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Abstract
We study the dynamics of semiconductor laser with

delayed optoelectronic feedback on the base of single-
mode rate equations. Bifurcations are analyzed in the
case of large delay. Continued sets of quasi-normal sys-
tem are derived in the form of multi-dimensional space-
time equations. Possible coexistence is demonstrated
of large number of multi-frequency attractors.
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1 Introduction
Phenomenon of coexistence of two or more attrac-

tors in nonlinear system is under permanent studying in
view of various technical applications. Recently delay-
induced multistability is once discussed [Yanchuk and
Perlikowski, 2009]– [Erneux, 2008]. The peculiarity of
the effect is that such systems demonstrate a number of
the stable oscillating regimes. Moreover one can con-
trol the effect as a number of cycles increases with the
delay increases.
In this paper we apply local bifurcation analysis in or-

der to derive quasi-normal forms in the case of the suf-
ficiently large delay in optoelectronic feedback (FB)
controlling the pumping. In this way multistability is
shown of one-frequency cycles like demonstrated in
[Yanchuk and Perlikowski, 2009] that can be called FB
modes. In addition, coexistence is demonstrated a wide
set of multi-frequency attractors (torus). The quasi-
normal forms derived are the space-time equations of
universal structure.
Dynamics of the semiconductor laser with delayed op-

toelectronic FB is governed by the equations

u̇ =vu(y − 1),
ẏ =q − y − yu + αu(t− T ),

(1)

whereui andyi are proportional to the photon den-

sity in the cavity and to the population inversion in the
laser;v is the ratio of photon damping time in the cav-
ity to the relaxation time of inversion of population;q
is the constant part of the pumping rate determined by
constant injection current;αu(t − T ) is the part of the
pumping rate modulated by the intensity at the delayed
moment(t−T ). The delayT is the time of propagation
and transformation signal in optoelectronic FB,α is the
FB coefficient. In laser systems it is reasonable to get
−1 < α < 1. Mathematical model (1) is valid for the
dynamical regimes with the characteristic time of in-
tensity changing much more than the time propagation
over the diode resonator.
Optoelectronic FB scheme in the pumping has been

firstly applied with the aim of stabilization of spike fre-
quency in laser diodes. The method has been also used
for dynamical control in a gas laser, and in solid state
microchip lasers.
In papers [Grigorieva, 1993] on the base of special

asymptotic technics spiking in the delayed system (1)
has been studied in the case of the large parameterv
(in class-B lasers103 − 104 ). In papers [Grigorieva,
1999; Bestehorn, 2000] local dynamics has been con-
sidered under largev in the vicinity of the stationary
state(u0, v0) with

u0 =
q − 1
1− α

, y0 = 1. (2)

It has been found that the critical cases in the stability
problem are of asymptotically infinite dimension. With
the method [Kaschenko, 1996] quasinormal forms have
been constructed that determine the dynamical evolu-
tion of the order parameters. In dependence on the re-
lation between large valuesT andv these quasinormal
forms can be delayed equations or space-time parabolic
equations.
In this paper the main assumption is that the only time

delay is large,

T À 1 or ε = T−1 ¿ 1. (3)



while other parameters are of the order of unit.
We consider the solutions to Eqs.(1) with the ini-

tial conditions from the sufficiently smallε-independed
vicinity of the stationary state (2). Applying the nor-
malizing method given in [Kaschenko, 1996], we con-
struct asymptotically continued sets of nonlinear evolu-
tion equations. Their nonlocal dynamics determine the
local dynamics of the original system (1). Each rep-
resentative from the set determines the time behavior
of special space like structure. Thus multistability can
occure.
In the small vicinity of the stationary state let substi-

tuteu = u0 + u1, y = y0 + y1 into the Eqs.(1).
Dropping the index1 we get the system with zeroth
stationary state:

{
u̇ = vu0y + vuy,
ẏ = −u− (1 + u0)y + αu(t− T )− uy.

(4)

2 Linear analysis
Here we consider the linearized system

ẇ = Aw + αBw(t− T ), (5)

wherew = (u, y)T , A =
(

0 b
−1 −a

)
, B =

(
0 0
1 0

)
,

a = 1 + u0 = q−α
1−α , b = vu0 = v(q−1)

1−α .
Dynamics of Eqs. (5) is determined by the roots of the

characteristic equation

λ2 + aλ + b = αb exp(−λT ). (6)

