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Abstract.  
Dynamical problems of maximum power 

produced in thermal systems and associated 
problems of minimum entropy production are 
governed by Hamilton–Jacobi–Bellman (HJB) 
equations which describe corresponding optimal 
functions and associated controls. Systems with 
nonlinear kinetics (e.g. radiation engines) are 
particularly difficult (the optimal relaxation curve 
is non-exponential), thus, discrete counterparts of 
original HJB equations and numerical approaches 
are applied. We investigate convergence of 
discrete algorithms to solutions of HJB equations, 
discrete approximations of controls, and role of 
Lagrange multiplier λ  associated with the 
duration constraint. In analytical discrete schemes, 
the Legendre transformation is a significant tool 
leading to the original work function. We also 
describe numerical algorithms of dynamic 
programming and consider dimensionality 
reduction in these algorithms.  
 
Nomenclature 
a temperature power exponent in kinetic equation 
[-]   
c specific heat [Jg-1K-1, Jm-3K-1, Jmol-1K-1] 

G& resource flux [gs-1, mols-1]  
f rate vector with components f1, ..fk.. fs 
f0 intensity of generalized profit  
H Hamiltonian function 
R minimum performance function [J, or Jmol-1]  
S entropy  [JK-1] 
T variable temperature of resource fluid [K] 
Tn temperature after stage n [K] 
Te constant temperature of environment [K] 
T ′ Carnot temperature control [K]  
T& = u rate of control of T in non-dimensional time 
[K] 
t time [s] 
u control vector 

u temperature rate control, dΤ/dτ  [K] 
Vmaximum performance function [J, or Jmol-1]  
W and W&  work and power [J, Js-1] 
x state vector 
x~enlarged state vector including time 
Greek symbols 
β coefficient, frequence constant [s-1] 
λ Lagrange multiplier, time adjoint  
η first-law efficiency [-] 
θ  time interval [s,-] 
Φ � factor of internal irreversibility [-] 
ξ intensity factor [-]  
τ nondimensional time or number of heat transfer 
units (x/HTU) [-] 
Superscripts 
e environment 
i  initial state 
n- stage number 
f initial state 
‘  modified quantity  

 
1. Introduction 

In this paper we consider analytical and 
computational aspects of energy limits in 
dynamical systems propelled by nonlinear fluids 
that are restricted in their amount or flow, and, as 
such, play role of resources. In practical processes 
of engineering and technology a resource is a 
useful, valuable substance of a limited amount or 
flow. Value of the resource can be quantified 
thermodynamically by specifying its exergy, a 
maximum work that can be delivered when the 
resource is downgraded to the equilibrium with 
the environment. Reversible relaxation of the 
resource is associated with the classical exergy, 
when some dissipative phenomena are allowed 
generalized exergies are obtained. Generalized 
exergies incorporate both limited availability of 
the resource and a minimum work lost during its 



production. In the classical exergy only the first 
property is taken into account [1]. 

To calculate any exergy function knowledge 
of a work integral is required [2, 3]. For thermal 
systems this integral involves the product of 
thermal efficiency and the differential of 
exchanged energy. Various process models lead to 
diverse formulas for thermal efficiencies, which 
show how efficiency of a practical system 
deviates from the Carnot efficiency. In thermal 
systems the trajectory is characterized by the 
temperature of the resource fluid T(t), whereas the 
control variable may be efficiency η or Carnot 
temperature T’(t). The latter quantity, defined in 
our previous work [3], is particulary suitable in 
describing of driving forces in energy systems. 
Whenever T’(t) differs from T(t) the resource 
relaxes to the environment with a finite rate 
associated with the efficiency deviation from the 
Carnot efficiency. Only when T’(t) = T(t) the 
efficiency is Carnot, but this corresponds with an 
infinitely slow relaxation rate of the resource to 
the thermodynamic equilibrium.  

In this research we apply the theory for 
Hamilton-Jacobi-Bellman (HJB) and Hamilton-
Jacobi equations to nonlinear thermal systems 
with power generation. In order to obtain 
generalized exergies (or corresponding functions 
describing limits on entropy production) one has 
to solve appropriate HJB equations. The problem 
is, however, that most of optimal solutions cannot 
be obtained in the form of explicit analytical 
formulae (especially systems with nonlinear 
kinetics e.g. radiation systems). To overcome the 
difficulty, discrete counterparts of continuous 
equations are solved in numerical approaches to 
HJB equations. Especially a few forms of discrete 
dynamic programming algorithms are efficient to 
solve continuous HJB equations.  

