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Abstract

This paper considers the use of matrix models and the robustness of a gradient-based Iterative
Learning Control (ILC) algorithm using fixed learning gains to ensure monotonic convergence
with respect to the mean square value (Euclidean norm) of the error time series. The paper
provides a complete and rigorous analysis for the systematic use of matrix models in ILC. They
provide necessary and sufficient conditions for robust monotonic convergence and permit the con-
struction of sufficient frequency domain conditions for robust monotonic convergence on finite
time intervals for both causal and non-causal controller dynamics.

Keywords: Iterative learning control, robust control, parameter optimization, positive-real
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1 Introduction

Iterative Learning Control (abbreviated to ILC in the sequel) is concerned with the performance of
systems that operate in a repetitive manner and includes examples such as robot arm manipulators and
chemical batch processes, where the task is to follow some specified output trajectory in a specified
time interval with high precision. ILC uses information from previous executions of the task in
an attempt to improve performance from repetition to repetition in the sense that the tracking error
(between the output and the specified reference trajectory) is sequentially reduced to zero (see [1] and
[8]). Note that repetitions are often called trials, passes or iterations in the literature.

This paper introduces the idea of gradient-based ILC algorithms for discrete-time systems. These
algorithms have the mathematical structure of a nonlinear discrete-time system in a high dimensional
space. The paper analyses the behaviour and robustness of these nonlinear algorithms in a rigorous
manner. Note that the analysis of continuous-time gradient based algorithms have been carried out
in [3] and [7]. In this paper, robustness is defined in terms of a new concept of Robust Monotone
convergence introduced by the authors in [4]:

Definition: An ILC algorithm has the property of robust monotone convergence with respect to a
vector norm || · || in the presence of a defined set of model uncertainties if, and only if, for every
choice of control on the first trial (and hence for every choice of initial error) and for any choice of
model uncertainty within the defined set, the resulting sequence of iteration error time signals con-
verges to zero with a strictly monotonically decreasing norm.

The requirement of monotonicity is representative of a practical requirement to improve tracking
from trial to trial. The mean square value of the error time series is used as a norm as it will be seen
that it has useful analytical properties in generating checkable design conditions.
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A companion paper [4] uses the idea of an inverse model-based algorithm with learning gain β ∈
(0, 1) with excellent results if the plant model mismatch is zero but, in the presence of a multiplicative
uncertainty (with transfer function U(z)), robust monotone convergence is ensured if

| 1
β
− U(z)| < 1

β
, ∀ |z| = 1 (1)

A simple analysis of this expression indicates that:

1. significant high frequency errors such as high frequency parasitic resonant modes will require
small values of learning gain β and hence slow convergence of the algorithm.

2. In addition, the phase of the uncertainty must lie in the open range (−π
2 , π

2 ), a fact that con-
strains the form of uncertainty that can be tolerated. It arises from the monotonicity requirement
and is equivalent to U(z) being strictly positive real in the sense that Re[U(z)] > 0, |z| = 1.

3. If U(z) is not known but is known to belong to the set characterized by an inequality of the
form

| 1
β∗
− U(z)| < 1

β∗
, ∀ |z| = 1 (2)

then robust monotone convergence is guaranteed for all choice of gains in the range 0 < β < β∗

(see [9] for a more extensive review of this topic).

In contrast, for a process with transfer function G(z) = G0(z)U(z) where G0(z) is a nominal model
used for control purposes, this paper will show that the proposed gradient-based algorithm is robust
monotone convergent if

| 1
β
− |G0(z)|2U(z)| < 1

β
, ∀ |z| = 1 (3)

This does not remove the need for a strictly positive real U(z). It can however remove the destabiliz-
ing effect of high frequency errors as, in practice, both G(z) and G0(z) are low pass filters and hence
G0(z) will be small at high frequencies.

This paper derives the basic relationships for robust monotone convergence in the case of a con-
stant learning gain β. The choice of optimal gains will be addressed elsewhere.

Following a formal definition of the problem, a "static" matrix model of the dynamic process is
introduced. This model (used elsewhere as in [4]) makes analysis simpler than analysis using the state
space model directly but, for the purposes of this paper, requires the derivation of a number of alge-
braic properties of such models. These properties are very useful for manipulation and interpretation
purposes in both the time and frequency domain.

