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Abstract
A nonlinear system with a sector bound nonlinearity is

considered. The system is subject to a stabilizing sam-
pled feedback with finite width impulses. An impulsive
counterpart of the circle criterion for absolute stability is
obtained with the help of the Gelig’s averaging method.
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1 Introduction
In the recent decades a great popularity was gained by

the study of hybrid systems that combine continuous-
time and impulsive dynamics. While processes in con-
tinuous physical and biological systems are often rather
slow, the interactions between these systems sometimes
exhibit fast behaviors that may be interpreted as an im-
pulsive signal. (Signals are understood as some portions
of energy that are used for interaction and information
exchange [Basiladze, 2009].) An example is the pro-
cesses in physiology, where body organs are governed
by neural impulses of the brain (a fast process), while
some hormones secretion in these organs modulates im-
pulsive activity of the brain (a slow process). In modern
engineering, a continuous behavior (a slow motion) may
be controlled by fastly running impulsive modulators or
digital devices. A natural way to handle these so differ-
ent time scales is to average the fast processes in time
and thus simplify the analysis. Essentially this is what
we do in this paper.

The problem of system’s stabilization with the help of
a sampled feedback has focused the attention of many
researches (see, e. g., [Fridman et al., 2004; Mirkin,
2007; Naghshtabrizi et al., 2008; Fudjioka, 2009; Frid-
man, 2010; Seuret and Peet, 2013; Kao, 2016; Hetel

et al., 2017]). The majority of works in this field em-
ploy a zero-order hold (ZOH) (see [Åström and Witten-
mark, 2011]), when a control value calculated at the be-
ginning of a sampling interval is kept constant through-
out all this interval. Stabilization of a Lur’e system by a
sampled ZOH feedback was addressed in [Seifullaev and
Fradkov, 2015a; Seifullaev and Fradkov, 2015b; Seiful-
laev and Fradkov, 2015c; Seifullaev and Fradkov, 2016;
Seifullaev et al., 2017; Zhang et al., 2017; Bryntseva
and Fradkov, 2018], Some other types of nonlinear sys-
tems under a ZOH event-based control were treated in
[Wang et al., 2018; Proskurnikov and Mazo Jr., 2018].
The applications included pendulum and cart-pendulum
controlled systems, wheeled robots, a robotic arm and
Chua’s oscillator. In the previous works much effort was
made to minimize the upper bound of the sampling pe-
riod, i. e. to keep the sampling rate as low as possible
(see an extensive review by [Hetel et al., 2017]). From
a practical perspective, this requirement is motivated by
applications to networked control (see [Hespanha et al.,
2007; Lu et al., 2012; Liu et al., 2017; Liu et al., 2019])
and allows to save capacity of a communication channel.

The main disadvantage of the ZOH technique is the
time delay introduced by the hold (see [Fridman, 2010]),
and this delay is the greater, the longer the sampling
period. This negative effect can be decreased by using
generalized sampled-data hold functions (GSHF) (see
[Kabamba, 1987; Sala, 2007; Briat, 2013]) with the hold
restricted to shorter intervals.

In this paper we consider a nonlinear Lur’e system
whose nonlinearity satisfies a sectoral constraint (see
[Luré, 1957; Khalil, 2002; Yakubovich et al., 2004; Had-
dad and Chellaboina, 2006]). The system is controlled
by a feedback impulsive signal with rectangular (finite
width) impulses that are amplitude modulated. As for
widths of impulses and their sampling periods, they are
considered uncertain and bounded in some finite ranges.
Our aim is to obtain a sampled-data stabilizing control
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with a sampling period as large as possible. The numeri-
cal example demonstrates that this can be attained by an
admissible choice of the duty ratio (i. e. the ratio of the
pulse duration to the sampling period).

Stability considerations are based on the Gelig’s av-
eraging method introduced by [Gelig, 1982] (see also
[Gelig and Churilov, 1998]) that will be discussed in
detail in Section 4. The main idea of this method is a
substitution of the initial train of pulses for a sequence
of the average values of these pulses, with a supposi-
tion that these averages satisfy sectoral constraints not
everywhere, but at some discrete time instants. We also
employ mathematical technique that is conventional for
the absolute stability theory, namely S-procedure (see
[Yakubovich, 1971; Yakubovich et al., 2004]) and In-
tegral Quadratic Constraint (IQC) that were originally
introduced by [Yakubovich, 1968] to study pulse-width
modulated control systems (see [Megretski and Rantzer,
1997] for further results). The Gelig’s averaging im-
proves the results by Yakubovich and extends the IQC
approach for any type of pulse modulation. In particu-
lar we use the IQC based on Wirtinger inequality (see
[Hardy et al., 1951], notice that this IQC was employed
systematically in [Gelig and Churilov, 1993; Gelig and
Churilov, 1998]). Unlike other averaging methods, the
Gelig’s stability criteria are not asymptotical, they can
be used for an estimation of the sampling frequency. At
sufficiently high sampling rates they reduce to the con-
ventional absolute stability conditions (circle criterion,
Popov criterion and some others).

