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Abstract 
With the aim to simulate the bifurcations of cycle 

birth in superdeep drill columns the nonlinear wave 
model of torsion pendulum is elaborated. The 
constitutive differential equation with delay argument 
is constructed. The analysis results testify that the 
self-excited torsional oscillations of the drill column 
proceed in the manner of quantized time, when the 
rotation speed ϕ&  continues to be constant during 
time quantum τΔ  equal the duration of the torsion 
wave forth and back propagation through the DC 
length. 

The states of the limit cycle birth and death in the 
superdeep DC are found, the modes of DC motion are 
constructed for the critical states. It is established that 
the auto-oscillations are predominant at low values of 
the DC rotation velocities. 
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1 Introduction 

In the XX century the time of easy oil and gas 
finished and inasmuch as the readily accessible 
deposits of hydrocarbon fuels are practically depleted 
in the result of their intensive extraction during the 
two last centenaries, their drawing out from depths of 
10km holds much promise. Taking into consideration 
that mechanical phenomena attending these processes 
are very complicated and there is no producing 
experience of such wells drivage, it may be 
concluded that the problems of their theoretical 
simulation are urgent. 

At the present time, in accordance with 
requirements of economy, demands of oil-gas 
industry and its technological possibilities, the 
vertical, inclined and horizontal bore wells are 
drilled. Great attention is paid to the questions of 
drilling deep wells from ground surface and sea 
bottom. In the drilling technology the leading 

position belongs to the rotor method based on the use 
of a drill column with a bit. 

When the fuel extraction is realized from great 
depths, the drill efficiency is associated with the 
problems of revealing the emergency regimes of the 
DC functioning. 
One of the dynamic phenomena conducing the 
appearance of emergency situation during drilling is 
self-excitation of torsion vibrations of rotating drill 
columns [Brett, 1992; Tucker and Wang, 1999]. 
Inasmuch as a drill column (DC) represents a torsion 
pendulum (Fig.1) with energy outflow due to 
dissipative interaction between the bit and broken 
rock at its lower part, it can transit from a stationary 
state to the mode of torsional auto-oscillation at 
violation of the energy outflow conditions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In a general case the auto-oscillations constitute 

non-damping periodic motions of a non-linear 
dissipative system which are sustained by external 

Figure 1. Drill column scheme.
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non-vibrational source of energy [Jansen and Van 
den Steen, 1995; Tucker and Wang, 1999].  

For their generating, the non-linear force 
interaction between separate parts of the system is of 
importance which regulates income and expenditure 
of the energy and by this means gives rise to finite 
amplitude vibration. In drill assemblies the reason of 
the torsion vibration self-excitation is bifurcational 
disturbance of the balance between elastic force 
moments in the DC and the non-linear moment of the 
bit interaction with the well wall. 

In the theory of non-linear differential equations 
the periodical solutions are named cycles and the 
change of stationary solution by periodical one at 
transition of some distinctive parameter through a 
critical value is spoken of as a cycle generation or the 
Hopf (Poincare – Andronov – Hopf) 
bifurcation[Hassard, Kazarinoff and Wan, 1981]. In 
the problems of drill column dynamics the parameter 
exerting influence on their stationary and auto-
oscillatory regimes is the angular velocity ω  of their 
rotation. 

In the cases when an additional impact is not 
necessary for a mechanical system transition from an 
initial (stationary) state into regime of auto-vibration 
the transition is designated as soft self-excitation. If 
the vibration begins to increase only after some initial 
threshold amplitude the self-excitation is termed 
rigid. 

The amplitude and frequency of the self-oscillation 
are determined only by the system parameters. This is 
its distinction from natural vibration, whose 
frequency is determined by the system properties but 
the phase and amplitude are dictated by the initial 
conditions, as well as from forced vibration, whose 
amplitude, frequency and phase are governed by the 
external force. 

