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Abstract 
Analyzing the long-term behaviors (attractors) of 

dynamic models of biological systems can provide 

valuable insight. We propose a general method that 

can find all attractors of discrete dynamical systems 

by extending a method that finds all attractors of a 

Boolean network model. The method is based on 

finding stable motifs, subgraphs whose nodes’ states 

can stabilize on their own. We extended this method 

from binary states to any finite discrete levels by 

establishing a multi-level formalism, where a virtual 

node is created for each level of a multi-level node, 

and describing each virtual node with a quasi-Boolean 

function. We then create an expanded representation 

of the multi-level network, find multi-level stable 

motifs, and identify attractors in a similar way as in 

the Boolean case.  

We test and validate the algorithm on representative 

synthetic multi-level networks and on a published 

biological network. Multi-level stable motifs offer a 

way to find all attractors without constraints on the 

update scheme and suggest ways to control which 

attractor the multi-level network model evolves into.  
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1 Introduction 

   Dynamic modeling can offer valuable insight in 

understanding the emergent properties of interacting 

biological systems (Arenas, Díaz-Guilera, Kurths, 

Moreno, & Zhou, 2008). For example, it can be used 

to link the interactions among cellular constituents 

(e.g. mRNAs, proteins or small molecules) to cell-

level functions or behaviors (Barabasi & Oltvai, 2004). 

In such models, each node is associated with a 

variable, representing its abundance or concentration. 

In discrete dynamic models, the state variable of a 

node is determined from a discrete (logical) regulatory 

function consisting of regulators of the node. 

Compared with continuous modeling, discrete 

modeling has the advantage that it can capture the 

system’s behavior without the need of much kinetic 

detail (Albert & Wang, 2009). Update scheme, or 

timing of a discrete model, is also discrete. There are 

deterministic update schemes like synchronous update 

where all nodes are updated at each time step 

according their regulatory function; there are also 

stochastic update schemes, for example a general 

asynchronous update where in each time step, one 

node from the network is randomly chosen to update. 

The long-term behavior(s) of a dynamic system are 

called attractors, which include steady-state attractors 

(fixed points), and complex (oscillating) attractors 

where a subset of the nodes do not take fixed values. 

In discrete models, the state space of the system can 

be represented in a state-transition-graph (STG) where 

nodes represent states of the system, and edges 

represent state transitions. The terminal strongly-

connected-components (SCCs) of the STG are 

attractors of the system.  

Attractors represent system-level outcomes. For 

example, in a cell signaling network, attractors can 

correspond to cell types, cell fates or behaviors. 

Therefore, finding the attractors of a network model is 

significant. Most methods that analyze attractors work 

only for Boolean dynamics. Although for some 

systems Boolean modeling is appropriate, it is often 

necessary to have multiple levels for a node. Existing 

methods that find attractors of multi-level models are 

rare and may have special constrains when finding 

complex attractors, for example requiring a 

synchronous update scheme (Dubrova, Liu, & 

Teslenko, 2012) and/or requiring a very limited 

complex attractor length (Hinkelmann et al., 2011). 

Therefore a general method that can find all attractors 

of a network model is needed.  

Zanudo &Albert proposed an effective attractor 

finding method for Boolean models (Zanudo & Albert, 

2013). It finds not only steady states, but also possible 

complex attractors without dependence on the timing 

of events (or on the update scheme). In this paper, we 

extend this method from Boolean to any discrete level. 

We test and validate the method on synthetic networks 

and on a biological model in the literature. Although 

this method is developed with a primary motivation to 

analyze biological networks, it is general and can be 

applied to any finite discrete dynamical system.  

 



 

 

2 Methods 
 The idea of the method of Zanudo & Albert is: first 

create an expanded representation of the Boolean 

network that incorporates all the regulatory functions 

by introducing composite nodes that express the 

‘And’ Boolean operation, and by expressing each 

state of a node as a separate ‘virtual node’. Stable 

motifs, subgraphs whose nodes’ states can stabilize on 

their own, can then be identified from the topology of 

the expanded network, leading to reduction of the 

network and identification of attractors. In the 

following we describe how to adapt this method to the 

multi-level framework.  

