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Abstract
This paper investigates the possibility of using para-

metric one-dimensional chaotic maps within a swarm
of ant-like agents to perform optimization tasks. Ant
algorithms derive from a stochastic modeling based on
specific probability laws. We consider in this paper a
full deterministic model of chaotic ants which uses a
one-dimensional chaotic map –like the quadratic map–
to govern the decision behavior of ant-like agents.
Chaotic maps can produce pseudo-randomness for sim-
ulating stochastic behaviors with specific distributions.
The main advantage of this approach lies in the possi-
bility of controlling the chaotic properties of the iter-
ated map through a single parameter per map. We deal
actually with a decentralized swarm of agents individ-
ually controlled by only one parameter. This resulting
chaotic swarm is driven by a “pheromone field”, that
is a stigmergic process as classical ant algorithms do.
This field modifies each individual control parameter
by feedback. Finally we prove the efficiency of this
approach on a Travelling Salesman Problem (TSP) in-
stance, and compare the results with the original Ant
System algorithm. To summarize, the algorithm sub-
mitted in this paper operates a distributed parametric
control on agent’s internal decisions by means of a
global pheromone field. This provides also a new in-
sight into the stigmergic processes involved.
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1 Introduction
Ant algorithms constitute a family of stochastic mod-

els mainly based on a probability function used by ar-
tificial ants(?). This function modelizes the stigmer-
gic process involved by ants in a stochastic way. Stig-
mergy is a concept firtsly coined by Pierre-Paul Grassé
in 1959 when he studied termite behaviors(?). Very
briefly described, Stigmergy occurs when the outcome

of a collective work acts as a feedback loop on the in-
dividual’s behavior. Let’s get back to the point, the
stochastic decision function used by artificial ants when
they move on a graph-based environment is as follows:

pij =
(τij)

α(ηij)
β∑

l∈Ni
(τil)α(ηil)β

(1)

where τij denotes the amount of pheromone on the
edge (i, j) linking node i to node j, and ηij denotes
an extra heuristics which correponds with the problem
—as the inverse of the edge distance in the TSP case—,
and Ni is the set of other existing edges from node i.
The exponents α and β are greater or equal to 1, but
commonly equal 2 to get the best performances. This
stochastic decision enables a colony of agents (artificial
ants) to find or approximate good solutions for many
hard combinatorial optimisation problems (?), like the
Travelling Salesman Problem (TSP) we deal with in
this paper. Basically a TSP problem consists in finding
the shortest Hamiltonian cycle in a connected graph,
that is the shortest cycle composed of all nodes occur-
ing only once. This famous problem belongs to the
NP-hard class of computing problems.
This paper focuses on the stochastic foundations of

the ant algorithm modeling: more precisely our con-
cern is with the existence of an alternative determinis-
tic model which would exhibit the dynamical aspects
of the involved stygmergic processes (?). Some works
have been published in this way of modeling, by re-
quiring the hypothesis of chaotic dynamics within ant
behaviors (?; ?).But this approach has not yet led to
optimization processes. This is precisely our purpose
in this paper, by proposing a deterministic model of
chaotic ants. This model is inspired by theoretical stud-
ies on iterated nonlinear maps, namely logistic maps
or quadratic maps, which are well known to produce
chaotic time series (?) with specific distributions. The
main advantage of this approach lies in the possibil-
ity of controlling the chaotic properties of the iterated



map through a single parameter that modulates the dy-
namics. We deal therefore with the deterministic chaos
theory to “replace” the probability theory. This field
provides tools like bifurcation diagrams to monitor the
processes. This change of the modeling paradigm —
deterministic versus stochastic— leads to a novel in-
sight into the internal mechanisms involved during the
searching and optimizing process of ants. This proves
to be a decentralized control process on each ant-like
agent, driven by the whole pheromone field. Some au-
thors speak of a “self-adaptive” process in this case.
Some work has been done using chaotic ant swarms