In the phase space the periodic auto-vibration 
corresponds to a closed trajectory attracting all the 
neighboring trajectories. So such a curve is generally 
referred as a stable limit cycle (or attractor). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Auto-vibrational systems with several degrees of 

freedom and systems with distributed parameters are 
characterized by such phenomena as synchronization 
and competition of vibrations. In many cases this 
phenomena are responsible for initiation of well 
organized, complicated modes of periodic motions in 
dissipative unstable systems. 

As applied to the phenomena accompanying drill 
column rotation, investigation of their auto-
oscillation generating permits one to the provide the 
answers to three important questions: 1) what values 
of the system parameters and manners of functioning 
are responsible for the torsion auto-oscillation 
generation; 2) what type of the oscillation self-
excitation (soft or rigid) does occur; 3) what 
precautions should be taken to prevent the possible 
mode of the torsion auto-oscillation. 

For the drill columns in comparatively shallow 
wells, the answers to these questions can be received 
with the help of simplified mathematical model 
constructed issuing from the consideration of an 
appropriate torsion pendulum with non-linear friction 
forces applied to its fly-wheel. In doing so the fly-
wheel and the DC elements can be considered to 
perform torsional oscillations with the same phase 
and in consequence the overall elastic system can be 
changed by one oscillator with one DOF. 

However if the DC is long, application of the 
torsion pendulum model for analysis of its dynamics 
is not justified, as vibrations of its elements cease to 
be synchronized. So their simulation should be 
performed on the basis of the wave theory. 

Under real conditions this simplification is not met 
as the time of the torsion wave propagation through 
the DC length is not multiple to the period of the 
lower fly-wheel vibration and for this reason its 
motion can attain a complicated mode. This effect 
can be essentially favored by the bit stick-slip 
dynamics inherent in the systems with dry friction. It 
consists in short-term stoppings of the bit rotation in 
the time intervals, when the sum of all the moments 
of active and inertia forces is less than some 
threshold moment of friction forces which should be 
overcome to begin the fly-wheel slewing. During 
these intervals the drive device at the upper end of the 
DC continues to rotate with constant angular velocity 
ω , the DC twists and accumulate potential energy of 
elastic strains. When elastic torque achieves a 
magnitude which is equal to the threshold value of 
the friction moment, the lower fly-wheel begins to 
rotate, the DC untwists and its potential energy 
begins to transform into kinetic energy of the DC and 
fly-wheel rotation. This rotation continues till the 
sum of elastic moment of the DC and inertia force 
moment of the fly-wheel again begins to be under the 
threshold value of the friction moment. As the result 
of this, the fly-wheel stops again and etc. Inasmuch 
as the functions of angular velocity and acceleration 
begin to be discontinuous in the described motion, 
the DC rotation acquires a shock character 
representing severe danger for the dynamic strength 
and stability of the whole system. It is not rational to 
describe these vibrations by trigonometric functions, 
so numerical methods should be used. 

This theory contains an important factor 
complicating the considered phenomenon and the 
problem statement. It is the effect of torsion wave 
action on the fly-wheel the bit. The waves are formed 
as a result of elastic interaction between the fly-wheel 
and the DC. They achieve the DC top end, reflect and 

Figure 2. Friction moment 
function. 
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return with the delay to the lower end. Influence of 
this effect has not been studied yet and as shown 
below it reveals itself in the quantized character of 
the bit motion with the time quantum equal the wave 
passage time from one end of the DC to another and 
reverse. 

In this paper, on the basis of taking into account 
non-linear frictional interaction of a bit and broken 
rock and influence of incident wave delay effect the 
problem about analysis of self-excitation of wave and 
vibrational twisting motions in a vertical deep DC is 
stated and solved. 

 
2 Statement of the problem 

For an extended analysis of mechanism of the DC 
torsion auto-oscillation generation, assume that the 
system can be simulated as a wave torsional 
pendulum (Fig. 1). Consider the case of stationary 
rotation of the DC top end with constant velocity ω . 
Introduce inertial coordinate system OXYZ with its 
origin at the bit mass center and axis OZ  in line 
with the DC axis, as well as the coordinate system 
Oxyz  rotating together with the DC top end. 

