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Abstract
This paper theoretically and experimentally deals with

the third order superharmonic resonance and the spa-
tial motion occurring in a string. We consider the case
when the upper end of the string is fixed and the lower
end is harmonically excited in a direction. When the
excitation frequency is in the neighborhood of a third
the linear natural frequency of the string, the third or-
der superharmonic resonance in the excitation direction
occurs. Additionally, the superharmonic resonance(in-
plane motion) can produce the resonance(out-of-plane
motion) in the direction perpendicular to the excita-
tion through the nonlinear coupling between the exci-
tation direction and the perpendicular direction. First,
the equations of motion of the string including the ef-
fect of the nonlinear restoring force are shown. Next,
the analytical solutions of the equations and the ampli-
tude equations are obtained by the method of multiple
scales. Then, the amplitude equations give theoretical
frequency response curve. Finally, the experimental re-
sults qualitatively confirm the theoretical characteris-
tics.
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1 Introduction
Generally, mechanical systems are governed by dif-

ferencial equations with nonlinear terms which may
produce nonlinear phenomena. Because of difficulty
of analysing the nonlinear differencial equation, it is
very difficult to predict or control the nonlinear phe-
nomenon. In a lot of the mechanical systems, stability
and reliability are assured by imposing physical con-
straints and ignoring the nonlinear terms. However, un-
der such a constraint, high-performance systems cannot
be continuously created. Therefore, it is necessary to
analyse the differencial equations including the nonlin-

ear terms and to investigate the reliability of the sys-
tems.
A string is one of the mechanical systems governed by

the nonlinear partial differencial equations. The string
is the most fundamental system with infinite degree of
freedom and interesting from the engineering point of
view. As the nonlinear phenomena in the string, the
third order superharmonic resonance and the spatial
motion exist. In the string whose upper end is fixed is
harmonically excited, a resonance in the direction par-
allel to the excitation can occur depending on the ex-
citation frequency. It is well known that the excitation
frequency in the neighborhood of the integral multiple
of the natural frequency produces the resonance. On
the other hand, the excitation frequency in the neigh-
borhood of a third of the natural frequency also pro-
duces the resonance[1]. This resonance is called the
third order superharmonic resonance. Moreover, when
the resonance in the direction parallel to the excitation
occurs, that in the direction perpendicular to the ex-
citation can occur[2][3]. These resonances in the two
direction cause the spatial motion of the string.
This study deals with the third order superharmonic

resonance and the spatial motion of the string whose
upper end is fixed and lower end is harmonically ex-
cited. First, we derive the equations of motion of the
string with nonlinear characteristics. Second, we ob-
tain the amplitude equations which govern the ampli-
tude of the analytical solutions and the theoretical fre-
quency responce curve. Finally, to assure the accuracy
of the theoretical result, we do an experiment and ob-
tain the experimental frequency resoponce curve.

2 Governing Equations
We consider the string with cross-sectional area A,

modulus of longitudinal elasticity E, length l, initial
tension T0 and density ρ, whose upper end (z = 0) is
fixed and lower end (z = l) is harmonically excited as
δ cos νt. We put the displacement of the string in the di-
rection parallel to the excitation ξ(x, t) and that in the



direction perpendicular to the excitation η. Consider-
ing the deflection of a part of the string and setting l to
the representative length and l/c2 representative time,
we obtain the dimensionless equations of motion

∂2ξ∗

∂t∗2
+ 2µ

∂ξ∗

∂t∗
− ∂2ξ∗

∂z∗2

− β

2

∫ 1

0

{(∂ξ∗
∂z∗

)2
+
(∂η∗
∂z∗

)2}
dz∗ · ∂

2ξ∗

∂z∗2
= 0,

(1)

∂2η∗

∂t∗2
+ 2µ

∂η∗

∂t∗
− ∂2η∗

∂z∗2

− β

2

∫ 1

0

{(∂ξ∗
∂z∗

)2
+
(∂η∗
∂z∗

)2}
dz∗ · ∂

2η∗

∂z∗2
= 0,

(2)

where

c21 =
E

ρ
, (3)

c22 =
T0
ρA

, (4)

β =
c21
c22

=
EA

T0
(5)

and µ is damping ratio. The asterisk in the equations
means dimensionless quantity. Then, the boundary
conditions are written as

{
ξ∗(0, t∗) = 0, ξ∗(1, t∗) = δ∗ cos ν∗t∗,
η∗(0, t∗) = 0, η∗(1, t∗) = 0.

(6)

According to Eqs.(1) and (2), ξ∗ and η∗ couple only
by the fourth term in the left hand side of the equa-
tion which expresses the nonlinear restoring force of
the string. This term produces the third order superhar-
monic resonance and spatial motion. In the following,
we omit the astarisk for simplicity.

3 Analysis by the Method of Multiple Scales
Considering mechanism of the resonance, we can

evaluate the excitation amplitude and damping ratio as
follows:

δ = εδ̂, (7)

µ = ε2µ̂, (8)

where ε is minute parameter and the caret means O(1).
Then, we make an assumption about the solutions

ξ = εξ1 + ε3ξ3, (9)

η = εη1 + ε3η3, (10)

and introduce the multiple time scales

t0 = t, (11)

t2 = ε2t. (12)

Applying the above to Eqs.(1) and (2), we obtain the
equations of each order as follows:
O(ε):
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ξ3(0, t) = 0, ξ3(1, t) = 0,
η3(0, t) = 0, η3(1, t) = 0,
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whereD0 = ∂/∂t0 andD2 = ∂/∂t2. In the following,
we focus on the case when the excitation frequency ν is
in the neighborhood of a third of the first order natural
frequency of the string ω1. Using the detuning σ =
ε2σ̂, it is expressed as

ν =
1

3
ω1 + ε2σ̂. (19)

4 Stability Analysis
The above equations of O(ε) give the analytical solu-

tion. The vibration of the string in the direction paral-
lel to the excitation includes the frequency component
of the excitation frequency and that of three times the
excitation frequency. On the other hand, the vibration
in the direction perpendicular to the excitation includes
the frecuency component of three times the excitation
frequency. The amplitude equations obtained from the
above equations of O(ε3) govern the amplitude and the
phase difference. Analysing the equations of O(ε3),
we can obtain the steady states and can investigate their
stability. Then, the analytical result give the theoretical
frequency responce curve which expresses the reration
between the steady state amplitude and the detuning of
the excitation frequency.



Figure 1. Experimental apparatus

5 Experiment
To inspect appropriateness of the theoretical fre-

quency responce curve, we did experiments. Figure
1 is the experimental apparatus. The upper end of
the stainless wire is fixed to the ceiling and the lower
end of it is excited by the shaker. The laser displace-
ment sensors mesure the displacement of the wire in
the direction parallel to the excitation and that in the di-
rection perpendicular to the excitation. Analysing the
mesurement result by fast Fourier transform, we ob-
tain the experimental frequency responce curve. The
frequency responce curve obtained in the experiment
showed the characteristics of the theoretical frequency
responce curve.

6 Conclusion
We analysed the third order superharmonic resonance

and the spatial motion in the string whose upper end
is fixed and lower end is harmonically excited. First,
we showed the equations of motion of the string tak-
ing into account the effect of the nonlinear restoring
force. Next, we obtained the analytical solutions of the
equations and the amplitude equations by the method
of multiple scales. Then, by using the amplitude equa-
tions, we obtained the theoretical frequency responce
curve. Finally, we did the experiment and confirmed
appropriateness of the theoretical analytical result.
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