 

2.1 Quasi-Boolean formalism of multi-level models 

We establish a formalism where multi-level 

regulatory functions become Boolean-like. We treat 

each level (state) of a multi-level node as a separate 

node, called a virtual node. For example, if a node A 

has 3 different levels, 0, 1, and 2, then 3 virtual nodes 

for A, namely A0, A1, A2, are created in our 

formalism. Each virtual node is like a Boolean 

variable, and the combination of all virtual nodes 

represent the state of the original node. We will refer 

to these virtual nodes as ‘sibling nodes’ of each other. 

For example, original state A=2 will now be 

represented as the combination A0=0, A1=0, A2=1. 

Note that one and only one of the virtual nodes takes 

value 1, while all other virtual nodes, i.e. its sibling 

nodes, must all be 0. Then we write the regulatory 

function of each virtual node in a Boolean disjunctive 

normal form, by treating each input combination as a 

conjunctive clause and then connect all conjunctive 

clauses that yield the same target node level with the 

Boolean ‘or’ operator. Figure 1 demonstrates the 

example of the regulatory function A* = B+C. The ‘*’ 

sign in the function indicate this function determines 

the state of the target node in the next time step.  

 
Figure 1. Demonstration of the construction of a quasi-

Boolean regulatory function. A 3-level node A has 

regulatory function: A* =B+C, where B and C both have 2 

levels. From the truth table, one can re-write the regulatory 

function for each virtual node of A, by connecting all 

conjunctive clauses that yield the same A level with the 

Boolean ‘or’ operator. In this way, each virtual node’s 

regulatory function is obtained in a Boolean disjunctive 

normal form.  

 

Note that the Boolean ‘not’ rule is absent from this 

formalism, because we have assigned virtual nodes for 

all states of nodes. A negation is now replaced with an 

activation by the sibling states instead. We will 

proceed through the rest of our analysis based on the 

regulatory functions of the virtual nodes, instead of 

the functions of the original nodes.  

We require the regulatory functions to be written in 

a disjunctive normal form with all of their prime 

implicants present, or in other words, in the Blake 

canonical form. For example, a regulatory function 

‘A* = B and C or D and not C’ should be re-written as 

‘A* = B and C or D and not C or B and D’, as the 

conjunctive clause ‘B and D’ is also a prime implicant 

of A. In the Boolean framework, the Blake canonical 

form is obtained by applying the Quine-McCluskey 

(QM) algorithm. To obtain the Blake canonical form 

in a multi-level function, we developed a multi-level 

version of the QM algorithm that resembles its 

Boolean counterpart 1 . The only difference in the 

multi-level QM from the Boolean is that, while 

Boolean QM merges minterms when two (all) states 

of a specific input variable are present, multi-level 

QM merges minterms when all states of a specific 

input variable are present.  

 

2.2 The expanded network representation 

A network can be reduced prior to attractor 

identification without affecting its attractor repertoire. 

Source nodes are not regulated and will stabilize at a 

fixed state. They can be reduced from the network by 

plugging in their values into the regulatory functions 

of the nodes they regulate. This can be done iteratively 

until no source nodes are present in the network, 

without affecting the attractors (Saadatpour, Albert, & 

Reluga, 2013). For some biological networks, this 

reduction, combined with reduction of mediator nodes, 

can reduce a large proportion of the network model, 

leading to a much simplified model.  

After this pre-processing step, we can create an 

expanded network, which is a representation of the 

network with regulatory functions embedded. The 

expanded network is obtained from the original one by 

the following operations: 1. Include each virtual node 

in the expanded network, and connect all the virtual 

node’s regulators to it; 2. for each ‘and’ rule in the 

regulatory functions, create a composite node, and re-

wire the edges from the input nodes of the ‘and’ rule 

to this composite node, then connect the composite 

node to the regulated node. The original edges from 

input nodes of the ‘and’ rule to the target node are 

removed. Figure 2 exemplifies the construction of an 

expanded network from a regulatory function. To 

construct the entire expanded network, all virtual 

nodes and all interactions must be created.  

The expanded network contains not only the network 

structure, but also all information about the regulatory 

functions. Furthermore, interactions of a 

combinatorial nature are separated, as all ‘and’ rules 

are becoming explicit. In this way, the expanded 

network makes it easy to identify a sufficient 

condition to activate a node: a virtual node will have 

state 1, if any regulator virtual node is 1, or if any 

composite node has all its input virtual nodes being 1, 

regardless of the states of the rest of its regulators. 

