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Abstract
The state estimating procedures for nonlinear control

dynamical system with uncertainty in the initial data
are studied. We assume here that the coefficients of
the matrix in linear terms of system state velocities are
not exactly known, but belong to the given compact set
in the corresponding space. The right hand sides of
differential equations of dynamical system may con-
tain also additional nonlinearities defined by quadratic
(with respect to state vectors) functions. The emphasis
in this paper is on the problem of estimating the non-
linear dynamics of systems of this type, complicated
by the presence of an additional state constraint. We
present here new approaches and algorithms allowing
to find external ellipsoidal estimates of reachable sets
of nonlinear control system of the studied type.
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1 Introduction
The paper is a further contribution to the study

of estimation problems for uncertain systems in the
case when a probabilistic description of noise and er-
rors is not available, but only bounds on them are
known [Kurzhanski and Valyi, 1997; Kurzhanski and
Varaiya, 2014; Chernousko, 1994; Chernousko, 1996;
Schweppe, 1973; Bertsekas, 1995; Walter and Pron-
zato, 1997]. Such models may be found in many ap-
plied areas ranged from engineering problems from
physics to economics as well as to biological and eco-
logical modeling when it occurs that a stochastic nature
of the errors is questionable. The key issue in nonlin-
ear set-membership estimation is to find suitable tech-
niques, which produce related bounds for the set of un-
known system states without being too computationally

demanding, some of such approaches may be found
e.g. in [Baier, Gerdts and Xausa, 2013; Dontchev
and Lempio, 1992; Kurzhanski and Filippova, 1993;
Mazurenko, 2012; Filippova and Lisin, 2000; Matviy-
chuk, 2016; Polyak, Nazin, Durieu and Walter, 2004].
In this paper the modified state estimation approaches

which use the special structure of nonlinearity of stud-
ied control system and also take into account state
constraints are presented. We assume here that the
system nonlinearity is generated by the combination
of two types of functions in related differential equa-
tions, one of which is bilinear and the other one is
quadratic. We find here the set-valued estimates of re-
lated reachable sets of such nonlinear uncertain con-
trol system under additional complication when we as-
sume that unknown states of the system should belong
to a prescribed region in the state space (we consider
here the case when this region is defined by an ellip-
soid in related space). It should be noted here that state
constraints appear in a very natural way when model-
ing many real life engineering applications in robotics,
aeronautics, medicine and other branches [Apreutesei,
2009; August and Koeppl, 2012; Ceccarelli, Di Marco,
Garulli, and Giannitrapani, 2004]. Therefore the re-
sults of the paper may be of interest not only for the
mathematical control theory and the fundamental the-
ory of dynamical systems, but also may present interest
for the study of corresponding physical models and for
other applications in the areas noted above.

2 Preliminaries and Problem Formulation
We need to define first some auxiliary constructions

and results which will be used in the following.

2.1 Basic Notations and Definitions
We will start by introducing the following basic no-

tations. Let Rn be the n–dimensional Euclidean space
and x′y be the usual inner product of x, y ∈ Rn with



the prime as a transpose, with ‖x‖ = (x′x)1/2. Denote
comp Rn to be the variety of all compact subsets A ⊂
Rn and conv Rn to be the variety of all compact convex
subsets A ⊂ Rn. Let us denote the variety of all closed
convex subsets A ⊆ Rn by the symbol clconv Rn. Let
Rn×m stands for the set of all real n × m-matrices,
I ∈ Rn×n be the identity matrix, tr (A) be the trace of
n× n-matrix A (the sum of its diagonal elements). We
denote by B(a, r) = {x ∈ Rn : ‖x− a‖ ≤ r} the ball
in Rn with a center a ∈ Rn and a radius r > 0 and by

E(a,Q) = {x ∈ Rn : (Q−1(x− a), (x− a)) ≤ 1}

the ellipsoid in Rn with a center a ∈ Rn and with a
symmetric positive definite n× n-matrix Q.
Consider the ordinary differential equation

ẋ = f(t, x, u(t)) (1)

with function f : T ×Rn×Rm → Rn measurable in t
and continuous in other variables. Here x stands for the
state space vector, t stands for time (t ∈ T = [t0, t1])
and u(t) is a control function,

u(t) ∈ Q(t) (2)

where Q(t) is a set-valued map (Q : T → comp Rm)
measurable in t. The given data allows to consider a
set-valued function

F(t, x) =
⋃
{ f(t, x, u) | u ∈ Q(t) } (3)

and further on, a differential inclusion [Aubin and
Frankowska, 1990; Filippov, 1985]

