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Abstract
Two problems of nonlinear oscillations control for

satellite systems are considered. Firstly, a new solu-
tion to the problem of angular velocity stabilization for
a spinning satellite is suggested. A satellite is assumed
to be supplied with a passive inertial energy dissipa-
ter in the form of a spring-mass-dashpot and small re-
sistojets. The motion of a satellite is subjected to a
combination of a time varying excitation torque and a
control torque. The energy-based speed-gradient (SG)
control law is proposed. Numerical simulation results
for Intelsat–II model are presented showing efficiency
of the SG control strategy for suppression of possi-
ble chaotic motion. Secondly, the speed-gradient con-
trol method is applied to the excitation of oscillations
with given amplitude for towed probe satellite. The
modified speed-gradient control law for Hamiltonian
systems is used to obtain the control algorithm. Ro-
bustness of the system with respect to the changes of
satellite model and excitation torque amplitude is es-
tablished by computer simulations.
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1 Introduction
Most problems solved in nonlinear control so far are

aimed at either regulation or tracking. In both cases the
control objective can be described by specifying the de-
sired plant trajectory x(t) (e.g. by means of the refer-
ence model) with the aim of making the real behavior
of the plant x(t) close to the desired one:

∥x(t)− x∗(t)∥ → 0 as t→ ∞. (1)

The above setting is typical for many problems of os-
cillations suppression. The recent interest in the field

of the periodic and chaotic motions investigations de-
mand for new settings, applicable to the problems not
reducible immediately to standard regulation and track-
ing problems [Chen et al., 2007; Ge et al., 2007; Feng
and Chen, 2006; Yau et al., 2006; Bowong, 2005].
A row of papers are devoted to the satellite oscilla-
tion supression, see e.g. [Meehan and Asokanthan,
2002a; Meehan and Asokanthan, 2002b; Fradkov et
al., 2004; Meehan and Asokanthan, 2006; Bobtsov et
al., 2007a; Bobtsov et al., 2007b; Fiorillo et al., 2010].
The authors of [Pirozhenko and Khramov, 2010] con-
sider the satellite gravitational stabilization system, in-
cluding a tether connection to increase restoring mo-
ment and an additional constructive element increasing
the efficiency of oscillations damping. Parametric op-
timization of a gravitational satellite-stabilizer system
is considerred in [Mirer and Prilepskiy, 2010]. A non-
linear optimal and adaptive control design to control
the attitude of a satellite using tether offset variations is
presented in [Godard et al., 2008; Godard et al., 2010].

The well known problem of swinging up the pendu-
lum can be recalled as example [Mori et al., 1976; Wik-
lund et al., 1993; Astrom and Furuta, 2000; Akulenko,
1991]. Solutions of such problems are often based on
the energy considerations or specific tricks.

In this paper two control problems of nonlinear os-
cillators are considered based on a general approach:
the so called speed-gradient (SG) method [Fradkov,
1990; Fradkov and Pogromsky, 1998]. In Section 2
the speed-gradient method based on energy goal func-
tion is described, following [Fradkov and Andrievsky,
2003; Andrievskii et al., 1996]. Section 3 is devoted
to a new solution to the problem of angular velocity
stabilization for a spinning satellite. The energy-based
(SG)-control law is proposed and numerical examina-
tion results for the closed-loop system are provided. In
Section 4 the SG-control method is applied to the ex-
citation of oscillations with given amplitude for towed
probe satellite. Such a problem may arise when mon-
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itoring or dispersing some substance in a corridor on
the earth or in the air. Robustness of the system with
respect to the changes of satellite model and excitation
torque amplitude is established by computer simula-
tions.

2 Energy Speed-Gradient Method
Consider the controlled plant equation in the state

space form:

ẋ = F (x, u, t), t ≥ 0, (2)

where x∈ Rn is a plant state vector, u∈ Rm is an input
vector, F (·) : Rn+m+1 → Rn is a vector-function,
continuously differentiable in x, u.
Consider the problem of finding the control law
u(t) = U{x(s), u(s) : 0 ≤ s ≤ t}, ensuring the con-
trol goal

Qt → 0 as t→ ∞ (3)

where Qt is some objective functional,

Qt = Q
(
x(s), u(s) : 0 ≤ s ≤ t

)
.

To design the speed-gradient algorithm for a typi-
cal case Qt = Q(x(t), t), where Q(x, t) ≥ 0
is a scalar smooth objective function, determine a
function ω(x, u, t) as the speed of change Qt along
the trajectories of the system (2): ω(x, u, t) =(
∇xQ

)T
F (x, u, t) + ∂Q/∂t.