Taking in Eq.(6)λ = iω we get

−ω2 + iωa + b = αb exp(−iωT ), (7)

from which the equation

(b− z)2 + a2z = α2b2 (8)

follows wherez = ω2 ≥ 0. Evidently, Eq.(8) has so-
lution z ≥ 0 under someα. In particular,z = ω2 = 0
underα = ±1 but there is no solutions underα = 0.
Hence, forα = 0 all roots of Eq. (6) have negative real
parts and, in turn, Eqs. (4) have the solutions tend to
u = y = 0 undert →∞.
The bifurcation boundary corresponds to the first pos-

itive α = α+ ≤ 1 and the first negativeα = α− ≥ −1
for which Eq.(8) can be solved while forα ∈ [0, α+)
andα ∈ (α−, 0) Eq. (8) has no roots.
In order to findα+ α− we rewrite Eq.(8) as

z2 − (2b− a2)z + b2(1− α2) = 0. (9)

Denote discriminant of Eq. (9)

d(α) = P (α)(1− α)−4,

whereP (α) = (q−α)4−4v(q−1)(q−α)2(1−α)+
4v2(q − 1)2α2(1 − α)2. Let α+ = min(α̃+, 1) and
α− = max(α̃−,−1) are the minimal positive (maxi-
mal negative) roots of the equation

P (α̃±) = 0.

For sufficiently large valuesv one can get

α± = ±v−1/2 q√
q − 1

+ O(v−1) (10)

The rootsz± = ω2
± of Eq.(9) underα = α+ α = α−

are

z± =
v(q − 1)
(1− α±)

− (q − α±)2(1− α±)2

2
. (11)

Below we setα0 is α+ or α− andω0 is ω+ or ω−.
Let us introduce the functionΘ = Θ(ε) ∈ [0, 2π) that

makes the value(ω0ε
−1 +Θ) to be multiple2π and the

parameterκ ∈ [0, 2π) for which the equation

α0b0 exp(−iκ) = b0 − ω2
0 + iω0a0, (12)

is valid wherea0 = (q − α0)(1 − α0)−1, b0 =
v(q − 1)(1 − α0)−1. With these notations and under
the condition

α = α0 + ε2α1 (13)

we represent asymptotically some group of the roots
λk(ε), (k = 0,±1,±2, . . .) to the characteristic Eq.(6)
which fall into the small vicinity of the imaginary axis

λk(ε) = iω0+iε(Θ+2kπ+κ)+ε2λk1+ε3λk2+O(ε4),
(14)

where

λk1 = −i∆[Θ + 2kπ + κ], (15)

∆ = −i(ia0 − 2ω0)(α0b0)−1 exp(iκ),
λk2 = σ(Θ + 2kπ + κ)2 + ∆(Θ + 2kπ + κ) + C,

σ =
1
2
∆2 + [a0∆ + 2i∆ω0][4ω2

0 + a2
0]
−1,

C =
[
iω0a1 + (1− α0)b1 + α1b0 exp(−iκ)

]

·∆(a0 − 2iω0)(4ω2
0 + a2

0)
−1,

a1 = α1(q − 1)(1− α0)−2,

b1 = α1v(q − 1)(1− α0)−2. (16)



Note,=∆ = 0, hence the solutions do not leave local
vicinity of the stationary state under the condition

<σ > 0 (17)

that is always valid for sufficiently largev.
The representationsλk(ε) are discontinues relative to

ε as the functionΘ(ε) is discontinues and|λk(ε)| →
∞ asε → 0. It is also important that asymptotical rep-
resentations (14) are non-uniform relative to number
k = 0,±1,±2, . . ..
Some groups of the characteristic roots an be repre-

sented in another form. To this end we introduce the
parameterγ ∈ (0, 1) and choosen arbitrary positive
valuesω1, . . . , ωn. Let us also introduce the func-
tion Θj = Θj(ω, ε) ∈ [0, 2π) that makes the expres-
sion ωjε

−γ + Θj(ω, ε) to be multiple2π. Let Ω =
(ω1, . . . , ωn), Θ = (Θ1, . . . , Θn), K = (k1, . . . , kn)
wherekj ∈ Z, j = 0, . . . , n. Then in rather wide
vicinity of the bifurcation point

α = α0 + ε2γα1 (18)

the group of the characteristic roots to Eq.(6) with van-
ishing real part underε → 0 can be asymptotically rep-
resented as

λk(Ω, ε) = iω0 + i(Ω, K)ε1−γ +

iε
(
Θ0 + (Θ,K) + 2πK0 + κ

)
−

i2ε2−γ (Ω,K)
σ

+ 2ε3−2γ(Ω,K)2σ +

ε2γC + o(ε2γ , ε2(1−γ)). (19)

Note, to eigenvaluesλk(ε) andλk(Ω, ε) there corre-
spond the eigenvectors of the linearized Eqs.(6)

w(t, ε) = [w0 + o(1)] exp
[
iω0ε

−1(1 + o(1))t
]

where w0 = (b0, iω0) and the vector functions
w0 exp(iω0t) andw0 exp(−iω0t) are the solutions of
the linear system

ẇ = Cw, (20)

whereC = A0 + α0 exp(−iκ)B0.