The gradient- based algorithm is then introduced firstly in the absence of modelling errors and
then in the presence of multiplicative modelling errors. The results are expressed initially in terms
of matrix inequalities and then in frequency domain terms using the transfer function description of
plant model and uncertainty.

Where appropriate, the paper compares the inverse-model and gradient-based algorithms with the
conclusion that the gradient-based approach will be more robust both in theory and in practice.

2 Problem definition

As a starting point consider a standard discrete-time,linear, time-invariant single-input, single-output
state-space representation defined over a finite, discrete time interval, t ∈ [0, N ] (in order to simplify
notation it is assumed that the sampling interval, ts is unity). The system is assumed to be operating
in a repetitive mode where at the end of each repetition, the state is reset to a specified repetition-
independent initial condition for the next operation during which a new control signal can be used. A
reference signal r(t) is assumed to be specified and the ultimate control objective is to find an input
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function u∗(t) so that the resultant output function y(t) tracks this reference signal r(t) exactly on
[0, N ]. The process model is written in the form:

x(t + 1) = Ax(t) + Bu(t) x(0) = x0

y(t) = Cx(t) + Du(t)
(4)

where t is the sample number, the state x(·) ∈ Rn, output y(·) ∈ R and input u(·) ∈ R. The operators
A,B and C are constant matrices of appropriate dimensions and D is a scalar. From now on it will
be assumed that either D 6= 0 or that CAj−1B = 0, 1 ≤ j < k∗ and CAk∗−1B 6= 0 for some k∗ ≥ 1
(trivially satisfied in practice) and that the system (4) is both controllable and observable. If D 6= 0,
then take k∗ = 0. By construction, k∗ is then the relative degree of the transfer function G(z) of the
system. Also, the notation fk(t) will denote the value of a signal f at sample interval t on iteration k.

The repetitive nature of the problem opens up possibilities for modifying iteratively the input
function u(t) so that, as the number of repetitions increases, the system asymptotically learns the
input function that gives perfect tracking. To be more precise, the control objective is to find a causal
recursive control law typified by a relationship of the form

uk+1(t) = f(uk(·), uk−1(·), . . . uk−r(·), ek+1(·), ek(·), . . . , ek−s(·)) (5)

with the properties that, independent of the control input time series chosen for the first trial, the
resultant sequence of error and input signals satisfy

limk→∞ ‖ek(·)‖ = 0 limk→∞ ‖uk(·)− u∗(·)‖ = 0 (6)

where ‖ · ‖ denotes any norm for the time series. In what follows, this norm is taken to be the
Euclidean norm ||f || =

√
fT f in Rp which is related to the mean square error of the time series by

the multiplier
√

p.

3 Matrix Representations of Plant Dynamics

The state space model is a natural description for the dynamic process. For this paper, it is argued that
an equivalent "static" matrix description is more suited to the method of analysis. More precisely, as
the linear system maps input time series into output time series, it follows that there exists a matrix
relating these time series. This matrix is an equivalent description of the systems dynamics.

The idea of matrix models is not new (see for example [4]) but their use in analysis has been
limited to computation. The contribution of this paper is that it provides a complete and rigorous
construction of the formal mathematical structures that are necessary to link matrix models to time
and frequency domain methods and system compositions. To construct this matrix model in RN+1,
define the time series "super-vectors" on the kth trial via

uk = [uk(0), uk(1), . . . , uk(N)]T (7)

yk = [yk(0), yk(1), . . . , yk(N)]T (8)

r = [r(0), r(1), . . . , r(N)]T (9)

ek = [ek(0), ek(1), . . . , ek(N)]T = r − yk (10)

Furthermore, let u∗ be the input sequence (in time series or supervector form) that gives r(t) =
[Gcu

∗](t) where Gc is the convolution mapping corresponding to the process model (4).
Note that if the mapping f in (5) is not a function of ek+1, then it is typically said that the

algorithm is of feedforward type. If it does not depend on any of the ej , 0 ≤ j ≤ k, it is of feedback
type. Otherwise it is of feedback plus feedforward type.