This paper continues discussion started in [Churilov,
2018], where an application of the absolute stability the-
ory to the ZOH control was examined. We also base
on the stability results that were previously formulated
in terms of frequency-domain inequalities in [Gelig and
Churilov, 1998]. Following [Boyd et al., 1994], the new
stability criterion is stated as a feasibility problem for
Linear Matrix Inequalities (LMI) which allow numerical
solution using standard software packages. In the nu-
merical example it is shown how a reasonable choice of a
duty ratio can significantly increase the admissible sam-
pling period when compared with ZOH (up to a tripling
for high gains).

The paper is organized as follows. Firstly we describe
a model that comprises a Lur’e type nonlinear system
under an impulsive control. Then the concept of aver-
aging is discussed and a discrete-time sectoral bounds
(Gelig’s type sectoral constraints) are introduced. In
the main part of the paper we demonstrate how an im-
pulsive system with a nonuniform sampling and non-
instantaneous impulses can be treated with the help of
the Gelig—Yakubovich approach to the absolute stabil-
ity theory. The stability result is formulated in terms of
LMI feasibility problems. Finally, the main result is il-
lustrated by numerical examples.

2 Preliminaries
The concept of pulse modulation is of significant

importance in engineering and in mathematical biol-

ogy. Let us introduce some general definitions follow-
ing [Gelig and Churilov, 1998] (see also [Skoog and
Blankenship, 1970; Kuntsevich and Chekhovoi, 1970]).
In mathematical terms, pulse modulator is an operator
that acts on the space of continuous functions (called
modulating signals) and converts every such function
into a train of noninstantaneous impulses (pulses):

M : σ(t) 7→ f(t).

The most general characterization of a train of pulses is
a sequence of times t0 = 0 < t1 < t2 < . . . called
sampling instants. It is assumed that this sequence is
strictly increasing and has no accumulation points (the
latter assumption excludes Zeno behavior (see [Pogrom-
sky et al., 2003])). The time interval between successive
samples (tn, tn+1) is called the nth sampling interval,
with its length Tn = tn+1 − tn termed the nth sampling
period (see [Kalman and Bertram, 1959]). The real val-
ued function f(t) defined for t > t > t0 will be called a
train of pulses if it is represented as

f(t) = f̂(Pn, t), tn 6 t < tn+1, n = 0, 1, . . . ,

where the function f̂(·, ·) describes the form of a pulse
and Pn is a vector of parameters. The most common
pulse form is rectangular. Such a pulse is characterized
by its amplitude (with polarity), width (duration), phase
(displacement of its leading edge from tn) and instan-
taneous frequency (equal to 1/Tn). Some of these pa-
rameters are fixed, while the others depend on the mod-
ulating signal. Signal-dependent parameters are called
modulated with f(t) being a modulated impulsive sig-
nal. From the mathematical perspective, modulated pa-
rameters are functionals of σ(·). They carry information
about the modulating signal and can be used for control.
Unlike switched or relay systems (see [Tsypkin, 1984;
Liberzon, 2003]), the memory of a modulator resets at
the end of each sampling interval.

Of a great interest is the case when Tn varies in certain
limits. This may be due to pulse-frequency modulation
(PFM) (that is also called “signal dependent sampling”
by [Jury, 1961]), when the sampling period Tn is a func-
tional of the modulating signal. The theory of PFM has
a long history going back to 1940s-1970s, see, among
others, [Ross, 1949; Jones et al., 1961; Dorf et al., 1962;
Li and Jones, 1963; Pavlidis, 1965; Pavlidis and Jury,
1965; Bombi and Ciscato, 1967; Jury and Blanchard,
1967; Skoog and Blankenship, 1970; Kuntsevich and
Chekhovoi, 1971a; Kuntsevich and Chekhovoi, 1971b;
Varadarajan, 1971; Gülçür and Meyer, 1973]. A re-
newed interest in PFM was inspired by the emergence
of the concept of event based control that was put for-
ward in [Åström and Bernhardsson, 1999; Årzén, 1999]
and related papers by [Åström and Bernhardsson, 2002;
Åström, 2008]. Another reason for variability of Tn
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may be an uncertainty in sampling times. Communi-
cation technology requires that the sampling frequency
be high enough, so that σ(·) can be recovered (demod-
ulated) from f(·), however for control purposes require-
ments to sampling are less stringent.

3 Impulsive Lur’e system
Consider a system comprised of the following three

parts. Further, it will be called impulsive Lur’e system.

3.1 Linear time-invariant subsystem
Assume that the linear part is represented by the equa-

tions

ẋ(t) = Ax(t) +B0f0(t) +Bf(t), (1)
σ0(t) = C0x(t), σ(t) = Cx(t). (2)

Here x(t) is a p-dimensional state vector. The functions
f0(t), f(t) are the inputs of the linear part (1), (2), while
σ0(t), σ(t) are its outputs. Here A, B, B0, C, C0 are
constant coefficients, A is a p × p-matrix, B, B0 are p-
dimensional columns andC,C0 are p-dimensional rows.

