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Abstract

It is shown that the use of the properties of collective
dynamics may be effective for solution of the problem
of generation of chaotically modulated oscillations.

1. The idea of using chaotic self-oscillations as carri-
ers in communication systems that was put forward
in was recently intensively discussed in the litera-
ture. Dynamical chaotic oscillations are the kinds
of wideband and ultrawideband signals. Chaotic os-
cillations provide rich opportunities for controlling
and modulation. These are the reasons which make
them highly promising in the communication field of
research.

Traditional communication systems with regular os-
cillations as carriers are usually based on phase-
locked loops (PLL). Such systems allow effective so-
lution of the whole complex of problems arising at
transmission and reception of information, namely,
generation of stabilized carrier oscillations, modu-
lation of carrier oscillations by information signal,
optimal noise filtration, and others. There arises a
question: Is it possible to construct PLL-based non-
traditional promising communication systems with
chaotic oscillations as carriers? Specifically, can PLL
be a useful tool for generation and synchronization
of carrier chaotic oscillations that is the key task in
communication systems? This problem is very scant-
ily considered in the literature. The present work is
concerned with generation of carrier chaotic oscilla-
tions using PLL.

2. A phase system is a typical system for automatic
control of generator frequency that is intended for
locking of periodic oscillations of a voltage controlled
generator in the PLL by a reference oscillation. The
mathematical model of such a phase system is gen-

erally written in the form:

pϕ

Ω
+ K(p) sin ϕ =

∆ω0

Ω
. (1)

Here p ≡ d/dt, Ω is the maximal deviation of voltage-
controlled generator frequency that can balance the
control loop, ϕ is the current phase mismatch of the
voltage controlled generator relative to the reference
signal, ∆ω0 is the initial frequency mismatch of the
voltage controlled generator relative to the reference
signal, K(p) is the transfer coefficient of the filter,
and sinϕ is the nonlinearity of the phase detector.

Dynamic properties of phase systems are determined
by the structure of the control loop, in particular, by
the type of the low-frequency filter. The simplest fil-
ter with which a phase system can generate dynamic
chaos is a second-order filter with the transfer coef-
ficient K(p) = (1 + a1p + a2p

2)−1. In this case, (1)
can be written as a differential equation

µ
...

ϕ +εϕ̈ + ϕ̇ + sin ϕ = γ (2)

in the cylindrical phase space U={ϕ(mod2π), ϕ̇, ϕ̈}.
Here, γ=∆ω0/Ω, ε=a1Ω, µ=a2Ω

2 are dimensionless
parameters of the system.

The analysis of model (2) shows that for the phase
system with a second-order filter the following dy-
namic modes are typical:

– Synchronization of the generator by a reference

signal, i.e., the frequencies of the controlled gen-
erator and of the reference signal become equal,
and the phase difference takes on a constant
value. A stable equilibrium state with co-ordinates
ϕ1=arcsin γ, ϕ̇1=0, ϕ̈1=0 (the projection onto the
ϕ, ϕ̇-plane is given in Fig. 1(a)) corresponds to this
mode in the phase space U .

– Quasi-synchronization, when the frequency of the
controlled generator is modulated regularly or chaot-
ically around the average frequency stabilized by the



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1: Examples of attractors of system (2). Units
are arbitrary.

reference system, and the phase difference of the
tuned and reference signals fluctuates around some
average value. Regular attractors – limit cycles [Fig.
1(b),(c)] or chaotic oscillatory (with phase difference
advance ϕ less than 2π) attractors [Fig. 1(d)] corre-
spond to this mode in phase space.

– Regular or chaotic beats, when the phase difference
of the tuned and reference signals grows without re-
striction, and the frequency difference is non-zero.
Rotatory or oscillatory-rotatory (with phase differ-
ence advance ϕ more than 2π) attractors that may be
either regular [Fig. 1(e),(f)] or chaotic [Fig. 1(g),(h)]
correspond to this mode in phase space.

In the following we address in more detail the mode
of quasi-synchronization with a chaotically modu-
lated frequency near the average frequency stabilized
with respect to the reference signal. This regime may
be regarded as a mode of generation of chaotically
modulated oscillations (CMO) at the phase system
output, and is the most interesting one in terms of its
application for implementing the idea of information

Figure 2: Domains of the existence of chaotic oscilla-
tory attractors of model (2). Units are arbi-
trary.

transmission by a chaotic carrier.

Figure 2 illustrates distribution of the dynamic
modes of model (2) in the space of the parame-
ters. Figure 2 demonstrates the cross-section (µ, γ)
for ε = 1, with domains where the following modes
are realized: synchronization mode [Fig. 1(a)] – do-
main DZ ; regular quasi-synchronization mode [Fig.
1(b),(c)] – domains D1 and D2; regular mode of beats
determined by rotatory limit cycle [Fig. 1(e)] – do-
main D4; CMO mode [Fig. 1(d)] – domains DH1 and
DH2; chaotic mode of beats determined by rotatory
chaotic attractor [Fig. 1(g)] – domain DH4; regular
or chaotic modes of beats determined by oscillatory-
rotatory, regular [Fig. 1(f)] or chaotic [Fig. 1(h)]
attractors – domains G1 and G2. Investigations of
the CMO mode through motions in the phase space
of (2) revealed that the domain of the existence of
this mode in the space of parameters is relatively
small [Fig. 2], which may impede practical applica-
tion of such systems as CMO generators. Attempts
to expand regions of generation of chaotically mod-
ulated oscillations by changing nonlinearity of the
phase discriminator, by varying parameters of the fil-
ter, or by changing the structure of the local control
loop proved to be ineffective. However, the approach
based on the use of the properties of collective dy-
namics of small ensembles of coupled PLL systems
seems to be more efficient. Below we present results
of the investigation of collective dynamics of a system
of two cascade-coupled phase systems with second-
order filters in the control loops. We consider, in
particular, CMO excitation and study domains of
the existence of CMO in the space of the parameters
(in the case of cascade coupling the output of the
first phase system is the input of the second phase
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Figure 3: Projections of attractors of model (3) for κ = 0 characterizing modes of synchronization of the first
generator (a), and quasi-synchronization (b) and beats (c) of the second generator; the one-parametric
bifurcation diagram of Poincare map illustrating the dependence of the coordinate ϕ1 of the trajectory
intersection points with the plane ϕ2 = π/2 on parameter κ (d,e); projections of the phase portraits
of the attractors, power spectra and autocorrelation functions calculated from the time series ϕ1(t) for
κ = 0.04, 0.23 (f,g), respectively. Units are arbitrary.