With the above definitions, the relevant formulae for the input-output response of the system can
be written in the form, k ≥ 0,

yk = Geuk + d0 (11)
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where Ge has dimension (N + 1) × (N + 1) and the lower triangular band structure (Ge)ij =
(Ge)(i+1)(j+1) that is required by causality and time invariance of linear time-invariant convolution
systems i.e.

Ge =




D 0 0 . . . 0
CB D 0 . . . 0

CAB CB D . . . 0
...

...
...

. . .
...

CAN−1B CAN−2B . . . . . . D




(12)

Also d0 = [Cx0, CAx0, ..., CANx0]T .
The elements CAjB of the matrix Ge are the Markov parameters of the plant (4). Suppose that

the plant transfer function G(z) = C(zI−A)−1B+D has relative degree (pole-zero excess) k∗ ≥ 0.
Assume also that the reference signal r(t) satisfies r(j) = CAjx0 for 0 ≤ j < k∗ (or, alternatively,
that tracking in this interval is not important). Then (in a similar manner to [6]) it is noted that, for
analysis, it is sufficient to analyse a ’lifted’ plant equation that is just the above if k∗ = 0 or, if k∗ ≥ 1,

yk,l = Ge,luk,l + d1 (13)

where the signals u, y, e, r etc are modified to reflect these changes. For example,
uk,l = [uk(0), uk(1), . . . , uk(N − k∗)]T , yk,l = [yk(k∗) yk(2) . . . yk(N)]T etc and

Ge,l =




CAk∗−1B 0 0 . . . 0
CAk∗B CAk∗−1B 0 . . . 0

CAk∗+1B CAk∗B CAk∗−1B . . . 0
...

...
...

. . .
...

CAN−1B CAN−2B . . . . . . CAk∗−1B




(14)

with d1 = [CAk∗x0, ..., CANx0]T . For notational convenience, the subscripts e, l are dropped and
the model is written in all cases k∗ ≥ 0 in the simplified notational form

yk = Guk + d (15)

which has the structure of discrete dynamics in RN+1−k∗ . Note that:

1. G is invertible by construction which confirms that, for an arbitrary reference r on 0 ≤ j ≤ N ,
there exists a time series u∗ on 0 ≤ j ≤ (N + 1− k∗) such that r = Gu∗ + d on k∗ ≤ j ≤ N .

2. A comparison of G with Ge indicates that G can be identified with a plant with transfer function
G∗(z) = zk∗G(z) operating on an interval 0 ≤ j ≤ N + 1− k∗.

3. An examination of Ge or G indicates that higher order Markov parameters do not appear in
the matrix model. As a consequence, the system is indistinguishable from any of the Finite
Impulse Response (FIR) models with transfer function

GM (z) = D + ΣM
j=1CAj−1Bz−j , M ≥ N (16)

As a consequence, in what follows, it is always possible to replace transfer functions by FIR
equivalents during analysis and/or design.

From now on this lifted plant model will be used as a starting point for analysis and the identification
of the matrix G with the transfer function G∗(z) will be used as required.

Let F be the (right-shift) matrix with elements Fij = δi,j+1

F =




0 0 0 . . . 0
1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

. . .
...

0 0 . . . 1 0




(17)
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so that
F j 6= 0, 0 ≤ j ≤ N − k∗ , F j = 0 ∀ j ≥ N + 1− k∗ (18)

A simple calculation then indicates that

G = ΣN+1−k∗
j=1 gjF

j−1 (19)

for suitable choice of scalars {gj}. It is also true that all such matrices can be identified (non-uniquely)
with linear time invariant systems. Let

Ll = {G ∈ Rl×l : ∃{gj}1≤j≤l s.t. G = Σl
j=1gjF

j−1} (20)

Then the following statements are easily proven:

{G1 ∈ Ll & G2 ∈ Ll} =⇒ {G1 + G2 ∈ Ll} (21)

{G1 ∈ Ll & G2 ∈ Ll} =⇒ {G1G2 ∈ Ll} (22)

{G1 ∈ Ll & G2 ∈ Ll} =⇒ {G1G2 = G2G1} (23)

{G ∈ Ll & |G| 6= 0} =⇒ {G−1 ∈ Ll} (24)

In effect, matrix representations obey all of the normal rules of transfer functions in series and parallel
connections (provided that they operate on the same underlying time series).