applied on optimisation problems (?; ?), but it was only
applied on continuous problem spaces. We tackle here
graph-based problem spaces and combinatorial prob-
lems, and our modeling principles are quite different.
Our chaotic ant model has been already applied on the
binary bridge experiment and has proven to simulate
the expected symmetry break of the problem, by pro-
ducing the same shape of data series as the experimen-
tal ones (?). We aim at applying it on combinatorial
optimization problems, as the original ant algorithms.
Other approaches have involved chaotic maps as ran-
dom generators in the particle swarm field. In particu-
lar the Chaotic Particle Swarm Optimisation approach
seems to be very efficient for many optimization prob-
lems (?; ?).
The presentation of our chaotic ant model constitutes

the first section of this paper. We intend then in the
the second section to validate our approach by compar-
ing the chaotic ant model to the “Ant System” algo-
rithm (?) —one of the first ant algorithm instance in
the family— on a Travelling Salesman Problem (TSP)
benchmark with 48 nodes. The objective is at this stage
to prove that the concept is relevant for combinatorial
optimization, not to deal with hard TSP. The last sec-
tion is dedicated to discuss our simulation results we
think encouraging, and to open perspectives.

2 The chaotic ant system (CAS) for TSP
This section is devoted to the design of the chaotic ant

system (CAS). In fact this system is a reactive multi-
agent system (MAS) composed of an environment,
that is the problem space, plus many chaotic ant-like
agents. The agents interact through the environment
within a pheromone field which enables stigmergy(?),
that’s why we call them “ants”. However, the differ-
ence between chaotic agents and stochastic ants lies in
the decision process of chaotic ants which is governed
by a deterministic one-dimensional chaotic map —the
quadratic map here—, in contrary to the stochastic law
of the original ant system (1).

2.1 Metaheuristic principles of ant algorithms
Let us specify this in the case of a TSP problem where

the objective is to find the shortest Hamiltonian cycle
in a weighted graph1. The generic considered graph is

1we will only consider symmetric TSP in this paper

denoted G = (V,E) where V is the set of |V | = n
vertices and E the set of edges. In our case the graph is
symmetric and has n(n−1)

2 edges.
Before describing the different parts of the logistic

ant system, let us recall some rooting principles of
ant algorithms. We use the same global metaheuristic
method using a pheromone field to perform optimiza-
tion on a symmetric TSP, that is:

N ants forming a colony are involved at the same
time on a given TSP.
The algorithm proceeds in a global loop composed
of global steps.
During a global step, each ant achieves individ-
ually an hamiltonian cycle from a random initial
position and marks it by an amount of pheromone
depending on the path distance.
Each global step ends with a pheromone reinforce-
ment of the best cycle, when all ants have finished
their own cycle.

In this paper, the elementary discrete time step t corre-
sponds to the process time needed to achieve a “local
loop”, that is a loop where all ants in the colony has
moved into a new vertex of the graph. A global step
lasts therefore T = n−1 time steps for all ants to cover
an Hamiltonian cycle in parallel. We keep the naming
of local loop relative to the vertex and global loop rel-
ative to the graph, to distinguish the different levels of
schedulling in the algorithm. The global loop lasts until
a fixed limit of time steps is reached: this is the criterion
to stop the algorithm in this study. The best optimiza-
tion performance among the colony is then recorded.

2.2 The environment design
We use the concept of environment of the MAS

paradigm to include all the data related to the graph
problem. In this way, our MAS environment is com-
posed of a basic geometric space denoted E and many
fields on it. E corresponds to the 2D discrete space
N∗n ×N∗n where N∗n = {1, · · · , n} and n is the number
of vertices in the considered graph. So E can be stored
as a matrix of n × n cells. Each field is an additionnal
layer of this matrix.

2.2.1 The notion of field The field concept is the
means we use to structure the data in the environment
and to describe dynamically all the processes within the
CAS. A field is defined as a mapping between the ge-
ometric space E and the real set. It may also be seen
as a data layer of the environment, but remains math-
ematically a function that maps a cell of the matrix E
to a value in the field domain . In all the following,
(k, l) denotes a pair of coordinates in the space E, it
corresponds also to the indices of a cell in the linked
matrix.