3.2 Continuous nonlinear subsystem
The internal nonlinear feedback σ0 7→ f0 is given by

the nonlinearity

f0(t) = ϕ0(σ0(t), t), (3)

where the function ϕ0(σ0, t) is continuous and obeys the
Lur’e type sectoral bound

ν1 6
ϕ0(σ0, t)

σ0
6 ν2 (4)

for all σ0, t. Here ν1, ν2 are given scalars.
The above two subsystems together make up a Lur’e-

type control system, whose zero equilibrium will be sta-
bilized by a signal f(t).

3.3 Impulsive subsystem
The external impulsive feedback σ 7→ f is obtained by

sampling the continuous signal σ(t) at times tn, satisfy-
ing the recurrence

tn+1 = tn + Tn, n > 0. (5)

The function f(t) is given by

f(t) =

{
λn, tn 6 t < tn + τn,

0, tn + τn 6 t < tn+1,
(6)

where λn, τn, Tn are pulse amplitude, pulse width and
sampling period, respectively. Here we are not interested
in the exact form of τn, Tn, only their bounds will be
used.

Assume that amplitudes (with polarities) are modu-
lated by the signal σ(t):

λn = F (σ(tn)), (7)

where F (·) is a nondecreasing function with F (0) = 0.
Let F (·) satisfy a sectoral bound

k1 6
F (σ)

σ
6 k2 for all σ, (8)

where k1, k2 are some numbers, 0 < k1 6 k2.
The duty ratio of the nth pulse is defined as

dn = τn/Tn.

Assume that

0 < T∗ 6 Tn 6 T, 0 6 d∗ 6 dn 6 d 6 1 (9)

for all n, where T∗, T , d∗, d are some given numbers.
Inequality d 6 1 ensures that pulses do not overlap.

From (5), (9) we get tn > t0 + nT∗, so tn → +∞ as
n→∞.

4 Gelig’s averaging
The concept of pulse averaging goes back to the prin-

ciple of equivalent areas (PEA) put forward by [Andeen,
1960a; Andeen, 1960b] for systems with pulse-width
modulation. The ideas of averaging were often used
for digital redesign when a continuous-time impulsive
system is converted to a discrete-time system that cap-
tures the main properties of the original model (see e. g.
[Friedland, 1976; Ieko et al., 2001]). Further we will
employ the technique of pulse averaging introduced in
[Gelig, 1982] and refined in [Gelig and Churilov, 1993;
Gelig and Churilov, 1998].

Here we will explain the idea of the Gelig’s pulse av-
eraging.

For an integrable function g(t) and any integer n > 0
define a linear functional

Sn(g) =

∫ tn+1

tn

g(t) dt =

∫ Tn

0

g(tn + t) dt. (10)

Let vn be the averaged value of the signal f(t) over the
nth sampling interval (tn, tn+1), namely

vn =
1

Tn
Sn(f) =

λnτn
Tn

= λndn, n > 0. (11)

From (11) and (8) we have

k1dn 6
vn
σ(tn)

6 k2dn, n > 0. (12)

Then (12) and (9) imply a discrete-time quadratic con-
straint (a Gelig’s type constraint)

µ1 6
vn
σ(tn)

6 µ2, n > 0, (13)
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where

µ1 = k1d∗, µ2 = k2d . (14)

Define two piecewise constant functions

v(t) = vn, σ̃(t) = σ(tn), tn 6 t < tn+1. (15)

Then (13) can be rewritten as

µ1 6
v(t)

σ̃(t)
6 µ2, t > t0. (16)

Let u(t) be the averaged error of the replacement of
f(t) for v(t):

u(t) =

∫ t

t0

(f(s)− v(s)) ds, t > t0. (17)

Obviously, u(t) is continuous for t > t0. Moreover,
u(tn) = 0 for n > 0 and

u(t) =

∫ t

tn

(f(s)− v(s)) ds, tn 6 t, n > 0.

Then

f(t) = v(t) + u̇(t), tn < t < tn+1, n > 0. (18)

Let us take a function w(t) = CeAtB that is an impulse
response of the linear part of system (1), (2) from input
f to output σ. With the help of (18) we obtain

∫ tn+1

tn

w(tn+1 − s)f(s) ds

=

∫ tn+1

tn

w(tn+1 − s)v(s) ds

−
∫ tn+1

tn

ẇ(tn+1 − s)u(s) ds.

Thus taking into account only averaged responses, we
can replace the signal f(t) for two signals v(t), u(t),
however applied to different points of the control circuit.
The advantage of such a replacement is that v(t), u(t)
allow for bounds (quadratic and integral) that are con-
ventional for the absolute stability theory.

Notice that in the case of ZOH we have τn ≡ Tn,
f(t) ≡ v(t) and u(t) ≡ 0 (see [Churilov, 2018]).