For the purposes of this paper, Ll has additional useful structure described using the matrix F0

defined to be the (time-reversal) matrix with elements Fij = δi,N−k∗−j i.e.

F0 =




0 . . . . . . 0 1
0 . . . 0 1 0
0 . . . 1 0 0
...

...
...

. . .
...

1 0 . . . . . . 0




(25)

If s ∈ Rl is the column vector of a time series of length l, then F0s is a column vector of the same
time series but reversed in time i.e. (F0s)j = sl+1−j for 1 ≤ j ≤ l. Note that

F0 = F T
0 , F 2

0 = I (26)

and hence, after a little manipulation, it is seen that G and GT are related by the expression

G ∈ Ll =⇒ F0GF0 = GT (27)

The important point is that these definitions enable the interpretation of GT as a dynamical system
or simulation. More precisely it is easily proved that:

{ỹ = GT ũ} ⇔ {(F0ỹ) = G(F0ũ)} (28)

In simulation terms: Suppose that G ∈ Ll. Then the time series ỹ = GT ũ is simply the time reversed
response of the linear system G (with zero initial conditions) to the time reversal of ũ.

This result is valuable for this paper which considers the basic algorithm described by the feed-
forward ILC update rule

uk+1 = uk + Kek, K ∈ R(N+1−k∗)×(N+1−k∗) (29)

If feedback is required in the algorithm, it is assumed to have been implemented on the plant and
included in G(z) and hence G.
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Note: in element by element form, this relation is simply

uk+1(t) = uk(t) + ΣN+1−k∗
j=1 Kt+1,jek(t + j − 1 + k∗), 0 ≤ t ≤ N − k∗ (30)

For example, with K = I the update law is just

uk+1(t) = uk(t) + ek(t + k∗), 0 ≤ t ≤ N − k∗ (31)

The matrix K can, in principle, be arbitrary but, in practice, it is assumed that it will be connected
with a dynamical system. As a consequence, it is assumed either that

1. K ∈ LN+1−k∗ generated from a linear, time invariant system model. Ke can then be computed
as the time series generated by the response of the state space model of K from zero initial
conditions to the time series e or

2. K is the transpose of the matrix description of a linear time invariant system i.e. KT ∈
LN+1−k∗ is derived from a linear time invariant model. Any quantity Ke can hence be com-
puted from a simulation although, in real time, the operation would be anti-causal if it were not
for the fact that it is applied to already known signals.

The calculations associated with case two above are simple. The first case covers many situations
such as the inverse model approach described in [4]. The second covers the case considered in this
paper where the choice of

K = βk+1G
T (32)

will be seen to improve robustness, particularly with respect to high frequency modelling errors.

4 A Gradient-based ILC algorithm

The purpose of this section is to introduce the gradient-based algorithm and to provide necessary and
sufficient conditions for monotonic convergence of the mean square error to zero in the presence of
a specific multiplicative modelling error. These conditions take the form of matrix inequalities that
define constraints both on the learning gain that can be used and on the modelling error that can be
tolerated. These conditions will be transformed into more useful frequency domain conditions in the
following sections.

Using the notation of the previous sections, consider the matrix model yk = Guk + d, k ≥ 0,
where r is the desired reference time series vector, ek = r − yk is the error on the kth trial, and the
initial control input time series u0 has been specified with e0 as the corresponding error. The resultant
error is ek = r − d − Guk. A simple analysis of ||ek||2 = eT

k ek indicates that the steepest descent
direction for the error is just GT ek and hence that the feedforward ILC algorithm

uk+1 = uk + βGT ek (33)

may be capable of ensuring a monotonic sequence of Euclidean error norms provided that the learning
gain β > 0 is chosen to be sufficiently small.

Note: GT ek can be computed from a state space model of G using simulation methods as dis-
cussed in the last section. The matrix representation of the problem therefore is not required for
practical implementation.

