predict Ttest = 500 steps ahead.

3.1 Data description
To train and test our models, we need datasets

that contain a su�cient number of observations and
have a graph structure. In this work, we have stud-
ied three open datasets related to tra�c:

1. Abilene [Zhang, 2014] is a 12-router backbone
network in North America that collected tra�c
volumes (bytes/s) of origin-destination �ows ag-
gregated at �ve-minute intervals over a 24-week
period in 2004.

2. Totem GEANT [Direction Generale des Tech-
nologies, 2008] is a pan-European research net-
work that handles all tra�c from National Re-
search and Education Networks connecting uni-
versities and research institutes. The network
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consists of 23 nodes connected to each other by
74 channels, covers about 4 months (January-
April 2005) with a step of 15 minutes and corre-
sponds to the volume of input tra�c, measured
in kbps.

3. PeMSD7 [Yin, 2019] is a set of 228 stations in
California's 7th District Congestion Measure-
ment System, corresponding to miles per hour,
and covering weekdays in May and June 2012.

The topologies of these datasets are given in the
Appendix A.

3.2 Univariate models
In this section, we provide the best validation re-

sults among univariate models for the considered
datasets.

3.2.1 Abilene
As you can see from the Table 1, with an equal

window size, models based on decision trees show
better results compared to autoregression. More-
over, the LightGBM model with SSA and logarithm
achieved the best results for the Abilene dataset
with a large window size. Despite the use of smooth-
ing algorithms, the models have a relatively large
MAE, which can be explained by the strong noise of
the data and a lot of outliers. With an average value
of 191.474Mb, the standard deviation is 66699.796,
which con�rms the high noise level of the dataset.

Table 1. Best univariate models validation results for Abilene. The
table is organized as follows: first, the best results for autoregression,
XGB and LightGBM will be indicated on an average window of 3000,
then the model with the best results for the entire dataset will be indi-
cated.

Model Smoothing Train size MAPE MAE

AutoReg SSA & Log 3000 0.178 12.381

XGB SSA & Log 3000 0.182 12.030

LightGBM SSA & Log 3000 0.180 11.662

LightGBM SSA & Log 5000 0.174 11.287

3.2.2 Totem
According to the Table 2, the LightGBM and

XGB models again give better results than autore-
gression on the average window size. In addition, as
in the case of the previous dataset, Totem is very
noisy and has areas with a sudden change in dy-
namics: with an average value of 687.023 Mb, the
standard deviation is 63875.902. Thus, the models
demonstrate large MAE and MAPE metrics. How-
ever, the LightGBM model achieves the best results
(MAE = 35.602) for the Totem set with a large
window and with SSA and logarithm smoothing.

Table 2. Best univariate models validation results for Totem. For
more details, see Table 1.

Model Smoothing Train size MAPE MAE

AutoReg SSA & Log 3000 0.309 45.463

XGB SSA & Log 3000 0.265 40.356

LightGBM SSA & Log 3000 0.259 39.362

LightGBM SSA & Log 5000 0.267 35.602

3.2.3 PeMSD7
The results of the Table 3 show that in this case

autoregression is superior to gradient boosting mod-
els. The PeMSD7 dataset is not so noisy and has
almost no outliers compared to the �rst two sets,
which con�rms its standard deviation of 13.483 with
an average of 58.889 mph. The best values of met-
rics were achieved by autoregression on a large win-
dow with smoothing in the form of a logarithm.

Table 3. Best univariate models validation results for PeMSD7. For
more details, see Table 1.

Model Smoothing Train size MAPE MAE

AutoReg Log 3000 0.100 4.617

XGB SSA & Log 3000 0.114 5.132

LightGBM SSA & Log 3000 0.111 4.954

AutoReg Log 5000 0.098 4.500

3.3 Multidimensional models
In this section, we provide the best validation re-

sults among multivariate models for the considered
datasets.

3.3.1 Abilene
Analyzing Tables 2 and 4, you can see that

the models that were added the ability to pro-
cess spatial information turned out to be better
than one-dimensional ones. In addition, as in
the one-dimensional case, models based on decision
trees outperformed autoregression on a medium-
sized window. The best results were achieved by
the XGB model on a large window using SSA and
logarithm. As for relatively large metrics, see sec-
tion 3.2.1 for more details.