 
2. A discrete model for a nonlinear 

problem of maximum power from radiation 
In our earlier papers [4]-[5] we considered 

mathematical modeling for continuous, active 
(work producing) systems working with finite 
rates. Systems producing mechanical energy from 
radiation were especially considered as suitable 
example of nonlinear energy systems. As a 
representative problem of minimum work 
consumed in a system subject to constraints 
imposed on dynamics and duration we consider a 
dynamical system producing power from 
radiation. It is characterized by a highly nonlinear 
kinetics [4, 5]. For a symmetric model of power 

yield from radiation (both reservoirs consist of 
radiation) a power integral is [5] 
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In the physical space, power exponent a = 4 for 
radiation and a = 1 for a linear resource. Integral 
(1) has to be maximized in the engine mode of the 
process subject to the dynamical constraint (‘state 
equation’). A standard way to determine the 
extremum conditions for the dynamic 
optimization problem requires solving the HJB 
equation 
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where V = maxW& . As it is extremely difficult to 
solve Eq. (2) analytically except for the case when 
a = 1 we focus here on numerical solving based 
on Bellman’s method of dynamic programming 
(DP). A nice summary of this method is given in 
Aris’s book [6]. 

Considering computer needs we introduce a 
related discrete scheme 
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We search for maximum of the sum (3) subject to 
discrete constraints (4) and (5).  
 
3. Convergence of discrete DP algorithms to 
solutions of HJB equations 

Conditions determining when discrete 
optimization schemes converge to solutions of 
Hamilton-Jacobi-Bellman equations (HJB 
equations) are quite involved. Moreover, 
systematic studies of the problem in the literature 
are seldom [6-8]. To outline these conditions we 
consider a family of optimization models obtained 



by discretization of original continuous ones. In 
this case one has to determine necessary 
optimality conditions of a general discrete process 
governed by a work criterion WN in the sum form 
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subject to constraints resulting from difference 
equations    
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The scalar f0 is the rate of the profit 

generation. Superscripts refer to stages and 
subscripts to coordinates. The integer n (n = 
1…N) is usually called discrete time, the entity 
that should be distinguished from continuous time 
t. The latter is usually the physical time (t is the 
chronological time in unsteady-state operations 
and holdup or residence time in steady cascade 
operations). Both n and t are monotonously 
increasing. The s-dimensional vector x = (x1, ..xs) 
is the state vector, and the r-dimensional vector u 
= (u1…ur) is the control vector, where xn∈Es, 
un∈Er and rate functionsnf0

and n
if are 

continuously differentiable always in x and θ, but 
not always in u. The rate change of state 
coordinate xi in time t is i-th component of s-
dimensional vector of rates, f. The change of time 
t through the stage n defined as θn  = tn – tn-1 is 
called the time interval. 

 Various discretization schemes for 
constraining differential equations lead to discrete 
models either linear or nonlinear in θn. While θn is 
a control-type quantity, it is excluded from the 
coordinates of vector u, i.e. it is treated separately 
in the model.  

In optimization problems with constrained 
duration tN – t0 (the so-called fixed-horizon 
problem) discrete model must explicitly include 
an equation defining time interval θn, either as the 
increment of a monotonously increasing state 
coordinate satisfying an equation 

nn
s

n
s θxx =− −

++
1
11  or as the increment of usual time 

 
  .nnn tt θ=− 1−              (8) 
 
The monotonic increase of the time-like 

coordinate, implying nonnegative θ at each stage 
n, is crucial for many properties of this model. 
Two classes of discrete models, linear and 

nonlinear in free θn, should be distinguished when 
considering convergence of their optimality 
conditions to continuous Hamilton-Jacobi-
Bellman (HJB) equations. In the first class HJB 
equations follow straightforwardly from 
optimality conditions. In the second class, a 
condition of weak nonlinearity of the discrete 
rates with respect to θn must be satisfied.  
Discretizations which produce process rates 
weakly dependent on θn are sufficient to assure 
the convergence of the dynamic programming 
solutions to the solutions of continuous HJB and 
Hamilton-Jacobi equations.  

 
4. Dynamic programming equation for 

maximum power from radiation 
Equations modeling limiting continuous 

processes (including, of course, equations of 
power systems considered) can be solved 
numerically by a discrete algorithm associated 
with stage criterion. Especially, one can use the 
dynamic programming (DP) algorithm. The latter 
is associated with Bellman’s recurrence equation  
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Difference models linear in θn (those with θ-
independent rates fk) are primary candidates to 
efficient solving continuous equations of power 
systems characterized by their own Hamilton-
Jacobi-Bellman equations and Hamilton-Jacobi 
equations. 

We can now return to the difficult radiation 
problem. Applying equation (9) to this problem, 
the following recurrence equation is obtained 
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It is quite easy to solve recurrence 

equation (10) numerically. Low dimensionality of 
state vector for Eq. (10) assures a decent accuracy 
of DP solution. Moreover, an original accuracy 
can be significantly improved after performing the 
so-called dimensionality reduction associated with 



the elimination of time tn as the state variable. In 
the transformed problem, without coordinate tn, 
accuracy of DP solutions is high.   

 
5. Discrete approximations and time 

adjoint as a Lagrange multiplier 
We consider solutions of HJB equations by 

discrete approximations (produced by the method 
of dynamic programming) in association with 
state dimensionality reduction (elimination of 
time coordinate) by using a Lagrange multiplier. 