system).

3. The dynamics of two cascade-coupled phase sys-
tems with additional coupling through error signals
considered is described by the following system of
equations

µ1

...

ϕ
1 +ε1ϕ̈1 + ϕ̇1 + sin ϕ1 + κ sin(ϕ2 − ϕ1) = γ1, (3)

µ2

...

ϕ
2 +ε2ϕ̈2 + ϕ̇2 + sin(ϕ2 − ϕ1) = γ2.

Here, the phase variables ϕi and parameters γi, εi, µi

are introduced as in equation (2), (i=1, 2). The pa-
rameter κ stands for additional coupling.

Equations (3) are defined in the cylindrical phase
space V ={ϕ1(mod2π), ϕ̇1, ϕ̈1, ϕ2(mod2π), ϕ̇2, ϕ̈2}.
Attractors of model (2) characterize collective dy-
namics of the ensemble. But the behaviour of the

generators of the first and second phase systems are
determined by the projections of these attractors
onto subspaces V1 = {ϕ1(mod2π), ϕ̇1, ϕ̈1} for the
first generator and V2 = {ϕ2(mod2π), ϕ̇2, ϕ̈2} for the
second one. If the attractor projection of model (2)
onto subspace Vi contracts into one point, then the
i-th generator is in a synchronized regime. If the
projection is bounded along the ϕi-coordinate, then
the i-th generator is quasi-synchronized, otherwise it
is in the mode of beats.

Modelling of system (3) and analysis of the mecha-
nisms of excitation of chaotic oscillations reveal a rich
diversity of bifurcation transitions. We find that the
chaotic dynamics is not so much influenced by the
complex dynamics of each coupled subsystem as by
coupling between both the elements. To support this



statement, we consider the process of chaotization of
oscillations in the two coupled phase systems with
second-order filters due to additional coupling in the
control loops for the case when both coupled subsys-
tems possess a simple individual dynamics.

Let γ1=0.5, ε1=1, µ1=1, γ2=0.69, ε2=1, µ2=2.37.
Then, for κ = 0, the synchronization mode is real-
ized in the first subsystem [Fig. 3(a)]; while in the
second subsystem it may be either a regular mode of
quasi-synchronization [Fig. 3(b)] or a regular mode
of beats [Fig. 3(c)], depending on the initial condi-
tions. The evolution of the dynamics for increasing
κ is illustrated in the one-parametric bifurcation di-
agram of Poincare map [Fig. 3(d)], when the sec-
ond generator is in the quasi-synchronization mode.
Clearly, the introduction of a weak additional cou-
pling (κ ≈ 0.014) stimulates chaotization of oscilla-
tions at the output of the first generator; CMO is
also observed at the input of the second generator
[Fig. 3(f)]. When the coupling force is increased up
to κ = 0.07, the second generator starts to operate
in the mode of chaotic beats, whereas the first gen-
erator persists to function in the CMO mode [Fig.
3(g)]. When the coupling force reaches κ = 0.5, both
generators operate in the mode of chaotic beats.

If the mode of beats is taken as the initial state (for
κ=0) of the second generator, then arising of CMO
at the output of the first generator [Fig. 3(e)] with
an increase in κ coincides qualitatively with the sce-
nario of the evolution of chaotic oscillations consid-
ered above. Then chaotic oscillations also appear
as a result of a cascade of period doubling bifurca-
tions at small κ ≈ 0.045, and the bifurcation di-
agram {κ, ϕ1} changes only slightly in the interval
κ ∈ (0, 0.1). It is worth noting that by varying the
force of coupling κ it is possible to make the second
generator function in the quasi-synchronous mode,
even a chaotic one.

Thus, by introducing additional coupling it is possi-
ble to excite CMO at the output of the first gener-
ator, independent of the mode of operation (quasi-
synchronization or beats) of the second generator.
This is a very important conclusion because it com-
pletely lifts restrictions on the dynamics of the sec-
ond generator. Moreover, the oscillatory-rotatory at-
tractors corresponding to the mode of beats of the
second generator generate at the output of the first
generator chaotic oscillations with a broader spec-
trum than the oscillatory attractors.

4. In this paper we have studied collective dynam-
ics of coupled phase systems. It has been shown
that collective dynamics provides rich opportunities
for generation of various chaotic oscillations in such

systems, chaotically modulated oscillations included.
Our most important result is that domains of CMO
generation are much larger in coupled phase systems
than in an individual phase system. This is promis-
ing for creation of new communication systems in
which dynamic chaos is used.
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