ẋ ∈ F(t, x) (4)

that reflects the variety of all models of type (1)-(2).
Let us assume that the initial condition to the system

(1) (or to the differential inclusion (4)) is unknown but
bounded

x(t0) = x0, x0 ∈ X0 ∈ comp Rn (5)

One of the principal points of interest of the theory of
control under uncertainty conditions [Kurzhanski and
Valyi, 1997; Kurzhanski and Varaiya, 2014] is to study
the set of all solutions x[t] = x(t, t0, x0) to (1)-(5) (re-
spectively, (4)-(5)) and furthermore the subset of those
trajectories x[t] = x(t, t0, x0) that satisfy both (4)-(5)
and a restriction on the state vector ( the “viability”
constraint [Kurzhanski and Filippova, 1993])

x[s] ∈ Y (s), s ∈ [t0, t] (6)

where Y (·) (Y (t) ∈ conv Rp) is a convex compact val-
ued multifunction.
The viability constraint (6) may be induced by state

constraints defined for a given plant model or by the
so-called measurement equation

y(t) = G(t)x+ w, (7)

where y is the measurement, G(t) is a matrix function,
w is an unknown but bounded “noise” and

w ∈ Q(t), Q(t) ∈ comp Rp.

The problem consists in describing the set X[·] =
{x[·] = x(·, t0, x0)} of solutions to the system (4)-
(6) (the viable solution bundle or “viability bundle”).
The point of special interest is to describe the t – cross-
section X[t] of this set that is actually the attainability
domain of system (4)-(6) at the moment t. Unfortu-
nately, the exact determination of the reachable setX[t]
is a difficult problem and the problem of finding its es-
timating sets is of interest.

2.2 First Approach: Evolution Equations
In this section we formulate necessary techniques and

results. We assume that the notions of continuity and
measurability of set-valued maps are taken in the sense
of [Filippov, 1985; Aubin and Frankowska, 1990].
Consider the differential inclusion (4), where x ∈ Rn,
F is a continuous set-valued map (F : [t0, t1]×Rn →
convRn) that satisfies the Lipschitz condition with con-
stant L > 0, namely

h(F(t, x),F(t, y)) ≤ L ‖ x− y ‖, ∀x, y ∈ Rn

where h(A,B) is the Hausdorff distance for A,B ⊆
Rn, i.e.

h(A,B) = max {h+(A,B), h−(A,B)},

with h+(A,B), h−(A,B) being the Hausdorff
semidistances between the sets A,B,

h+(A,B) = sup{d(x,B) | x ∈ A},

h−(A,B) = h+(B,A),

d(x,A) = inf {‖ x− y ‖ | y ∈ A}.

Assuming a set X0 ∈ comp Rn to be given, denote
x[t] = x(t, t0, x0) (t ∈ T = [t0, t1]) to be a solution
to (4) (an isolated trajectory) that starts at point x[t0] =
x0 ∈ X0.



We take here the Caratheodory–type trajectory x[·],
i.e. as an absolutely continuous function x[t] (t ∈ T )
that satisfies the inclusion

d

dt
x[t] = ẋ[t] ∈ F(t, x[t]) (8)

for almost every t ∈ T .
We require all the solutions {x[t] = x(t, t0, x0) | x0 ∈
X0} to be extendable up to the instant t1 that is possi-
ble under some additional assumptions [Filippova and
Berezina, 2008].
Let Y (t) be a continuous set-valued map (Y : T →

conv Rn), X0 ⊆ Y (t0).

Definition 1. [Kurzhanski and Filippova, 1993] A
trajectory x[t] = x(t, t0, x0) (x0 ∈ X0, t ∈ T ) of the
differential inclusion (8) will be called viable on [t0, τ ]
if

x[t] ∈ Y (t) for all t ∈ [t0, τ ]. (9)

We will assume that there exists at least one solution
x∗[t] = x∗(t, t0, x

∗
0) of (8) (together with a starting

point x∗[t0] = x∗0 ∈ X0) that satisfies the condition (9)
with τ = t1.
Let X (·, t0, X0) be the set of all solutions to the inclu-

sion (8) that emerge fromX0 ( the “trajectory bundle”).
Denote X [t] = X (t, t0, X0) its crossection at instant t.
The subset of X (·, t0, X0) that consists of all solu-

tions to (8) viable on [t0, τ ] will be further denoted as
X(·, τ, t0, X0) (the “viable trajectory bundle”) with its
s – cross-sections as X(s, τ, t0, X0), s ∈ [t0, τ ]. We
introduce symbol X[τ ] for these cross-sections at in-
stant τ , namely

X[τ ] = X(τ, t0, X0) = X(τ, τ, t0, X0).