3 Quasinormal form in small vicinity of equilib-
rium

It follows from Eq.(14) that in the small vicinity of the
bifurcation point

α = α0 + ε2α1

there is the (asymptotically) infinite set of the charac-
teristic roots with vanishing real part underε → 0.
Hence, the critical case of infinite dimension is real-
ized. In order to construct the normal form we intro-
duce the formal expansion

U(t, ε) =ε
[
w(τ, τ1) exp(iω0t)w0 + c.c.]+

+ ε2U2(t, τ, τ1) + ε3U3(t, τ, τ1) + . . . ,
(21)

where τ = ε3t, τ1 = ε(1 + ε∆)t, U2(t, τ, τ1),
U3(t, τ, τ1) are(2π/ω0)-periodic functions relative to
the first argument, and

w(τ, τ1) =
∞∑

k=−∞
ξk(τ) exp

(
irkτ1

)
.

with rk = (Θ + 2kπ + κ).
It is suitable to rewrite Eqs.(4) in vector form forU =

(u1, u2), (u1 = u, u2 = y):

U̇ = AU +αBU(t−τ)+u1u2V, V =
(

v
−1

)
. (22)

We introduce Eq.(21) into Eq.(22) and collect the
coefficients at the same order of smallε. On the
second step we get the system to determineU2 =
U21 exp(iω0t) + U21 exp(−iω0t) + U22 exp(2iω0t) +
U22 exp(−2iω0t):

CU21 = −i

( ∞∑

k=−∞
ξk(τ)rkeirkτ1

)
w0+

+ iα0∆e−iκ
( ∞∑

k=−∞
ξk(τ)rkeirkτ1

)
B0w0,

(23)

C0U22 = iω0b0w
2(τ, τ1)V, (24)

whereC0 = 2iω0T −A0 − α0 exp(−2iκ)B0.
From Eqs.(24) one finds

U22 = iω0b0w
2(τ, τ1)

(
v1

v2

)
.

The solutionU21 exists if and only if the right-hand
vector is orthogonal to the vector

w1 = (a0 − iω0, b0)T (25)

that is valid in the vicinity of the bifurcation point.
Hence we get

U21 =

( ∞∑

k=−∞
ξk(τ)rk exp [irkτ1]

)
w00. (26)



Herew00 is the solution to the system

Cw00 = i[α0∆exp(−iκ)B0 − I]w0. (27)

On the third step we collect coefficients atε3. The
system obtained is linear relatively toU3(t, τ, τ1).
It includes inhomogeneous termsexp(inω0t), n =
0,±1,±2,±3, hence the solution includes these har-
monics too,U3n(τ, τ1) for which we get

CU3 = Γ, (28)

where

Γ =w[A1 + α1e
−iκB0]w0 + α0

dw

dτ
e−iκB0w0−

iδ

( ∞∑

k=−∞
ξkr2

keirkε1

)
w00−

1
2
∆

( ∞∑

k=−∞
ξkr2

keirkτ1

)
· α0e

−iκB0w0+

ω0b0[ω0v1 + ib0v2]|w|2wV,

A1 =(q − 1)(1− α0)−2α1

(
0 v
0 1

)
.

(29)
Eqs.(28) can be solved if(Γ, z0) = 0 is vald. Takig into
account Eqs.(25)– (29) we get the system forw(τ, τ1).
Moreover one can see that

∂w

∂τ1
= i

∞∑

k=−∞
ξk(τ)rk exp [irkτ1] ,

∂2w

∂τ2
1

= −
∞∑

k=−∞
ξk(τ)r2

k exp [irkτ1] .

Thus the equation forw(τ, x) can be represented as
parabolic problem

∂w

∂τ
= σ

∂2w

∂x2
− 2σ(Θ + κ)

∂w

∂x
+

+[σ(Θ + κ)2 + c]w + δ|w|2w (30)

with periodic boundary conditions

w(τ, x + 1) ≡ w(τ, x). (31)

The coefficientδ in Eq.(30) reads

δ = ω0(ω0v1 + ib0v2)[v(a0 + iω0) + b0](α0b
−1
0 )eiκ .

The coefficients of Eq.(30) depend throughΘ from the
small parameterε. If ε → 0 the functionΘ(ε) infinitely

change its value from[0, 2π). Hence, the dynamics is
sensitive to variation of the smallε. Let εn(Θ0) is the
sequenceεn(Θ0) → 0 thenΘ(εn(Θ0)) = Θ0.
Finally, if the boundary problem (30), (31) has the

solution u∗(τ, x) then the original system (4) under
ε = εn(Θ0) has the asymptotic solution

x(t, ε) =εu∗
(
ε3t, ε

(
1 + ε∆ + Θ(ε2)

)
t
)
eirεt + c.c.