2.2.2 Main fields The environment is composed
of the following main fields:



The adjacency field A corresponds simply to the
connectivity matrix of the graph. The connectivity
is complete here, A is therefore full of 1 except on
the diagonal.
The weight field stores data relative to the given
distances in case of a TSP. We use a formula to
transform all distances into the interval [0, 1] so as
to get a generic design, scale-free and independent
of the units used:

W(k, l) =
min(i,j)∈E d(i, j)

d(k, l)
(2)

where d(i, j) gives the distance of the edge (i, j).
The pheromone field T t is dynamically build by
the ant colony. It is therefore a cumulative endoge-
nous field: The pheromone field is initialized to 0.
It is characterized by a cumulative updating pro-
cess by ants and an evaporation coefficient ρ.

2.2.3 Other fields Other fields are needed in our
environment modeling:

A field of visited vertices and edges denoted byHti
stores, for an ant i at each time t during a global
step of the algorithm, the taboo list of edges and
nodes already visited by the ant.
A field of ordered edges Ot maintains a list of
edges related to each node of the graph, ordered
by the amount of pheromone. This field is needed
because of the determinitic nature of the choosing
decision process of logistic ants (cf section 2.4.3).
A field of influence: the pheromone field is a dy-
namical field, and it has to be updated after each
ant has achieved a hamiltonian cycle. That is why
we involve also an “influence” pheromone field de-
noted T̃ , which is a temporary field for the global
update of the pheromone field.

2.2.4 Final remarks The use of so many fields
may be seen as a heavy way to describe the data struc-
ture, but it is a systematic way and a very generic means
to describe the manipulated data whatever the consid-
ered environment might be. The field concept is more-
over well adapted to system dynamics formulations.
The next section explains the chaotic ant system.

2.3 Design of the CAS
2.3.1 Rooting principles A chaotic ant is com-

posed of an internal state with two components and
a parametric chaotic map using these internal compo-
nents.

Internal state definition of chaotic ants. Let us de-
scribe now the internal behavior of a chaotic ant. A
chaotic ant i is a reactive agent with an internal state
sti = 〈xti, ati〉 at time step t where:

xi ∈ [0, 1] is the decision variable of the ant i,

ai ∈ [0, 1] is the internal control variable of the ant
i.

The interpretation of the internal variables becomes
clear within the decision function of the ant-like agent,
that is the function which gives the next value of x,
computed by the following quadratic map:

xt+1
i = f(x, a) = 1− a(2 xti − 1)2 (3)

Here, both x and a belong to the interval [0, 1]: x is the
main variable and a the control parameter of the map.
For each a value, one plots the result of the computa-
tion of x after a fixed number of iterations and one ob-
tains a bifurcation diagram (Fig. 1). This recurrence
lead to three type of results: a fixed point, a periodic
cycle or a chaotic (aperiodic) numerical series. We will
use the characteristics of this map, which is governed
by a single parameter a, in order to control the way a
given chaotic ant choses the next node to visit.

Figure 1. Bifurcation diagram for the quadratic map. Each point is
plotted after 500 iterations.

Parametric control for exploration and exploitation.
More precisely the proposed algorithm consists in us-
ing the dynamical properties of the quadratic map —
described in the bifurcation diagram— by modifying
dynamically the a value as the algorithm runs and in
respect to the pheromone field perceived locally, to
achieve the final optimisation objective. Chaos occurs
on the very right part of the diagram (Fig.1) that we
will make correspond to the exploration phase, whereas
fixed points occur on the left part of the diagram that
we make correspond to the exploitation phase and the
final convergence of the algorithm. This modulation
of a is achieved during the perception phase (see the
next section). Globally the algorithm leads at each lo-
cal level of ants to converge from an exploration phase
to an exploitation phase towards the best trajectories in
the problem space, that is from a high a-value (a ' 1)
to a low a-value (a ' 0). We may compare the control
parameter a with a decentralized temperature driven by
the local pheromone field.