The set-valued functions X [t] and X[t] (t ∈ T ) will
be referred to as the trajectory tube and viable trajec-
tory tube (or viability tube) respectively. They may be
considered as the set-valued analogies of the classical
isolated trajectories constructed now under uncertainty
conditions.
Let us consider the so-called funnel equation

lim
σ→+0

σ−1h( X [t+ σ],
⋃

x∈X [t]

(x+

σF(t, x)) ) = 0, t0 ≤ t ≤ t1, X [t0] = X0.
(10)

Theorem 1. [Panasyuk, 1990; Kurzhanski and Filip-
pova, 1993] The multifunction X [t] = X (t, t0, X0) is
the unique set–valued solution to the evolution equa-
tion (10).

Now consider the analogy of the funnel equation
(10) but now for the viable trajectory tubes X[t] =
X(t, t0, X0):

lim
σ→+0

σ−1h
(
X[t+ σ],

⋃
x∈X[t]

(x+ σF(t, x))

⋂
Y (t+ σ)

)
= 0, t ∈ T, X[t0] = X0.

(11)

The following result is valid (under some additional
assumptions on F(t, x) and Y (t) [Kurzhanski and Fil-
ippova, 1993; Filippova, 2001]).

Theorem 2. [Kurzhanski and Filippova, 1993] The
set-valued function X[t] = X(t, t0, X0) is the unique
solution to the evolution equation (11).

2.3 Second Order Approximations
The above theorems produce the first order approxi-

mation of the solution tubes X[t], X [t]. The second or-
der approximations for differential inclusions and con-
trol systems were studied in [Dontchev and Lempio,
1992; Baier, Gerdts and Xausa, 2013] (but without a
viability condition of type (9)). We formulate here one
of the results which yields the second order approxima-
tion scheme (the set-valued analogy of the Runge-Kutta
scheme) for X [t]. Consider the evolution equation

lim
σ→+0

σ−2h
(
X [t+ σ], (

⋃
x∈X[t]

(x + 0.5 σ×

×
⋃

z∈F(t,X [t])

(z + F(t+ σ, x+ σz))))
)
= 0,

t0 ≤ t ≤ t1, X [t0] = X0.

(12)

Certainly the higher order approximations require
more assumptions on the data. We will assume in addi-
tion that the map F has strongly convex values F(t, x)
and that the support function

f(l, t, x) = max
u∈F(t,x)

l′u

and the (unique) support vector-function y(l, t, x) de-
fined as

l′y(l, t, x) = f(l, t, x)

are both continuously differentiable in l, t, x (for l 6=
0).

Theorem 3. [Filippova, 2001] The multifunction
X [t] = X (t, t0, X0) is the unique set–valued solution
to the evolution equation (12).

Find now the equation that produces the second or-
der approximation for the viability tubes X[τ ] =
X(τ, t0, X0) of (8)-(9).
Define now an auxiliary notion.



Definition 2. Given two set-valued functions W1(·),

W2(·), a symbol
β∮
α

W1(s) ∗W2(s)ds denotes the set-

valued convolution integral of W1(·) and W2(·) where

β∮
α

W1(s) ∗W2(s)ds =
⋂
M(·)
{
β∫
α

(
(I−

M(s))W1(s) +M(s)W2(s)
)
ds }

(13)

where the intersection in (13) is taken over all continu-
ous n×n-matrix-functions M(s) defined on [α, β] and
the integral is understood as the Aumann integral.

Consider the equation

lim
σ→+0

σ−2h
(
X[t+ σ],

t+σ∮
t

(
⋃

x∈X[t]

(x +

0.5 s×
⋃

z∈F(t,X[t])

(z + F(t+ s, x+ sz)))) ∗

Y (s)ds
)
= 0, X[t0] = X0, t0 ≤ t ≤ t1.

(14)

Theorem 4. [Filippova, 2001] The viability tube
X[t] = X(t, t0, X0) is the unique set–valued solution
to the evolution equation (14).