5 The main statement
Recall that the numbers µ1, µ2 are defined by (14).
The following theorem presents LMI conditions for

asymptotic to zero of the impulsive Lur’e system.

Theorem 1. Assume that there exist a symmetric p × p
matrix H and nonnegative scalars εi, 0 6 i 6 4, such
that the following system of matrix inequalities (under-
stood in terms of positive and negative definiteness of
quadratic forms) is feasible:

H > 0, Π < 0 (19)

where Π is a symmetric matrix with the block compo-
nents

Π11 = HA+A>H − µ1µ2C
>C − ε0ν1ν2C>0 C0

+ ε1A
>C>CA,

Π12 = HB0 + 1
2ε0(ν1 + ν2)C>0 + ε1A

>C>CB0,

Π13 = HB + 1
2 (µ1 + µ2)C> + ε1A

>C>CB,

Π14 = −A>HB + µ1µ2CBC
>,

Π15 = µ1µ2C
> + ε4A

>C>,

Π22 = −ε0 + ε1(CB0)2, Π23 = ε1CB0 CB,

Π24 = −B>HB0, Π25 = ε4 CB0,

and

Π33 = −1 + (1− d∗)Tε3 + ε1(CB)2,

Π34 = −B>HB − 1
2 (µ1 + µ2)CB

+ 1
3 (1− d∗)Tε2 − ε3,

Π35 = − 1
2 (µ1 + µ2) + ε4 CB,

Π44 = −ε2 − µ1µ2(CB)2,

Π45 = −µ1µ2 CB, Π55 = −µ1µ2 − 1
4ε1π

2T−2.

Here Πij = Πji (1 6 i < j 6 5), > denotes ma-
trix transpose. Then any solution of the impulsive Lur’e
system obeys x(·) ∈ L2([t0,+∞)) and λn → 0 as
n → +∞. If we additionally assume that there exists
a scalar ν0 such that the function

ϕ̂0(σ0, t) = ϕ0(σ0, t)− ν0σ (20)

is bounded for all σ, t, then x(t)→ 0 as t→ +∞.

Here L2([t0,+∞)) is the space of square integrable
vector valued functions x(·).

The blocks Πij contain parameters of the controlled
Lur’e system (A, B0, C0, ν1, ν2) as well as parameters
related to the impulsive control (B,C, T , d∗, µ1 = k1d∗,
µ2 = k2d). The main design parameters are the bounds
for the sampling period, the duty ratio and the nonlinear
control gain.

6 Proof of the main statements
We begin with some auxiliary statements.
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6.1 The main lemma
Let H be a symmetric matrix of order p. Define a

quadratic form

LH(x, f0, u, v) = (x−Bu)>H(Ax+B0f0 +Bv),

where x is a p-dimensional vector and u, v, f0 are
scalars. The following proposition will be used to de-
rive the main statements of this paper.

Lemma 1. Let there exist a positive definite matrix H
and a number δ > 0 such that for every solution of the
impulsive Lur’e system we can find a function Φ(t) sat-
isfying the inequality

LH(x(t), f0(t), u(t), v(t)) + Φ(t)

6 −δ
(
‖x(t)‖2 + v(t)2

)
, t > t0,

(21)

with v(t), u(t) defined by (15), (17), and

Sn(Φ) > 0 for all n > 0. (22)

Then x(·) ∈ L2([t0,+∞)) and vn → 0 as n→ +∞. If
in addition we assume that there exists a number ν0 such
that the function defined by (20) is bounded for all σ0, t,
then we get x(t)→ 0 as t→ +∞.

Proof. Let us consider a quadratic form

V (x, u) = (x−Bu)>H(x−Bu)

of a vector x and a scalar u. Using (18) along the solu-
tions of an impulsive Lur’e system we get

V̇ (x(t), u(t)) = LH(x(t), f0(t), u(t), v(t)). (23)

Then (21), (22) and (23) imply

V (x(tn), 0)− V (x(t0), 0) 6− δ
∫ tn

t0

‖x(t)‖2 dt

− δ
n−1∑
k=0

Tkv
2
k

for n > 1. Hence∫ t

t0

‖x(s)‖2ds+ T∗

n∑
k=0

v2k 6 −
1

δ
V (x(t0), 0)

for all t > tn+1, which implies vn → 0 as n → ∞ and
x(·) ∈ L2([t0,+∞)). The rest of the proof is obtained
with the help of the Barbalat’s lemma along the lines of
the proof of Theorem 1 in [Churilov, 2018]. �

Further we will construct a suitable Φ(t) to sat-
isfy (21), (22). This will be achieved by using the
Yakubovich’s S-procedure and the IQC technique. We
will represent Φ(t) as a sum of quadratic forms consid-
ered along solution of the impulsive Lur’e system.

6.2 Quadratic constraint for functions σ0(t), f0(t)

The simplest constraint follows from the sectoral
bound (4) with (3). If we take a quadratic form

W0(x, f0) = (ν2C0x− f0)(f0 − ν1C0x)

then along the solutions we have W0(x(t), f0(t)) > 0.
This inequality is valid for all t.