First we outline the generation of costs in 
terms of the Lagrangian multiplier λ associated 
with the duration constraint. As the time adjoint, 
λ is constant in autonomous systems. Exploiting 
constancy of λ we eliminate state variable τ by 
introducing a (primed) criterion of modified work  
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or, in view of state equation 
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In this problem, idea of parametric 

representations for the principal performance 
function, Lagrange multiplier and process 
duration had proven its usefulness. While these 
representations are unnecessary for linear 
optimization problems, they are quite effective to 
describe solutions of nonlinear problems, where 
optimal work, Lagrange multiplier and optimal 
duration are obtained in terms of an optimal 
control variable as a parameter.    

To begin with we determine optimality 
conditions from equation (12). We consider two 
initial stages, 1 and 2. A procedure leading to 
parametric representations is defined below. 

Equation of work modified by the presence of 
the Lagrange multiplier λ, yet without a 
minimization sign becomes a component of a 

parametric representation of ),( 11 λTR′ : 
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In this example we can present function of work 
consumption for n=1 and corresponding optimal 
control, and going further we can show optimal 
work supply to two-stage system ),('

λTR 22  and 

optimal interstage temperature T1 which is the 
geometric mean of boundary temperatures of both 

considered stages ( ) 2
1

201 TTT = . Further 
considerations leads to optimal work function for 
an arbitrary n 
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The corresponding optimal duration is the 

partial derivative of optimal work function with 
respect to Lagrangian multiplier λ 
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Properties of duration function is illustrated in 
Fig. 1. In any process, linear or not, λ  is 
monotonically decreasing function of duration.  
 

 
 

Figure 1 Dependence of Lagrange multiplier λ.on 
optimal duration τ = ΣΘn in a cascade of power 

generation systems. 
 

6. Mean and local intensities in discrete 
processes 

Further transformations are easier if the 
following intensity criterion is introduced 
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The ξ defined by equation (16) is a discrete 
counterpart of a mean relaxation rate of the 
temperature logarithm for the n-stage process. For 
an arbitrary stage n we can also introduce a local 
intensity of a discrete process 
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We can find an useful equality determining the 
Lagrange multiplier in terms of the process 
intensity (mean or instantaneous)  
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ξ=λ eTcΦ'   (18) 

 
Two values of ξ for a given λ correspond with 
heating and cooling of the resource fluid in heat-
pump and engine modes (upgrading and 
downgrading of the resource). Both λ and ξ 
vanish in reversible quasistatic processes. Optimal 
work function in terms of ξ assumes: 
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We find that the limiting value of 

function ),('
ξTR nn  in a quasistatic (ξ = 0) and 

reversible process (Φ = 1) represents the change 
of classical thermal exergy. 
 

 )/ln()(),(' 00 −−=0 TTcTTTcTR nennn  (20) 
 

Therefore optimal work function (19) is a 
finite-rate exergy of the considered discrete 
process.  

 
7. Legendre transform and original work 

function 
The minimum of consumed work is described 

by original principal function ( )nnn
τTR , . This 

function is the Legendre transform 

of ( )λTR nn ,' with respect to λ. In transformations 

we use intensity ξ as an intermediate variable to 
increase lucidity of formulas. We obtain 
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where function describingλ in terms of ξ is given 
by Eq. (15).  A complementary formula 
expressing λ in terms of duration τ follows from 
Eq. (15) 
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Monotonic decrease of λ withτ is a general 
property of both linear and nonlinear processes. 
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Figure 2. Decreasing temperature of radiation relaxing 
in engine mode and increasing temperature of radiation 

utilized in heat pump mode in terms of non-
dimensional time τ, for Φ’=1 and the Lagrange 

multiplier λ = 1*10-8 [JK-1m-3]. 
 
We obtain 
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First two components of this work function are of 
static origin. The function describes a minimum 
work supplied to a resource to upgrade it from T0 
to Tn in a finite (non-dimensional) time τn. Like in 
the case of primed function R’ a limiting value of 

),( nnn
τTR  in a reversible and quasistatic 

process (Φ' = 1, ∞→n
τ ) describes a change of 

classical thermal exergy (20). 
This approach can also be organized in the 

entropy representation, where principal function 
nR'

σ  is the minimum entropy production modified 

by Lagrange multiplier term.  



 
10. Concluding Remarks 
In this paper we have presented a basic 

formuation for maximum power in nonlinear 
dynamical systems with radiation and considered 
convergence of discrete computational algorithms 
to solutions of corresponding HJB equations. 
Lagrangian multipliers associated with duration 
constraint have been used to reduce 
dimensionality of power yield problems. 
Analytical and numerical approaches, applying 
the dynamic programming method, are described. 
Legendre transform is applied to recover optimal 
work as function Rn(Tn, τ).  

Generalized (time dependent) work potentials 
are found for nonlinear systems. They lead to 
thermodynamic bounds on power produced 
(consumed) in a finite time, which are stronger 
than classical thermodynamic bounds due to extra 
constraints coming from process kinetics. 
Other important application of the considered 
approach involves chemical energy systems, and, 
especially, fuel cells.  
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