SG algorithm changes the control action along the gra-
dient of ω(x, u, t) in u. The combined form of the SG
algorithm looks as follows [Fradkov, 1990]:

d

dt

(
u+ ψ(x, u, t)

)
= −Γ∇uω(x, u, t), (4)

where ψ(·) satisfies the pseudogradient condition
ψT∇uω ≥ 0, Γ = ΓT > 0 is m × m gain matrix.
The main special cases of (4) are speed gradient algo-
rithm in differential form and speed gradient algorithm
in finite form

u = ψ(x, u, t) (5)

having, in turn, the linear and relay versions:

u = −Γ∇uω(x, u, t), Γ0 > 0, (6)

u = −Γ1 sign
(
∇uω(x, u, t)

)
, (7)

Γ1 = diag{γi}, γi > 0,

where components of vector sign(z) are the signs of the
corresponding components of vector z. The main idea

of algorithms (4)–(7) is decreasing Q̇ along the trajec-
tories of the closed loop system. Then for sufficiently
large t under some additional conditions the relation
Q̇ < 0 holds and Q(t) begins to decrease.
A broad class of technical systems with negligible dis-

sipation, weak environment resistance etc. may be de-
scribed by conservative models. For example, conser-
vative models with one degree of freedom are: an ideal
rotor, a physical pendulum, a conical pendulum, and an
oscillator with nonlinear recovering force. These mod-
els may be described in canonical Hamiltonian form as
follows:

ṗ =

(
∂H

∂q

)T

+Bu, q̇ =

(
∂H

∂p

)T

, (8)

where p, q ∈ Rn are generalized coordinates and mo-
menta; H = H(p, q) is Hamiltonian function (total en-
ergy of the system); u = u(t) is input (generalized
force); B(p, q) is m × n matrix-function, B ∈ Rm×n,
m ≤ n.
Formalize the control goal as approaching the given

total system energy level:

H
(
p(t), q(t)

)
→ H∗ as t→ ∞. (9)

This goal can be rewritten in the form (3) with x =
(pT , qT )T and the goal function

Q(p, q) =
1

2

(
H(p, q)−H∗

)2
. (10)

To design the SG-algorithm calculate Q̇ – the deriva-
tive of (10) along the trajectories of (8):

Q̇ = (H −H∗)

(
∂H

∂p

)T

Bu, (11)

and then calculate the partial derivative in u. The finite
forms (6), (7) look as follows:

u = −γ(H −H∗)B
T

(
∂H

∂p

)
, (12)

u = −γ sign
(
(H −H∗)B

T

(
∂H

∂p

))
. (13)

3 Stabilization of the Spinning Spacecraft
3.1 Model of the System Dynamics
For the sake of simplicity, the 1-DOF model of the

satellite angular motion is used below. The degrees of
freedom of the system describe the damper mass dis-
placement and rotation of the satellite. The damper
is centered on the body fixed X-axis and has a point
mass m. That mass moves along an axis perpendicular
to X-axis at the some distance of the principal axis Z.
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Under these assumptions the system satellite-damper
model can be written as follows [Meehan and Asokan-
than, 2002a; Meehan and Asokanthan, 2002b; Meehan
and Asokanthan, 2006]:

(I +m(1− µ)y2)ω̇ + 2m(1− µ)yẏω

−mbÿ =M(t),

m(1− µ)ÿ + cẏ +
(
k − (1− µ)ω2

)
y

−bω̇ = 0,

(14)

where ω, y denote satellite angular velocity and damper
mass displacement; I,m, k, c stand for the satellite mo-
ment of inertia about Z-axis, damper mass, spring con-
stant and viscous resistance gain; µ = m/mT , where
mT denotes a total mass of the considered system. The
external torque M(t) is a sum of the excitation torque
and the control torque, i.e. M(t) = ME(t) +MC(t).
It is assumed that |MC(t)| ≤ M̄ , where M̄ represents
restriction on the control torque.
The system (14) examinations show that if M(t) ≡ 0

and initial conditions belong to some region, the system
is dissipative and is attracted to the equilibrium state of
constant angular velocity ω∗ and no damper mass de-
flection [Meehan and Asokanthan, 2002a; Meehan and
Asokanthan, 2002b; Meehan and Asokanthan, 2006].
If these conditions are violated, the amplitude of y(t)
becomes inadmissible large and the system can per-
form chaotic jumps between two stable equilibrium
points. To improve the system performance let us use,
in addition, the active damping by means of the resis-
tojets torque MC .