Remark. Results of this section may be used as back-
ground for computer simulations for finding the reach-
able sets of uncertain dynamical systems with (or with-
out) state constraints. Unfortunately related computer
simulations require a large amount of memory and a lot
of time, in fact they are grid methods, see, for example
[Baier, Gerdts and Xausa, 2013]. Therefore, the ques-
tion arises how to construct external (and if possible,
internal) estimating sets for reachable sets, the calcula-
tion of which could turn out to be more rapid.

3 Second Estimation Approach: Main Results
Consider the following system

ẋ = A(t)x+ f(x)d+ u(t), t0 ≤ t ≤ t1,

x0 ∈ X0 = E(a0, Q0), u(t) ∈ U = E(â, Q̂),
(15)

where x, d, x0 ∈ Rn, ‖x‖ ≤ K (K > 0), f(x) is
the nonlinear function, which is quadratic in x, f(x) =
x′Bx, here we assume that the n × n-matrices B, Q0

and Q̂ are symmetric and positive definite.
The n× n-matrix function A(t) in (15) is of the form

A(t) = A0 +A1(t), (16)

where the n × n-matrix A0 is given and the measur-
able and n× n-matrix A1(t) is unknown but bounded,
A1(t) ∈ A1 (t ∈ [t0, t1]),

A(t) ∈ A = A0 +A1. (17)

Here

A1 =
{
A={aij}∈Rn×n : aij = 0 for i 6= j,

and aii = ai, i = 1, . . . , n,

a = (a1, . . . , an), a
′Da ≤ 1

}
,

(18)

where D ∈ Rn×n is a symmetric and positive definite
matrix.
We assume also that we have the additional state con-

straint on trajectories of the system (15), namely the
following inclusion should be satisfied

x[t] ∈ Y = E(ã, Q̃), t0 ≤ t ≤ t1, (19)

where the ellipsoid E(ã, Q̃) is given (with the center
ã ∈ Rn and the positive definite n× n–matrix Q̃).
Let the absolutely continuous function
x[t] = x

(
t;u(·), A(·), x0

)
be a solution to dy-

namical system (15)–(19) with initial state x0 ∈ X0,
with admissible control u(·) and with a matrix A(·).
The reachable set X[t] at time t (t0 < t ≤ t1) of the
system (15)–(19) (under viability constraint (19) of
type (9)) is defined as

X[t] ={x ∈ Rn : ∃x0∈X0,∃u(·)∈U ,∃A(·)∈A,
x = x[t] = x

(
t;u(·), A(·), x0

)
, (20)

x[τ ] =x
(
τ ;u(·), A(·), x0

)
∈ Y, ∀τ ∈ [t0, t]}.

Using the analysis of the special bilinear-quadratic
type of nonlinearity of control systems with uncertain
initial data and with ellipsoidal state constraints we find
here the external ellipsoidal estimate E(a+(t), Q+(t))
(with respect to the inclusion of sets) of the reachable
set X[t] (t0 < t ≤ t1).
We will need further the following Minkowski (gauge)

functional of the star-shaped sets M ⊆ Rn (0 ∈ M )
[Demyanov and Rubinov, 1986; Filippova and Lisin,
2000],

hM (z) = inf{t > 0 : z ∈ tM, x ∈ Rn}.

The following result presents the external estimate of
reachable sets of system under viability (state) con-
straints. First we need to formulate the following aux-
iliary result.

Lemma 1. ([Filippova and Lisin, 2000; Matviychuk,
2016]) For X0 = E(0, Q0) and A1 defined in (18) the
Minkowski function of the set (I + σA1) ∗X0 has the
form

h(I+σA1)∗X00
(z) =

(
||Q−1/20 z||2−

2σ(
n∑

i,j=1

w2
i (D

−1/2)ij · w2
j )

1/2
)1/2

+ o(σ)||Q−1/20 z||,

w(z) = Q
−1/2
0 z, lim

σ→+0
σ−1o(σ) = 0.

(21)



Theorem 5. Let X0 = E(a0, k
2B−1), k 6= 0. Then

for any matrix L ∈ Rn×n and for all σ > 0 the follow-
ing external estimate is true

X[t0 + σ] ⊆ E(a+L(σ), Q
+
L(σ)) + (22)

o(σ)B(0, 1), lim
σ→+0

σ−1o(σ) = 0,

where

a+L(σ) = a0 + σ(â+ k2d+ a0Ba0 · d +

(A0 − L)a0 + Lã),

Q+
L(σ) = (p−1 + 1)Q1(σ) + (p+ 1)σ2Q̂∗,

Q1(σ) = diag{(p−1 + 1)σ2a20i +

(p+ 1)r2(σ)| i = 1, . . . , n},

r(σ) = max
z
||z|| · (h(I+σA)∗X0

(z))−1,

p is the unique positive root of the equation
n∑
i=1

1

p+ αi
=

n

p(p+ 1)
with αi ≥ 0 (i = 1, ..., n)

being the roots of the following equation |Q1(σ) −
ασ2Q̂∗| = 0, and E(â, Q̂∗) is the ellipsoid with mini-
mal volume such that