In the following sections, an analysis is undertaken of the effects of the choice of learning gain β.
It generates an estimate of an appropriate range in both the case of zero and non-zero modelling errors.
Initially, the analysis is in the from of matrix inequalities. Subsequently these will be converted into
easily checked expressions in the frequency domain.
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5 The Gradient Algorithm: The Case of No Modelling error

A simple calculation reveals that the gradient-based ILC algorithm evolves from its initial error e0 as
follows

ek+1 = (I − βGGT )ek, k ≥ 0 (34)

Noting that β > 0 by assumption and that

||ek+1||2 = ||ek||2 − β2eT
k GGT ek + β2eT

k GGT GGT ek (35)

it follows that, as G is nonsingular by construction,
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Theorem: Suppose that β > 0. A necessary and sufficient condition for the gradient-based ILC

algorithm to have the monotonicity and convergence properties

1. ||ek+1|| < ||ek||, ∀ k ≥ 0 ∀ e0 ∈ RN+1−k∗

2. limk→∞ ek = 0 ∀ e0 ∈ RN+1−k∗

in some range 0 < β < β′ is that
2I > βGT G > 0 (36)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Proof: 2I > βGT G implies the existence of a number ε > 0 such that βGGT GGT − 2GGT <

−εI . Monotonicity follows from the discussion preceding the statement of the theorem. To prove
convergence to zero, simply note that

||ek+1||2 ≤ ||ek||2(1− βε) ∀ k ≥ 0 (37)

This completes the proof as ||ek|| goes to zero faster than (1− βε)
k
2 . 2

The following corollary is easily proved and provides an estimate of the desired range of the
learning gain β:

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Corollary: Under the conditions of the theorem above, monotone convergence to zero is achieved

if, and only if, 0 < βσ̄2(G) < 2 where σ̄(G) is the largest singular value of G.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6 The Gradient Algorithm: Robust Monotone Convergence Conditions

Now let G(z) and G0(z) be transfer functions of the plant and a nominal model respectively. The
relative degree of the model G0 is denoted k∗ and the lifted representations (and associated input and
output supervectors) are based on this parameter. To ensure that the matrix representations of plant,
nominal model and multiplicative perturbations are causal, it is assumed that the relative degree of
the plant is equal to or exceeds that of the nominal model.

If there is mismatch between the plant and model, then the gradient-based ILC algorithm is natu-
rally replaced by the approximation

uk+1 = uk + βGT
0 ek (38)

where G0 is the lifted matrix representation of a model of G0(z). The error evolution equation
becomes

ek+1 = (I − βGGT
0 )ek (39)

Suppose now that plant and model are related by the expression

G(z) = G0(z)U(z) (40)
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and U(z) is assumed to be proper and stable. It follows that, if U(z) has a matrix representation Ue

(without lifting), then
G = G0Ue = UeG0 (41)

Note that β > 0 by assumption and that

||ek+1||2 = ||ek||2 − βeT
k (G0UeG

T
0 + G0U

T
e GT

0 )ek + β2eT
k G0G

T
0 UT

e UeG0G
T
0 ek

= ||ek||2 − βeT
k G0[Ue + UT

e − βGT
0 UT

e UeG0]GT
0 ek

(42)

It follows that:
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Theorem (Robust Monotone Convergence): The gradient-based ILC algorithm is robust mono-

tone convergent in the presence of the multiplicative modelling error U(z) if, and only if,

Ue + UT
e > βGT

0 UT
e UeG0 > 0 (43)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Proof: Monotonicity follows trivially from the above noting that Go is nonsingular by construc-

tion. The proof of convergence to zero error follows in a similar way to the previous case. 2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Corollary: A necessary condition for monotone robust convergence is that the modelling error

matrix representation Ue is positive definite in the sense that Ue + UT
e is positive definite.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Proof: The proof follows trivially from the observation βGT

0 UT
e UeG0 > 0. 2

Note: The case of no modelling error is retrieved by choosing U = I in the above.
In the next section, more useful frequency domain conditions are provided to check the matrix

inequalities derived above.