Table 4. Best multivariate models validation results for Abilene. For
more details, see Table 1.

Model Smoothing Train size MAPE MAE

VAR Log 3000 0.180 12.269

XGB SSA & Log 3000 0.157 10.098

LightGBM SSA & Log 3000 0.152 9.957

XGB SSA & Log 5000 0.150 9.665
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3.3.2 Totem
Comparing Tables 2 and 5, it can be concluded

that multidimensional variants of boosting models
showed better results compared to one-dimensional
analogues. On the other hand, vector autoregres-
sion did not give the expected result. As with the
previous dataset, decision tree-based models outper-
formed autoregression on the middle window. The
LightGBM model showed the best results on the en-
tire dataset with a large window and with SSA and
logarithm. As for relatively large metrics, see sec-
tion 3.2.2 for more details.

Table 5. Best multivariate models validation results for Totem. For
more details, see Table 1.

Model Smoothing Train size MAPE MAE

VAR SSA & Log 3000 0.311 47.064

XGB SSA & Log 3000 0.254 38.407

LightGBM SSA & Log 3000 0.246 38.062

LightGBM SSA & Log 5000 0.243 35.316

3.3.3 PeMSD7
We got the following results: Table 6. If we com-

pare them with the results of one-dimensional mod-
els (Table 3), we will again see that the multidi-
mensional variants of the methods turned out to be
better. Moreover, gradient boosting methods are
about twice as good as autoregression. The best re-
sults were achieved by the LightGBM model with
SSA smoothing and logarithm, but not at the max-
imum window size, but at 4000. If we compare the
obtained results (MAPE = 4.4%, MAE = 2.064)
with existing state-of-the-art approaches, such as
graph neural network [Yu et al., 2018], then our
models are close to them in accuracy, and perhaps
even better.

Table 6. Best multivariate models validation results for PeMSD7. For
more details, see Table 1.

Model Smoothing Train size MAPE MAE

VAR Log 3000 0.089 3.919

XGB Log 3000 0.047 2.168

LightGBM Log 3000 0.045 2.131

LightGBM Log 4000 0.044 2.064

4 Conclusion
We have adapted a number of time series predic-

tion algorithms (AR, VAR, XGBoost, LightGBM)
for network tra�c prediction. We also further tested
the e�ect of smoothing (logarithmic, exponential
smoothing, SSA) on the accuracy of these algo-
rithms. In order to conduct a thorough assessment

of the quality of the forecast, we de�ned a validation
protocol based on a sliding window. To test for the
presence of spatial dependencies and exploit them,
we developed simple multivariate versions of all the
univariate prediction algorithms used in the study.
To study the sensitivity of the forecast accuracy to
the length of the training time series, we tested the
algorithms on window sizes from 1000 to 5000. Il-
lustrations of the results are shown in Appendix B
(Figures 4 and 5). Based on the results obtained,
the following conclusions can be drawn:

1. The logarithmic transformation greatly im-
proves the accuracy of the forecast.

2. Models based on decision trees usually outper-
form others.

3. AR, the simplest statistical model we used, is
a competitive algorithm in the one-dimensional
case with additional support for the seasonality
of Internet tra�c.

4. Increasing the learning window does not neces-
sarily improve accuracy. Smaller training sam-
ple size may be preferable as it allows the pre-
diction algorithm to be adaptive.

5. SSA outperforms exponential smoothing and
moving average for internet tra�c.

6. Multivariate algorithms are superior to univari-
ate ones.

7. Our best results are comparable to state-of-the-
art solutions.

Thus, if the task is simple time series forecasting,
XGBoost or LightGBM algorithms should be used.
On the other hand, although autoregressive methods
are inferior in accuracy, they can be used to infer
dependencies between system components, making
them useful for network reconstruction and causality
inference problems.
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Appendix A Dataset topologies

Figure 1. Abilene topology
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Figure 2. Totem topology

Figure 3. PeMSD7 topology

Appendix B Illustrations of model predictions

Figure 4. VAR forecast with SSA for Abilene dataset

Figure 5. LightGBM forecast with SSA for PeMSD7 dataset