6.3 IQC for functions u(t), v(t)

Direct calculation show that

u(t) =

{
Tn−τn
τn

(t− tn)vn, tn 6 t 6 tn + τn,

(tn+1 − t)vn, tn + τn 6 t 6 tn+1.

(24)
Thus if the sampling frequency 1/Tn is high, then the
error function u(t) is negligible small when compared
with v(t).

Lemma 2. The following IQC are valid for n > 1

Sn

(
2
3T (1− d∗)uv − u2

)
> 0, (25)

Sn

(
T (1− d∗)v2 − 2uv

)
> 0. (26)

Proof. From (24) by a straightforward integration we
obtain

Sn(u) = 1
2 (Tn − τn)Tnvn = 1

2 (Tn − τn)Sn(v),
(27)

Sn(u2) = 1
3 (Tn − τn)2Tnv

2
n = 1

3 (Tn − τn)2Sn(v2).
(28)

This implies

Sn(uv) = 1
2 (Tn − τn)Sn(v2),

Sn(u2) = 2
3 (Tn − τn)Sn(uv).

(29)

Since inequalities (9) are valid and u(t)v(t) > 0 for all
t, from (27), (28), (29) we come to (25), (26). �

6.4 IQC based on Wirtinger inequality
The renown Wirtinger’s inequality was previously em-

ployed in the theory of sampled-data systems in a num-
ber of publications (see, e. g., [Gelig and Churilov, 1993;
Gelig and Churilov, 1996; Gelig and Churilov, 1998]).
We will apply its version that was proved in [Gelig and
Churilov, 1998].

Using previously defined functions σ(t), σ̃(t), u(t), in-
troduce a new auxilairy function

ξ(t) = σ(t)− σ̃(t)− CB u(t). (30)

Recall that the function σ̃(t) is piecewise constant
and its derivative is zero everywhere except points tn,
n > 0. We are interested in estimating the difference
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ξ0(t) = σ(t) − σ̃(t) by using its derivative ξ̇0(t) on the
intervals tn < t < tn+1. The problem is that the deriva-
tive σ̇(t) = CAx(t)+CB0f0(t)+CBf(t) includes the
term CBf(t) depending on the impulsive signal. To ex-
clude this term we subtract the expression CB u(t) that
is small when compared with the signal v(t) for high
sampling rates.

Obviously, the right-sided limit ξ(t+n ) = 0 and

ξ̇(t) = CAx(t) + CB0f0(t) + CBv(t) (31)

for tn < t < tn+1, n > 0. The Wirtinger inequality
gives ∫ tn+1

tn

ξ(t)2 dt 6
4T 2

n

π2

∫ tn+1

tn

ξ̇(t)2dt.

Then the quadratic form

Ww(x, f0, v, ξ) = (CAx+ CB0f0 + CBv)2

− 1
4π

2T−2ξ2

satisfies the IQC Sn(Ww) > 0, n > 0, along the solu-
tions of the impulsive Lur’e system.

6.5 Rearrangement of the discrete-time quadratic
constraint

Now we will take advantage of inequality (16) that im-
plies

Wv(σ̃(t), v(t)) > 0, t > t0, (32)

where

Wv(σ̃, v) = (µ2σ̃ − v)(v − µ1σ̃). (33)

Further, we will rearrange (32), (33) to replace σ̃(t) for
functions σ(t), ξ(t), u(t).

Lemma 3. Let σ, σ̃, u, ξ be any real numbers that
satisfy ξ = σ − σ̃ − CB u. At this relationship the
quadratic form W (σ̃, v) can be represented as a sum of
three quadratic forms

Wv(σ̃, v) = W1(σ, v) +W2(σ, v, ξ) +W3(σ, v, ξ, u)

for all σ, σ̃, v, u, ξ. Here

W1(σ, v) = (µ2σ − v)(v − µ1σ),

W2(σ, v, ξ) = 2µ1µ2σξ − (µ1 + µ2)vξ − µ1µ2ξ
2,

W3(σ, v, ξ, u) = CB
[
2µ1µ2σu− 2µ1µ2ξu

− (µ1 + µ2)uv − µ1µ2CB u
2
]
.

Proof. Introduce an additional variable ξ0 = σ − σ̃.
Then

Wv(σ̃, v) = W (σ − ξ0, v) = W1(σ, v)

+ 2µ1µ2σξ0 − (µ1 + µ2)vη − µ1µ1ξ
2
0 .

Since ξ0 = ξ + CB u, we arrive at the statement of
Lemma 3 by direct calculations. �

With the help of Lemma 3, inequality (32) can be re-
placed for the inequality

W1(σ(t), v(t)) +W2(σ(t), v(t), ξ(t))

+W3(σ(t), v(t), ξ(t), u(t)) > 0

along the solutions of the system.

6.6 Additional IQC for ξ(t)
Since the right-sided limit ξ(t+n ) = 0, we get∫ tn+1

tn

ξ(t)ξ̇(t) dt = 1
2ξ(t

−
n+1)2 > 0.