7 Robustness: Frequency Domain Conditions

In this section the matrix inequalities of the previous sections are converted into sufficient conditions
for robust monotone convergence in terms of the transfer functions of the system, model and uncer-
tainty. The practical benefit is that the frequency domain conditions are more easily checked and
throw more light on to the benefits and issues facing the application of the gradient-based algorithm.

The approach taken is based on the analysis of matrix inequalities in Rl×l of the form

HT
1 H1 < H2 + HT

2 (44)

where both H1 ∈ Ll and H2 ∈ Ll are matrix representations of single-input/single-output linear
time-invariant systems H1(z) and H2(z) on the resultant interval 0 ≤ j ≤ l − 1.

The development of frequency domain conditions is based on the idea of examining dynamics
on the infinite half interval [0,∞). Complex integration, positivity and causality then provide the
necessary connections.

Let e = [e(0), e(1), . . . , e(l− 1)]T be a time series of length l and interpret H1e as the restriction
(to 0 ≤ j ≤ l − 1) of the response of H1(z) (on [0,∞)) to the input with Z-transform e(z) =∑l−1

j=0 e(j)z−j i.e. to an infinite sequence ẽ consisting of the l elements of e followed by zeros. Using
the fact that the mean square error on a finite interval is always less than or equal to that on the infinite
interval, Parseval’s Theorem then gives

eT HT
1 H1e = ||H1e||2 ≤ 1

2πi

∮

unitcircle
|H1(z)|2|e(z)|2 dz

z
(45)

A simple calculation then indicates that

||H−1
1 ||−1

∞ ≤ σ(H1) ≤ σ(H1) ≤ ||H1||∞ (46)
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where σ(H) and σ(H) denote the smallest and largest singular values of a matrix H ∈ Ll respectively
and ||H||∞ denotes the H∞ norm of the associated transfer function H(z) on the region |z| ≥ 1.

In a similar manner, eT H2e is the inner product in l2 (the space of square summable infinite se-
quences) of ẽ with the response of H2(z) to ẽ and hence the exact expression follows from elementary
complex variable theory

eT (HT
2 + H2)e =

1
2πi

∮

unitcircle
[H2(z) + H2(z−1)]|e(z)|2 dz

z
(47)

The matrix inequality describing robust monotone convergence hence is satisfied if, for all choices
of e,

1
2πi

∮

unitcircle
|H∗

1 (z)|2|e(z)|2 dz

z
≤ 1

2πi

∮

unitcircle
[H2(z) + H2(z−1]|e(z)|2 dz

z
(48)

It is now possible to state the following theorem:
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Theorem(Robust Monotone Convergence): The gradient-based ILC algorithm using the nomi-

nal model G0(z) is robust monotone convergent in the presence of the multiplicative modelling error
with transfer function U(z) if (a sufficient condition)

| 1
β
− |G0(z)|2U(z)| < 1

β
∀z ∈ {z : |z| = 1} (49)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Proof: The discussion preceding this result and the matrix inequality condition of the previous

section indicates that a sufficient condition for robust monotone convergence is that

U(z) + U(z−1) > β|G∗
0(z)U(z)|2 ∀|z| = 1 (50)

Noting that G∗
0 can be replaced by G0 on |z| = 1, multiplying by β|G0(z)|2 and rearranging yields

the required result. 2

Note: Simple calculations indicate that the frequency domain conditions have a simple and easily
checked graphical interpretation, namely that:

The plot of the frequency response function |G0(z)|2U(z) on the unit circle |z| = 1 lies in the
interior of the circle of centre 1

β and radius 1
β

Recent work by the authors [4] using the inverse model algorithm produced the condition:

| 1
β
− U(z)| < 1

β
∀z ∈ {z : |z| = 1} (51)

At its simplest level, the difference between the two results is the replacement of U by |G0|2U . With
this in mind, the use of the gradient-based algorithm can be seen to have the following properties as
compared with the inverse-model algorithm:

1. Both approaches require a strictly positive real U(z) for monotone robust convergence. This
condition is connected very closely with the monotonicity property of the mean square error
and it is expected, as with the inverse-model-based approach, that violation may lead to lack
of convergence/instability. Another possibility is that asymptotic convergence may be retained
but it may also be associated with error norm sequences that can increase from trial to trial.