Then the angle of the bit rotation relative to 
system OXYZ  is ( )0ϕω +t , where tω  is the angle 

of the DC top end rotation; t is the time; ( )zϕϕ =  
is the angle of the DC element elastic twist relative to 
the Oxyz  system. 

If to separate by convention  the bit from the DC 
and to consider  its dynamic equilibrium, the equation 
of elastic oscillation of the torsional pendulum can be 
represented in the form of d’Alembert’s principle   

0=++ elfrin MMM                       (1) 
Here ( )ϕ&&inin MM =  is the moment of inertia 

forces acting on the bit; ( )ϕω &+= frfr MM  the 
moment of the friction forces formed between the bit 
and the broken rock; ( )ϕelel MM =  the moment 
of elastic forces acting on the bit at the DC twist; the 
dots above ϕ  denote differentiation with respect to 
time t . 

Value inM  is calculated through the formula  
ϕ&&⋅−= JM in ,                               (2) 

where J  is the bit inertia moment. 
Moment elM  is determined by the equality   
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where G  is the DC material elasticity module in 
shear; zI the DC cross-section area inertia moment.  

The question about the frM  determining is 
more complicated. The models of the frM  
dependence on the rotary velocity ϕω &+  of the bit 
relative to the rock medium are constructed in 
accordance with the tribological properties of rubbing 
materials and their friction interaction conditions. 

The most commonly encounted relationships are 
represented by the Coulomb friction law. In its 
diagram the vertical segment ϕω &+  determines the 

static friction moment frM st , it is realized in the 
absence of sliding between bodies. Its limit value is 
equal to dynamic moment frM dyn , which occurs in the 
bit rotation and remains constant for any value of the 
relative angular velocity ϕω &+ . 

The friction force moment model with 
nonlinear dynamic moment is also widespread. Its 
feature is that the dynamic moment frM dyn  is less 

than the limit static moment frM st . It should be 
recorded that the stick-slip effect connected with 
stoppings of the bit rotation relative to inertial 
coordinate system OXYZ  is inherent in both these 
models. Its mathematical explanation is associated 
with the presence of non -linearities in the frM  
expression which cannot be linearized.  

If lubricating liquid is between the rubbing 
bodies the function ( )ϕω &+frM  can gain the form 
shown in Fig. 2. It can be represented with the help of 
approximating function  
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where coefficients ( )9,...,2,1=iai  are found 
experimentally. 

Rotary dynamics of a bit hanged at the end of a 
long drill column possesses specificities typical of 
waveguide systems. As in these systems a 
disturbance applied to its one end attains other end in 
a finite time interval, one is forced to take into 
consideration the disturbance delay. Indeed, if for 
example the DC is manufactured from steel then the 
velocities of longitudinal and transversal waves 
expressed through the elasticity moduli E , G  and 

density ρ  are equal to 5100/ ≈= ρα E m/s, 

3200/ ≈= ρβ G m/s, correspondingly. So if 

the DC length 6500=L m the torsional disturbance 
applied to one of its ends reaches another one and 
returns back in 4s only. 

For this reason the DC torsion oscillation should be 
studied on the basis of the wave equation  
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where G  is the DC material elasticity module in 
shear; ρ  the material density; zI the DC cross-
section area inertia moment. 
After substitution ρβ /G=  this equation is 
converted to the standard form  
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It has the d’Alembert solution  
( ) ( ) ( ),, tzgtzftz ββϕ ++−=        (7) 

where ( )tzf β− , ( )tzg β+  are the arbitrary 
continuous functions. The first of them determines 
the wave propagating in the direction of the Oz  axis 
and the reverse is true for the second one. As the 
waves are not dispersive they propagate without 
varying their profile, resulting in essential 
simplification of the problem solving.  
Indeed, in this case functions ( )tzf β− , 

( )tzg β+  are determined only by the initial 
conditions  

( ) ( ) ( ) ( )zgzgzfzf 00 0,0 =+=−     (8) 
and boundary conditions  
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where F  is the non-linear differential operator 
determining the bit motion.  