(Here ξ(t−n+1) is the left-sided limit.) Then (31) implies

Sn(ξ CAx+ ξ CB0f0 + ξ CBv) > 0, n > 0.

6.7 Proof of Theorem 1
Define

X = col{x, f0, v, u, ξ}, (34)

where x is a p-dimensional vector, f0, v, u, ξ are scalars.
Consider the quadratic form X>ΠX , where the matrix
Π is defined in the formulation of Theorem 1. It can be
easily verified that

X>ΠX = 2(x−Bu)>H(Ax+B0f0 +Bv) +W (X),

where

W (X) = ε0(ν2C0x− f0)(f0 − ν1C0x)

+ (µ2Cx− v)(v − µ1Cx)

+ 2µ1µ2Cx ξ − (µ1 + µ2)vξ − µ1µ2ξ
2

+ CB
[
2µ1µ2Cxu− 2µ1µ2ξu

− (µ1 + µ2)uv
]
− µ1µ2CB u

2

+ ε1
[
(CAx+ CB0f0 + CBv)2

− 1
4π

2T−2ξ2
]

+ ε2
[
− u2 + 2

3 (1− d∗)Tuv
]

+ ε3
[
− 2uv + (1− d∗)Tv2

]
+ 2ε4 ξ(CAx+ CB0f0 + CBv).

(35)
Thus the inequality Π < 0 is equivalent to the existence
of a sufficiently small number δ > 0 such that

2(x−Bu)>H(Ax+B0f0 +Bv) +W (X) 6 −δ‖X‖2
(36)

for all x, f0, v, u, ξ and for X defined by (34). With
the help of constraints obtained in Subsections 6.2–6.6
we conclude that Sn(W ) > 0 for all n > 0, and hence
Lemma 1 is applicable.
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7 Necessary conditions for feasibility of linear ma-
trix inequalities

Consider the second LMI in (19). In the proof of The-
orem 1 it is shown that Π < 0 can be reformulated as
inequality (36) with the quadratic form W (X) defined
by (35). Let us put u = ξ = 0 in (36). By discarding
some nonnegative terms in the left-hand side of (36), we
obtain

2x>H(Ax+B0f0 +Bv)

+ ε0(ν2C0x− f0)(f0 − ν1C0x)

+ (µ2Cx− v)(v − µ1Cx)

6 −δ(‖x‖2 + u2 + v2)

(37)

for all x, f0, v. Inequality (37), where H > 0, ε0 > 0,
presents LMI formulation of the circle criterion of abso-
lute stability for a system with two nonlinearities

ẋ(t) = Ax(t) +B0ϕ0(σ0(t), t) +Bϕ(σ(t)),

σ0(t) = C0x(t), σ(t) = Cx(t)
(38)

satisfying sector bounds (4),

µ1 6
ϕ(σ)

σ
6 µ2 (39)

(see, e. g., [Yakubovich et al., 2004]). Thus under the
conditions of Theorem 1 nonlinear system (38) must be
absolutely stable in the classes of nonlinearities (4), (39).

In particular, let us put f0 = νC0x, v = µCx in in-
equality (37), where µ, ν are arbitrary numbers such that

µ1 6 µ 6 µ2, ν1 6 ν 6 ν2. (40)

Then (37) implies

H(A+νB0C0+µBC)+(A+νB0C0+µBC)>H < 0.

SinceH > 0, we conclude that the matrixA+νB0C0 +
µBC is Hurwitz stable for any numbers µ, ν satisfying
(40).

8 Numerical examples
Theorem 1 will be applied to a stabilization problem

for a pendulum-like system considered in [Seifullaev and
Fradkov, 2015c; Seifullaev and Fradkov, 2016].

8.1 Example of an application of Theorem 1
Let the continuous part of the impulsive Lur’e system

be described by equations

ẋ1 = −2x1(t) + ϕ0(x2(t)),

ẋ2 = x1(t)− x2(t) + 2ϕ0(x2(t))− f(t),

σ0(t) = σ(t) = x2(t),

(41)

where ϕ0(σ0) = sinσ0 and f(t) is an impulsive control
of form (5), (6), (7) under suppositions (8), (9). Then

A =

[
−2 0
1 −1

]
, B0 =

[
1
2

]
, B =

[
0
−1

]
,

C0 = C = [0 1].

The function ϕ0(σ0) = sinσ0 belongs to the class of
nonlinearities (2) with ν1 = −0.2173, ν2 = 1.