3.2 Control Law Design
The control aim is to stabilize the desired state
[y, ẏ, ω]T = [0, 0, ωref]

T. This aim corresponds to the
desired constant rotation rate ω(t) ≡ ωref and zero
displacement of the damper mass y(t) ≡ 0. Follow-
ing [Andrievskii et al., 1996; Fradkov and Andrievsky,
2003] let us use an energy-based approach and apply
the speed-gradient (SG) method to control law design.
The total energy H of the system (14) may be derived

as

H(y, ẏ, ω) = 0.5
(
(m(1− µ) + k)y2 + I

)
ω2

−mbẏω − 0.5m(1− µ)ẏ2. (15)

Substitution of y = ẏ = 0, ω = ωref to (15) gives
the desired energy Href as Href = 0.5Iω2

ref. Let us in-
troduce the goal function Q = (H −Href )

2 and derive
the SG control laws in the finite form. It gives the “pro-
portional” and relay algorithms as follows:

MC =γ
(
Href −H(y, ẏ, ω)

)
×

(
ω + ˙̃y(Ĩ + ỹ2 − 1)−1

)
, (16)

MC =γ sign
(
Href −H(y, ẏ, ω)

)
× sign

(
ω + ˙̃y(Ĩ + ỹ2 − 1)−1

)
, (17)

Figure 1. Chaotic oscillations for the case of uncontrollable motion.

where ỹ = (1 − µ)b−1y, Ĩ = (1 − µ)m−1b−2I are
introduced. The control law (17) can be directly im-
plemented by means of the on-off operating resistojets.
In such a case the gain γ gives the control torque am-
plitude: M̄ = γ. The pulse-width modulation can be
used for implementation of the “proportional” control
law (16) by means of the on-off device.

3.3 Simulation Results
For numerical examination the parameters of the spin-

ning spacecraft with circumferential nutational damper
were chosen to be similar to that of Intelsat-II being
m = 0.3 kg, b = 1 m, k = 0.2 N/m, µ = 0.01,I = 100
kgm2, c = 0.002 Ns/m [Meehan and Asokanthan,
2002a; Meehan and Asokanthan, 2002b; Meehan and
Asokanthan, 2006]. The harmonic disturbance torque
ME is taken: ME(t) = M̄E sinΩt. The excitation fre-
quency Ω = 0.04 s−1 and the amplitude M̄E = 0.05
Nm. Following initial conditions are picked up for the
simulations: ω(0) = 0.815 s−1, y(0) = 0, ẏ(0) = 0.
Two cases of the control torque amplitude M̄ are stud-
ied: a) M̄ = 0.0225 Nm, M̄ < M̄E , and b) M̄ =
0.055 Nm, M̄ = 1.1M̄E > M̄E .
Some simulation results are shown in Figs. 1–3. The

simulation results for the case of active damping ab-
sence MC ≡ 0 are plotted in Fig. 1. One sees that
the chaotic motion with a large magnitude of y(t) ap-
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pears. (Note that in practice y(t) is restricted due to
travel limits, but it is seen that the damper can not be
effective in that case.) The effect of the feedback con-
trol via relay SG-law (17) is demonstrated in Fig. 2.
It is taken Href = 33 kgm2s−2, which corresponds to
ωref = 8.124 rad/s. It is seen that even in the case when
the amplitude of control torque is less that one of the
disturbance, M̄ = 0.5M̄E (see Fig. 2a), the system be-
havior is improved in a great extent in comparison with
the uncontrollable case. Perfect suppression of oscilla-
tions is obtained for the case M̄ = 1.1M̄E (Fig. 2b).
Note that in [Meehan and Asokanthan, 2002a] the ratio
M̄/M̄E is about 15. Therefore the proposed method is
characterized as a low-level control.
Speeding-up the satellite rotation from ω(0) = 0.6

rad/s to given velocity ωref is demonstrated in Fig. 3
for the case M̄ = 0.5M̄E . In the case M̄ = 1.1M̄E

the finite-time convergence of ω(t) to ωref takes place.
The transient time is about 360 s. The sliding motion
with exact holding the desired state arises after the tran-
sient is finished. (The similar processes are pictured in
Fig. 2 a.) The control algorithm with a dead-zone or a
pulse-width modulation control can be used to reduce
propellant consumption and working fluid discharge.

Figure 2. Active damping via control algorithm (17).

Figure 3. Satellite speeding-up via the control law (17), M̄ =
0.5M̄E .

The simulations demonstrate efficiency of the SG con-
trol strategy in eliminating chaotic instabilities in a
spinning spacecraft and robustness properties with re-
spect to excitation torque amplitude.