2. In both cases, the positive real requirement on U(z) will tend to require that it is proper but not
strictly proper i.e. that G and G0 have the same relative degree.

3. The gradient-based algorithm will however reduce performance limitations due to the effect of
high frequency errors such as high frequency resonances in G not modelled in G0. In such
circumstances U(z) will tend to take large gain values at frequencies close to these resonances.
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This will then require the use of small values of learning gain β to satisfy the monotone con-
vergence criterion for the inverse model algorithm. This does not occur for the gradient-based
algorithm because, in practice, G is typically a low pass filter and hence both G(z) and G0 will
be small at high frequencies. The magnitude of |G0|2U will then be substantially reduced (as
compared with U ) and permit increased learning gains leading to improved convergence rates.

4. In contrast with the beneficial high frequency effects of the gradient-based algorithm, it is
possible that it could reduce performance if G (and hence G0) has a substantial resonance
peak within its bandwidth. A similar argument to the above suggests that the learning gains
permitted will be reduced (as compared with the inverse model algorithm). As a consequence,
it is desirable for a feedback control to be incorporated into the plant (and hence G) before the
ILC analysis is undertaken. The feedback controller could be designed along classical lines
and, in particular, designed to remove or reduce the resonance peak. In such circumstances, the
high frequency benefits of the gradient-based approach indicate that it will, in practice, often
be superior to the inverse-model algorithm in terms of its performance and robustness.

5. The above analysis has considered a specific uncertainty U . It can easily be extended to cover
sets of multiplicative uncertainties such as any subset of all proper multiplicative uncertainties
satisfying an inequality of the form

| 1
β∗
− |G0(z)|2U(z)| < 1

β∗
∀z ∈ {z : |z| = 1} (52)

for some choice of parameter β∗. Clearly robust monotone convergence is achieved in the
presence of any model error in this set if β ∈ (0, β∗).

In conclusion, the analysis of monotone convergence has been seen to have elegant solutions in terms
of inequalities between matrix representations of the plant and associated models. These inequalities
can be converted into simple frequency domain (sufficient) conditions that indicate that the gradient-
based approach has real potential for both performance and robustness.

Finally, note that, when U(z) ≡ 1 and hence Ue = I , the above results produce conditions for
monotone convergence when there is no plant-model mismatch.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Corollary: Under the conditions of the theorem above, monotone convergence to zero is achieved

in the absence of modelling errors if 0 < β||G||2∞ < 2 where ||G||∞ = sup|z|=1 |G(z)| is the familiar
H∞ norm of G on {z : |z| ≥ 1}.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Proof: Setting U = I , U(z) ≡ 1 and G0(z) ≡ G(z) in the previous result, monotone convergence

follows if | 1β − |G(z)|2| < 1
β ∀z ∈ {z : |z| = 1}. The result follows from simple complex algebra.

2

In particular, the result shows that, in the absence of mismatch, monotone convergence is not
dependent on the phase characteristics of the plant (an observation that links these results to the
continous-time methodology described in [10]).

8 Conclusions

The paper has provided a complete analysis of the robust monotone convergence of a gradient-based
Iterative Learning Control algorithm in terms of necessary and sufficient matrix inequalities and fre-
quency domain conditions that can be easily checked in terms of plant model and modelling error
transfer functions. The method of analysis was the use of matrix models relating the time series of
input, output and error signals. A complete analysis of these models is provided which demonstrates
that the relative degree of the plant and model are crucial parameters in the analysis of ILC dynamics
and hence, it is argued, in the construction of feedforward learning laws. In addition, they clearly
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show that the use of the "non-causal" gradient operator can be implemented using a plant model and
time reversal operations i.e. state space models rather than the matrix models used in the analysis are
all that is required for implementation purposes.

The work parallels that published by the authors in a recent paper [4] on inverse-model-based ILC.
A comparison with those results indicates that, whereas both approaches require that the multiplica-
tive modelling error has positivity properties (a consequence of the requirement for monotonicity of
the mean square error), the gradient approach offers considerable benefits for robustness, particularly
in the presence of high frequency modelling errors such as parasitic structural resonance(s).
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