Let us find necessary conditions for feasibility of in-
equalities (19). The matrix A + νB0C0 + µBC, where
µ, ν are scalar parameters, has the characteristical poly-
nomial P (z) = z2 + (3 +µ− 2ν)z+ (2 + 2µ− 5ν) that
is Hurwitz stable iff

3 + µ− 2ν > 0, 2 + 2µ− 5ν > 0. (42)

Thus the matrix A + νB0C0 is not Hurwitz stable for
ν > 0.4, so the Lur’e system (with f(t) ≡ 0) cannot be
absolutely stable in the class of nonlinearities (2) with
ν2 = 1 (see Section 7). From (42) it is seen that the
matrix A+ νB0C0 + µBC is Hurwitz stable for any ν,
−0.2173 6 ν 6 1, iff µ > 1.5. Thus if the matrix
inequalities of Theorem 1 are feasible, then µ1 > 1.5.
Recalling (14), we obtain the necessary condition for sta-
bility

k1d∗ > 1.5 . (43)

For further analysis, let

k2 = k1 = k, τn ≡ τ for all n , (44)

where k, τ are some numbers. The stability result de-
pends significantly on the ratio T∗/T . We will consider
two special cases: T = 2T∗ and T = T∗.

Firstly, let T = 2T∗. Thus the range of sampling fre-
quencies is sufficiently wide (the maximal sampling fre-
quency is twice as much as the minimal one), while the
duration of the impulsive action τn is kept constant and
F (σ) = kσ for all σ. From (44) we obtain

d = 2d∗ =
2τ

T
, µ2 = 2µ1. (45)

Since d 6 1, (44) and (45) imply

d∗ 6 0.5, k > 3 . (46)

Thus in the numerical experiment we can limit consid-
erations to parameters satisfying necessary stability con-
ditions (43), (46). Similar reasoning shows that for a
periodic sampling (T = T∗) we get d∗ = d 6 1 and a
less stringent necessary stability condition is k > 1.5 .

To explore feasibility of inequalities (19) we have ap-
plied MATLAB software with YALMIP package for in-
terface and SeDuMi solver for semidefinite program-
ming (see [Löfberg, 2004; Sturm, 1999]). It was found
that in the given range of parameters only the product
kd∗ = kτ/T is relevant. The modelling results are
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Table 1. Feasible pairs (T, kd∗) for 4 6 k 6 15, T∗ = 0.5T

T kd∗

0.20 [1.6, 3.8]

0.30 [1.6, 2.4]

0.35 [1.7, 2.0]

0.36 [1.8, 1.9]

Table 2. Feasible pairs (k, τ) for different values T∗, T

k τ with T∗ = 0.175, τ with

T = 0.35 T∗ = T = 0.57

2 – [0.55, 0.57]

3 – [0.37, 0.41]

4 [0.15, 0.17] [0.28, 0.31]

5 [0.12, 0.14] [0.22, 0.24]

6 [0.10, 0.11] [0.19, 0.20]

10 [0.06, 0.07] [0.11, 0.12]

Table 3. The case of ZOH. Upper bounds T obtained for a nonuni-
form sampling in [Seifullaev and Fradkov, 2015c]. Upper bounds Ts
obtained by simulation for Ts-periodic sampling.

k T ([Seifullaev and Fradkov, 2015c]) Ts

2 0.68 1.21

3 0.53 0.71

4 – 0.51

5 0.35 0.40

10 0.187 0.20

shown in Table 1. (The bounds for admissible intervals
of kd∗ were calculated with the accuracy one digit after
the decimal point.)

Let T = 0.35 be fixed, T∗ = 0.5T and the gain k
be varied. The intervals of feasible values of τ obtained
with the help of Theorem 1 are given in the second col-
umn of Table 2. Similar results for a periodic sampling
with a period T = T∗ = 0.57 are given in the third col-
umn. It is seen that the greater is the feedback gain, the
shorter should be duration of the impulsive action.

8.2 Comparison with the example from [Seifullaev
and Fradkov, 2015c]

Let us compare the estimates from Tables 1, 2 with
those obtained in [Seifullaev and Fradkov, 2015c] for
system (41) with ZOH:

f(t) = kσ(tn), tn 6 t < tn+1,

where Tn = tn+1−tn 6 T for all n. The results of [Sei-
fullaev and Fradkov, 2015c] are given in Table 3. The
upper bounds T in the second column were established
with the help of a Lyapunov—Krasovskii functional and
the Fridman’s method. (The value k = 4 was not con-
sidered.) For comparison, the third column (with the title
Ts) contains maximal admissible values of the sampling
period that were found by the direct computer simulation
for periodic sampling. From Table 3 it is seen that T is
close to Ts for high gains, but they differ significantly
for low gains (Ts/T = 1.78 for k = 2). Notice that
while the bound T is somewhat conservative, the bound
Ts (obtained by simulation) is exact.

To compare these estimates with ours let us take the
maximal admissible bound of the sampling period T as
the main comparison index — the greater is T , the lower
sampling rate is allowable for stabilization.

Since in the case T∗ = 0.5T only values k > 3 are
feasible, Theorem 1 gives no results for k = 2, 3. From
Table 1 it is seen that for 4 6 k 6 15 we can achieve the
value T = 0.37 by a suitable choice of duty ratios. By a
comparison with Table 3 it is seen that for k = 5, 10 our
value T = 0.37 exceeds the estimates obtained by the
Fridman’s method (0.35 and 0.187, respectively). For
k = 10 the enlargement of T is 0.37/0.187 ≈ 2 times,
so the sampling rate can be halved.