Using equation (1) of the drill column bit 
equilibrium, one gains the constitutive differential 
equation of the wave pendulum vibration with delay 
argument 
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In this equation J  is the bit inertia moment. 
Moment frM  was chosen as shown in Fig.2. 

Equation (10) is integrated numerically at a 
constant angular velocity ω  and prescribed initial 

conditions ( ) ( ) ( ) ( )0
22

0
11 0,0 qqqq == . The found 

solutions allow determining the drill regimes 
accompanied by the DC torsion oscillation self-
excitation, to construct their modes and to select the 
drill conditions excluding the system auto-oscillation.  

The stated problem belongs to the case of 
stationary rotation, when const=ω . But its 
formulation can be easily extended for non-stationary 
cases of the DC rotation connected with the starting 
and braking regimes. 

 
3 Analysis of the results 

In the process of functioning the DC can be either 
in the state of stationary rotation or of torsional self-
excited oscillation depending on the chosen regime of 

drilling. Types of these states are dictated by the 
equation (10) solutions which primary are determined 
by the DC length L  and angular velocity ω . Since 
the DC stiffness, its inertial properties and time delay 

β/2L  of wave disturbances depend on the DC 
length L , in the simulation of the auto-oscillation 
effect the value L  was chosen to be equal to m600  
and m1200 . 

Use of the wave torsion pendulum model for 
investigation of drill column vibration self-excitation 
permitted not only to reflect general regularities of 
limit cycle birth bifurcations, established on the basis 
of simplified 1 DOF oscillator model, but also to find 
radically new feature unique only to wave systems. It 
is associated with formation of the so-called 
quantized time with the resulting effect of constant 
angular velocity staying during time segment τΔ , 
which is equal to the time duration of the torsion 
wave passing the path from the bit to the upper end 
and backward 

τΔ β/2L= .        (11) 
Fig.3 presents ϕ&  as a function of t  in the 

segment st 1300 ≤≤ , constructed by the way of 
equation (10) integration with the use of the Runge-
Kutta method.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Initial condition ( ) ( ) 00,00 == ff &  were assumed 
and integration step of time 
measured tΔ s61076898.7 −⋅= . In doing so the 
system parameters were chosen to be 

,10077.8 10 PaG ⋅=  ,1012.3 45 mI z
−⋅=  

21.3 mkgJ ⋅= ; the rotation velocity 
srad /1=ω . It should be noted, that the periodical 

oscillations with the period sT 25.26=  are set 

very rapidly and function ( )tϕ&  has the step-wise 
shape in the chosen scale, in spite of the function 

( )ϕ&frM  smoothness. The step length coincides with 
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Figure 3.Angular velocity 
function. 



  

the time quantum Δ s75.0=τ  calculated by 
formula (11). It turned out to be 
Δ 4106.9 ⋅=τ Δ t . The attempts to integrate 
equation (10) with other initial conditions led to the 
same results indicating to soft character of the 
oscillation self-excitation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The outline of function ( )tϕ  in Fig.4 testifies that 

the bit oscillations proceed with jerks accompanied 
by large acceleration at transfer from one angular 
velocity level to another. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The limit cycle properties are represented by its 
phase portrait (Fig. 5). It has complicated shape, also 
stipulated by the quantized character of the time. 
4 Conclusions 

The problem of analysis of limit cycle birth 
bifurcations in the torsion wave models of superdeep 
drill columns is set up. The constitutive differential 
equation with delay argument is constructed. 
Analysis of its solutions permitted to establish the 
following features of the drill column torsion 
oscillation self-excitation: 

1. The limit cycles of the torsion wave 
pendulum do not depend on initial 
conditions, so the self-excitation has the soft 
character. 

2. The self-excited oscillations proceed in the 
manner of quatized time. The time quantum 
duration equals the time of the torsion wave 
propagation through the column doubled 
length. 

3. The auto-oscillations prevail at low values of 
the DC angular velocity. 
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