4 Speed-Gradient Control of Towed Probe Satel-
lite Oscillations

Let us consider the problem of the probe satellite ex-
citation. In the last two decades, space missions such
as SEDS-1, SEDS-2, TSS-1, and TSS-1R have high-
lighted use of tethers for transport and deployment of
satellites. Tether System Experiment (TSE) has been
identified by the European Space Agency (ESA) to
be an important initiative for the next decade. Re-
cently, ESA sponsored a Phase 1 study of a mission,
called ROGER. This mission was aimed at nonfunc-
tional satellites currently in orbit – for inspection, cap-
ture, and transport to graveyard orbits [Mankala and
Agrawal, 2004; Mankala and Agrawal, 2005].
The small mass satellite is midair towed by orbital

spacecraft or station with long non-stretched cable in
varying atmosphere density. Oscillations arise un-
der the influence of aerodynamic dray and cable ten-
sion. Their period is defined by atmosphere density
at the altitude of the spacecraft. The difference of



CYBERNETICS AND PHYSICS, VOL. 3, NO. 1, 2014 13

amplitudes and the difference of half-cycles at the up
and down deviations from the relative equilibrium are
connected with atmosphere density gradient [Shahov,
1988; Schutte and Dooley, 2005; Kim and Hall, 2007].
According to the project [Bevilacqua and Chiarelli,

1986] the typical cable length is L = 1 ÷ 100 km, the
mass of spacecraft is about 500kg, the mass of probe
satellite is about 1 kg. To change the probing layer the
methods of oscillations control may be used. The con-
trol of towed probe satellite can be realized by retract-
ing and releasing of the cable. Measurable values are
telemetric data of the outer vision about relative loca-
tion of the probe satellite and the orbital station. This
data contain the information of the probe satellite devi-
ation angle. Similar telemetric system appears in other
problems connected with tethered systems, particularly
in oscillations dumping problem [Beletsky and Levin,
1993; Tang et al., 2011].

Figure 4. Model of the tethered system.

Following [Shahov, 1988] consider the relative mo-
tion of the probe satellite, connected to the spacecraft
by flexible non-stretched inertialess cable. Let the fixed
length of the cable be L, the mass of the satellite be m,
and the mass of the spacecraft be much more than the
mass of the satellite. Let the spacecraft and the satellite
be described as mass points. Such a model of the teth-
ered system is discussed and substantiated in [Beletsky
and Levin, 1993]. The spacecraft moves along the cir-
cular orbit of the radius R0 and the center in the point
O (see Fig. 4). The peripheral velocity V0 is constant.
Assume that the wind is absent and the resistance force
is directed to the tangent to the circle of radius R with
center in O. The gravity force turns to the center and
its value is G = mg0(R0/R)

2, where g0 is the gravi-
tational acceleration at the orbit R0. Let us denote the
force of aerodynamic resistance byD; the cable tension
by N . The variable γ is shown in Fig. 4.
If oscillation frequency ω conditioned by aerody-

namic resistance is much greater than the frequency of
rotation ω0, then the equation of satellite oscillations
coincides with the equation of pendulum oscillations

in the inertial frame [Shahov, 1988]

γ̈ +Dm−1L−1 sin γ = 0 (18)

under condition ω2 = D0m
−1L−1 ≫ g0R

−1
0 = ω2

0 ,
which bounds the length of cable L: L ≪ ag−1

0 R0,
a = D0m

−1.
More accurate model of nonlinear oscillations is as

follows [Shahov, 1988]:

γ̈ + (ω2eδ sin γ − 3ω0 cos γ) sin γ = 0 (19)

It admits the energy integral. Under initial conditions
t = 0, γ̇ = 0 and γ = γt:

γ̇2 +
γ∫

γ+

F dγ = 0,

F = (ω2eδ sin γ − 3ω0 cos γ) sin γ.

(20)

Figure 5. Phase plots of tethered system model (19).

Phase plot family given for different initial conditions
(Fig. 5) confirms the conservativity of the system (19).
Consider the problem of swinging the probe satel-

lite until the amplitude of its angle achieves the given
value γ. To solve the problem we apply the energy SG
method, see Sec. 2.

4.1 Control Algorithm for Control of Probe Satel-
lite Oscillations

Let the variation of cable length after unfolding of
tethered system be control variable. Applying the
method described in Sec. 2 to the reduced model (18),
we obtain the following algorithm:

u′k = −α(γmax − γ∗)γ̇ sin γ,

uk =

{
u′k, if |u′k| ≤ ū,

ū signu′, otherwise,

(21)
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where ū is a maximum variation of cable length, γ > 0
is the gain coefficient. Good swinging abilities of the

Figure 6. γ and u vs t for closed-loop system (19),(21).

Figure 7. Phase plot family for closed-loop system (19), (21).

proposed algorithm are confirmed by its efficiency for
a model probe satellite (19) established by computer
simulations. The results are shown in Figs. 6, 7 for
m = 2kg, l = 1000m, α = 104, D0 = 1, ū = 0.15l,
ω0 = 0.1, δ = 1, γ(t = 0) = 10o, γ∗ = 40o. It is
seen that the control goal is achieved. It is worth noting
that after the end of the control process the cable length
remains unchanged.
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