2.4 Algorithmic process
The internal processing of a chaotic ant-like agent fol-

lows a sensorimotor scheduling —typical of a cyber-
netics approach—, that is a perception-decision-action
process. This scheduling is achieved during an elemen-
tary time step of the algorithm, in parallel within each
ant of the colony.

2.4.1 Perception process Let us consider an ant i
on a given vertex k of the graph, let Vi(k) denote the
set of all vertices connected with vertex k and not yet
visited by the ant i (not belonging to the taboo list of
i). The perception operator acts on the pheromone field
according to the formula:

Pi(k) = maxl∈Vi(k){T (k, l)} (4)

This perception returns simply the maximum amount
of pheromone from a given vertex.

2.4.2 Decision process The decision process per-
forms the transition of the internal state of the ant i lo-
cally on the node k. This is formalized as a dynamical
system between two time steps t and t+ 1:


at+1
i =

1

1 + eα (P t
i (k)−τ0)

xt+1
i = f(xti, a

t+1
i )

(5)

The updating of ai regulates the adaptation behavior
of chaotic ants by means of a sigmoid function which
fixes the envelop of the decreasing variation of the con-
trol variable in function of the perception. Then the
new decision variable is computed in respect to the just
updated value of a. In the beginning of the algorithm,
the pheromone field is low, consequently the a value
equals 1 and the dynamics given by the quadratic map
is chaotic. In the end, the pheromone field may be high,
consequently the a value is low and the decision is al-
ways the same near a fixed point close to (0, 1) in the
bifurcation diagram. This summarizes the decentral-
ized and distributed way this algorithm converges. The
sigmoid function in this process enables to smooth the
variations of the many dynamical modes generated by
the bifurcations of the chaotic map.

2.4.3 Action process After updating the decision
variable, each chaotic ant effects local actions:

Choose an edge among the ordered edges list
(through the field O) from the current vertex in
proportion to the value of the decision variable x
and move on the choosen vertex, denoted l∗.
Update the set of visited edges and vertices (the
taboo list), that is the fieldH.

Figure 2. Chosen TSP instance from the TSPLIB Library. Optimal
cycle equals 10628.

Update the influence pheromone field, that is the
contribution part of the ant i to the pheromone
field, by the following formula:

T̃ t+1
i (k, l∗) = xt+1

i W(k, l∗) (6)

2.5 Pheromone field updating
The updating of the pheromone field occurs once at

the end of each time step when the N ant local loops
are made up, and once at the end of each global step to
reinforce the best cycle.
At the end of each time step the global pheromone

field is updated with the contributions of all the colony
according to the formula:

T t+1 = T t +
N∑
i=1

T̃i (7)

At the level of a global step, the pheromone field is
updated according to the best cycle among the colony.
Let Li denote the distance of the ant i’s cycle and let
Gmin denote an inferior bound of the minimal distance
for a cycle — it is defined by summing the minimal dis-
tances from every edges—. The amount of pheromone
4τ ∈ [0, 1] which reinforces the best cycle is given by:

4τ =
Gmin

mini{Li}
(8)

This formula is independent of the distance units used
and does not depend on any parameter. The updating
of the pheromone field according to the evaporation co-
efficient ρ is then very similar as the Ant system algo-
rithm (?).