E(â, Q̂) + L · E(0, Q̃)+

(2d · a′0B +A0) · E(0, k2B−1) ⊆ E(â, Q̂∗).
(23)

Proof. We use here the idea of [Kurzhanski and Fil-
ippova, 1993] for elimination of state constraints in
the construction of reachable sets (see also related re-
sults in [Bettiol, Bressan and Vinter, 2010; Gusev,
2016]). Consider the following differential inclusion
with n× n–matrix parameter L,

ż ∈ (A0 − L+A1)z + f(z) · d +

E(â, Q̂) + L · E(ã, Q̃), t0 ≤ t ≤ T,

z0 ∈ X0 = E(a0, Q0).

(24)

Denote by Z(t; t0, X0, L) (t ∈ [t0, t1]) the trajectory
tube to (24) for a fixed matrix parameterL. We have the
following estimate [Kurzhanski and Filippova, 1993]

X[t] ⊆
⋂
L

Z(t; t0, X0, L), t0 ≤ t ≤ t1. (25)

Using results of [Filippova, 2012; Filippova, 2016; Fil-
ippova and Lisin, 2000; Filippova and Matviychuk,
2012; Filippova and Matviychuk, 2015; Matviychuk,

2016] we can find the upper ellipsoidal estimates for
reachable sets Z[t] = Z(t; t0, X0, L) of the nonlin-
ear system (24) (we underline here that after the above
elimination this new system does not have state con-
straints and therefore we may use some estimation re-
sults mentioned in Section 2.2). Resulting estimate
(22) follows from (25) and from the above remark. �

The following algorithm is based on Theorem 5 and
may be used to produce the external ellipsoidal esti-
mates for the reachable sets of the system (15)-(19).
Fix a finite number of matrices Ls, s = 1, . . . , r (r is

an arbitrary integer, r > 0).

Algorithm. Subdivide the time segment [t0, t1]
into subsegments [τi, τi+1], where τi = t0 + iσ
(i = 1, . . . ,m), σ = (t1 − t0)/m.

1. For given X0 = E(a0, Q0) define the small-
est k0 > 0 such that E(a0, Q0) ⊆ E(a0, k

2
0B
−1)

(k20 is the maximal eigenvalue of the matrix
B1/2Q0B

1/2, [Filippova, 2012; Filippova and
Matviychuk, 2015]).

2. ForX0 = E(a0, k
2
0B
−1) as an initial set define by

Theorem 5 the upper estimateE(a+Ls
(σ), Q+

Ls
(σ))

of the set X(t0 + σ), s = 1, . . . , r.
3. Take a compact and convex set X∗0 such that⋂

1≤s≤r
E(a+Ls

(σ), Q+
Ls
(σ)) ⊆ X∗0 .

4. Consider the system on the next subsegment
[τ1, τ2] with the initial (at time instant τ1) set X∗0
and with initial ellipsoid E(a1, k

2
1B
−1) found as

in step 1.
5. The next step repeats the previous iteration begin-

ning with new initial data.

At the end of the process we will get the external esti-
mate tube E(a+(t), Q+(t)) of the reachable sets X(t)
(t0 ≤ t ≤ t1) of the system (15)-(19).

4 Conclusion
The paper deals with the problems of control and

state estimation for a dynamical control system de-
scribed by nonlinear differential equations with un-
known but bounded initial states. Nonlinearity in dy-
namics is caused by the presence of a combination of
bilinear and quadratic functions of the state of the sys-
tem. The solution to the state estimation problem is
studied through the techniques of trajectory tubes with
their cross-sections X[t] being the reachable sets at in-
stant t to control system.
Basing on new results of ellipsoidal calculus we

present the modified state estimation approaches which
use the special nonlinear structure of the control sys-
tem and allow to find the upper bounds of reachable
sets. The applications of the problems studied in this
paper are in guaranteed state estimation for nonlinear
systems with unknown but bounded errors and in non-
linear control theory including applications in robotics,
aeronautics, medicine, economics and other branches



with uncertainty and nonlinearity in related dynamical
models.
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