(32)
wherer(ε) = ω0ε

−1 + Θ0 +κ+ Θ(ε) In particular, if
u∗(τ, x) is a stable periodic solution then the original
system has the stable torus of given by Eq.(32).
The boundary problem (31), (32) is close to Ginzburg-

Landau equation that demonstrates complex dynamics,
in particular coexistence of travelling waves. Thus we
expect such multistability in Eqs.(4). The quantity of
such solutions grow with the delay increases [Yanchuk
and Perlikowski, 2009].

4 Quasinormal form in wide vicinity of equilib-
rium

It follows from Eq.(19) that in the rather wide vicinity
of the bifurcation point

α = α0 + ε2γα1, γ ∈ (0, 1) (33)

there is the (asymptotically) infinite set of the charac-
teristic roots with vanishing real part underε → 0.
In such a wide vicinity we seek the solution in the

form of the series

U =εγ
[
eih(ε)t

∑

k

ξk(τ)ei(K,T1)w0 + c.c.
]
+

+ ε2γU2 + ε3γU3 + . . . .

(34)

Here h(ε) = ω0 + ε(Θ + κ), τ = ε2γ+1t, T1 =
(t1, . . . , tn), tj =

(
ωε1−γ + εΘj + εγ+1ωj∆

)
t. In

Eq.(34) we sum by any integer setsK = (k1, . . . , kn).
Te vector functionsUj = Uj(t, τ, t1, . . . , tn) (j = 2, 3)
are2π-periodic relatively toti. Introducing the formal
expansion (34) into (22) and collecting coefficients at
the same order ofε we get quasinormal forms

∂w

∂τ
= σ

(
∂

∂x1
+ . . . +

∂

∂xn

)2

w + cw + γ|w|2w
(35)

with periodic boundary conditions for each space argu-
mentxj , j = 1, . . . , n:

w(τ, x1, . . . , xj+
2π

ωj
, xj+1, . . . , xn) ≡ w(τ, x1, . . . , xn).

(36)
If for some ω1, . . . , ωn the quasinormal form (35),

(36) has the limited solutionw∗(τ, x1, . . . , xn) then



Eqs. (22) have the asymptotic solution

U(t, ε) = εγ
[
eih(ε)tw∗(ε1+2γt, t1, . . . , tn)

+c.c.
]
O(ε2γ),

wheretj = (ωjε
γ + εΘ(ωj , ε) + o(ε))t.

The system (35), (36) is degenerate parabolic problem
with rather complex dynamics. In addition, the system
includes arbitrary integer parametern = 1, 2, 3, 4, . . .
andn arbitrary continued parametersω0, . . . , ωn. To
each set(n, ω0, . . . , ωn) there can corresponds the
space-time structure in the quasinormal form and, in
turn, the quasiperiodic solution to the original system.
Thus hyper-multistability can occur in sufficiently wide
vicinity of the bifurcation point.
Numerical simulation support the last conclusion.

Fig.1 shows that various torus coexist under the same
parameters for different initial functions.
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Figure 1. The map of local maxima Umaxi+2(Umaxi) for co-

existing torus solutions obtained under different initial function

u(s) = us(1 + 0.5 sin(ωins)), ωin = 2πn/T, n =
25, 26, ...33 Other parametersv = 20, T = 16, q =
3.5, α = 0.7

Despite seeming complexity of boundary problems
(35), (36), they allow to simplify studying of local dy-
namics (22) because of excluding fast oscillating func-
tions.
Dynamics of Eqs.(35), (36) depends essentially on

α1, γ. One can specify these parameter relatively to the
small parameterε = T−1. For example, letε = 10−3

is sufficiently small value andα is close to the critical
value, i.e.α = α0 +µ whereµ = 10−1 or µ = 10−2 is
the small deviation from the bifurcation point. Setting
γ ∈ [

1
4 , 1

2

]
andµ = ε2γα1 we find

1. if µ = 10−1 thenα1 ∈
[√

10, 102
]
;

2. if µ = 10−2 thenα1 ∈
[

1√
10

, 10
]
.

To eachα1 from the intervals obtained there can cor-
respond the steady regime in Eqs.(1) under the same
parametersv, q, α andT .
In conclusion, we show that the dynamics of the laser

system with large time delay can be described by con-
tinued sets of quasi-normal system in the form of multi-
dimensional space-time equations. To each solution of
the quasi-normal form there corresponds the torus in
the original system. Thus coexistence is demonstrated
of large number of multi-frequency attractors.
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