3 Simulation and results
Simulations have been performed on 20000 elemen-

tary time steps on the “att48” TSP instance from the
TSPLIB library (?) for wich the optimal cycle equals
10628 (cf. fig. 3).
Different ant number N and evaporation coefficient
ρ ∈ {0, 0.01, 0.02, · · · , 0.1} have been tested. We



Figure 3. Evolutions of the best results (expressed in percentages
of the optimal cycle) in function of time for the AS algorithm in the
upper figure and for the CAS algorithm in the lower figure.

have compared the best results between the classical
Ant System (AS) algorithm (?) and our chaotic ant sys-
tem (CAS) on 5 runs for each initial configuration. The
comparison of the best results is given in table 1. The
sigmoid function used by chaotic ants has been fixed
to the following parameter: α = 0, 04 and τ0 = 30, 0.
In terms of computation time, the running time of the

Number of ants AS CAS

10 (0.0, 11028) (0.01, 11074)

20 (0.06, 10845) (0.0, 11049)

30 (0.06, 10847) (0.02, 10894)

40 (0.08, 10777) (0.01, 11026)

Table 1. Comparison of best results between the “Ant System” (AS)
algorithm and the Chaotic Ant System algorithm (CAS). Each cell
gives a pair (ρbest, Lbest).

CAS algorithm is in average twice the runnig time of
the AS algorithm with the same hardware conditions
(cf. fig. 3).

4 Discussion
Both algorithms have failed in finding the optimal so-

lution in the limited laps of time. Some points have to
be mentioned however:

1. Best results are very close for both algorithms, but
CAS takes twice more computation time than AS.

2. The AS algorithm converges very fast towards
good solutions, whereas it takes more time for the
CAS algorithm to find good solutions. This fea-
ture of the CAS algorithm may be an advantage to
avoid local optima.

3. The increase of the ant number has low benefits on
the results in the AS case, whereas it speeds up the
convergence in the CAS case.

4. The evaporation coefficient has to be near 0.1 to
give the best results in the AS case, whereas much
lower values are needed in the CAS case. This
seems to make CAS algorithm less sensitive to the
evaporation mechanism.

Consequently we consider that the performances of
the chaotic ant system are sufficiently convincing to
carry on developing this model for optimization. We
foresee some advantages of this approach:

The deterministic nature of our chaotic ant model
enables to make clear the underlying dynamical
mechanisms involved. We have shown indeed that
the pheromone field modifies the internal control
variable of each ant-like agent and impacts its fu-
ture decisions through a nonlinear decision map.
The pheromone field reveals to be a decentralized
control field in the control parameter space. This
approach enable to follow the convergence process
both locally and globally. In the end of the conver-
gence, most of the chaotic ants are no more chaotic
at all. They all get synchronized on the same path
corresponding to the left part of their bifurcation
diagram.
This model constitutes therefore a metaheuristic
approach, because of the genericity of the conver-
gence principle: the convergence profile is given
for each ant by the bifurcation diagram of the
chaotic map used. This convergence principle is
simple and “graphical” on the bifurcation diagram
of the map. Other maps may be used to improve
convergence speed.
The CAS algorithm seems to be improved by the
growing number of ants. This may be a good point
in case of massive parallel processing.

The main drawback we may see in the CAS model lies
in the theoretical impossibility to prove at the present
time the asymptotic convergence to optimal solutions,
instead of the original ant colony algorithm family,
even if the theoretical proof does not help in practice
when handled problems are very large. We intend to
compensate for this drawback by keeping several per-
manent chaotic agents in the environment to maintain a
minimum exploration level.



5 conclusion
We have shown in this paper a way to build a full

deterministic model of ant algorithm by means of
quadratic maps as decision functions within ant-like
agents. The results obtained by the Chaotic Ant System
reveal to be comparable to the Ant System algorithm
on the same TSP instance, and this fact consequently
validates our approach. The main advantage of this de-
terministic model lies in the mechanism principles it
involves: the stigmergic process derives here from a
internal parametric control of ants through the global
field of pheromone, which is build from the cumula-
tive contributions of all ants. This indirect parametric
control operates in a distributed and decentralized way
making a link between a bifurcation diagram and an
optimization process. The whole ant colony ends up
synchronizing on the same internal state and correla-
tively in the search space on the same good path of the
TSP graph. This model constitutes an example of us-
ing a self-adaptive and dynamical control mechanism
within a colony of ant-like agents in the field of opti-
mization. This provides therefore a novel dynamical
and distributed perspective on stigmergic processes in-
volved in ant algorithms.