Let us consider the case of a periodic sampling T∗ =
T . As it was shown above, then the feasibility region
is k > 1.5 and includes the values k = 2, 3. Let us
take the exact upper bounds T = Ts for periodic ZOH
control from the second column of Table 3. From Ta-
ble 2 it is seen that for a bounded duty ratio the sam-
pling period can reach the value T = 0.57. It is less
than the values Ts for k = 2 and k = 3, but greater
than Ts for k = 4, 5, 10. For k = 10 the improve-
ment in the sampling period is especially impressive, it
is 0.57/0.20 = 2.85 times. Notice that here we com-
pare our theoretical (partly conservative) estimate with
the exact simulated estimate for ZOH.

The example demonstrates how a reasonable choice of
the duty ratio can significantly reduce the sampling fre-
quency required for stabilization.

8.3 Computer simulation
Finally, we illustrate the above results with some

graphical figures obtained by computer simulation. For
simulation assume that Tn = Ff (σ(tn)), where

Ff (σ) =

{
T − T−T∗

σ∗
σ, 0 6 σ 6 σ0,

T∗, σ > σ0,

Ff (σ) = Ff (|σ|) for σ < 0,

(47)

here σ∗ is a given positive constant (see Fig. 1). Obvi-
ously, T∗ 6 Ff (σ) 6 T for all σ. Transients for system
(41) are shown in Fig. 2. The jumps of derivative ẋ2(t)
at sampling times are clearly visible.
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Figure 1. A graph of function Ff (σ).
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Figure 2. A transient for k = 10, T = 0.36, T∗ = 0.18,
τ = 0.06 and function (47) with σ∗ = 0.5.

9 Discussion
In a sampled-data control the time axis is divided into a

number of sampling intervals ∆n = (tn, tn+1). In most
cases, the control functions fn(t) considered on these
intervals are independent from each other for different
n. If we interpret the control signal fn(t) as a physical
force, the major role is played by its total impulse over
the sampling interval ∆n, i. e., by the integral∫ tn+1

tn

fn(t) dt.

In particular, the renown principle of equivalent areas
(PEA) put forward in [Andeen, 1960a] suggests that if
we choose another forcing function f̃n(t) that produces
the same total impulse, i. e.,∫ tn+1

tn

f̃n(t) dt =

∫ tn+1

tn

fn(t) dt,

then the control effect will be generally the same. Thus
when PEA is valid, the form of fn(t) is irrelevant and
it can be replaced by a forcing function most convenient
for analysis. In particular, f̃n(t) can be taken constant
on ∆n, then it is equal everywhere to the averaged value

f̃n(t) ≡ 1

tn+1 − tn

∫ tn+1

tn

fn(t) dt,

PEA is usually applicable for short sampling intervals,
when the sampling frequency is sufficiently high. Here

we apply the idea of PEA to middle-length time inter-
vals, taking the advantage of some freedom of choice for
the forcing function fn(t), with our main effort aimed at
making the sampling interval as large as possible. Ob-
viously, in extreme cases we can either spread the force
uniformly over the whole sampling interval, or concen-
trate it in a single point. In the first case (as they do
with ZOH) a wide sampling interval introduces a signif-
icant time delay and thus worsens dynamics of the sys-
tem. In this paper we propose a simple solution to this
problem — to cut the trailing edge of the control pulse
and thus reduce the sampling delay. A numerical exam-
ple demonstrates that on this way the length of the sam-
pling interval can be increased in times. (Notice that this
effect is related not to our mathematical technique, but to
the control principle we use.) The mathematics we pro-
pose provides an alternative to the massively exploited
method of Lyapunov–Krasovskii functionals.

Conclusion
In this paper we recall a stabilization feedback method

based on finite pulse width sampling that has been used
in electrical and power engineering for a number of
years. For the stability analysis we employ a new
type of Lyapunov-like functions based on the theory of
Yakubovich and Gelig. The stability theorem is stated
in terms of a feasibility problem for certain linear ma-
trix inequalities that can be easily solved with standard
optimization software. The illustrative example demon-
strates a good agreement with the previously obtained
results. It is shown that in the case of high feedback
gains the sampling period can be enlarged significantly
by a suitable choice of duty ratios of the control pulse
train.

Acknowledgements
The work was supported by the Russian Foundation for

Basic Research (Grant 17-01-00102-a).

References
Andeen, R. E. (1960a). Analysis of pulse duration

sampled-data systems with linear elements. IRE Trans.
Autom. Control, 5 (4), pp. 306–313.

Andeen, R. E. (1960b). The principle of equivalent ar-
eas. Trans. AIEE (Applications and Industry), (79),
pp. 332–336.
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Åström, K. J. (2008). Event-based control. In Astolfi, A.
and Marconi, L., editors, Analysis and Design of Non-
linear Control Systems: In Honor of Alberto Isidori,
Berlin, Heidelberg, Springer, pp. 127–147.
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