                                                           
1 The details of the multi-level Quine-McCluskey algorithm 

are available by request. 



 

 

Figure 3. A demonstration of stable motifs identification for 

a three-node network. (A) The original network and the 

regulatory functions of each node; (B) the expanded 

network. It is constructed according to the steps in section 

2.2, and then the stable motifs are found by their definition 

in 2.3. (C) Stable motifs found in this example. The first 

stable motif, A0, B0, corresponds to a steady state of the 

system A=0, B=0, C=0. The state C=0 is found by plugging 

A=B=0 into the regulatory function of C. The 2nd stable 

motif corresponds to another steady state attractor A=2, 

B=2, C=0.  

Following this intuition, a cycle in the expanded 

network satisfying the above criteria will be self-

sufficient to stabilize.  

 

2.3 Stable motifs 

   A stable motif is a motif in the expanded network 

that can stabilize on its own. We define it in the 

following way: a stable motif is a strongly-connected-

component (SCC) in the expanded network that 

satisfies: (1) the SCC contains no sibling node pairs; 

(2) if the SCC contains a composite node, all of its 

input nodes must also be in the SCC. The first 

condition is a natural requirement for a stabilized state 

for the original node; the second condition is about the 

nature of the Boolean ‘and’ function, as all inputs 

must be present to activate the ‘and’ function. For the 

purpose of the algorithm, we will try to identify stable 

motifs as the smallest SCCs that satisfy the above 

condition. In this way we do not miss possible stable 

motifs when we develop the algorithm. The additional 

‘smallest’ condition is not needed for a stable motif to 

stabilize on its own. Figure 3 shows a three node 

network example, where the expanded network is 

constructed and the stable motifs are identified.  

In order for stable motifs to be correctly recognized, 

the regulatory functions must contain all prime 

implicants. If a prime implicant is missing, a sufficient 

condition for a node to stabilize is missing, which 

would lead to false identification of stable motifs. This 

is why we require the Blake canonical form of 

functions in the formalism mentioned in 2.1. With 

Blake canonical normal form of regulatory function, 

one can prove that there is a one-to-one 

correspondence between the stable motif and a partial 

steady state2. So by finding stable motifs, we find all 

steady states and partial steady states of the system.  

 

2.4 Oscillating motifs 
An oscillating motif is defined as the largest SCC in 

the expanded network that satisfies: (1) each virtual 

node in the SCC must have at least one sibling node in 

the SCC; (2) if the SCC contains a composite node, all 

its input nodes must also be in the SCC. Different 

                                                           
2 The details of the proof are available by request.  

from the stable motifs, an oscillating node must be 

able to enter at least two states, so the first condition is 

necessary. The second condition is also necessary due 

to the combinatorial nature of the composite node. 

Since these are necessary but not sufficient conditions 

for an oscillation, the nodes in an identified oscillating 

motif are not guaranteed to oscillate. Oscillations are 

dependent on timing and update scheme. That is, 

whether an oscillation exists or not depends on the 

timing of individual events. Based on this fact, it is 

intuitive that our method cannot find exact oscillations, 

because our method is independent of timing. We 

expect that, for every oscillation in the original model, 

there is an oscillating motif candidate that contains the 

virtual nodes representing all states visited in that 

oscillation. In our benchmarks presented in section 3.1, 

where we used a general asynchronous update scheme, 

this conjecture was never violated. Figure 4 shows an 

example of a simple oscillation in multi-level network 

model.  

 

2.5 Iterative reduction based on motifs  
We plug in the states of the nodes specified in the 

motifs into the expanded network, and thus reduce the 

network. For stabilized nodes, the stabilized virtual 

node takes value 1 and its sibling nodes are set to 0; 

for oscillating motifs, the nodes included in the 

oscillating motif are marked as oscillating, and their 

sibling nodes excluded from the oscillation are set to 0. 

The downstream nodes of the motif nodes may 

stablize as a result. In this way, a reduced version of 

the network model is obtained. We then find stable 

Figure 2. Construction of an expanded network from a 

regulatory function. Virtual node A0 has function A0* = B0 

or (C1 and B1), so in the expanded network, B0 is 

connected directly to A0; C1 and B1 are connected 

indirectly to A0 via composite node 'C1 and B1'. A1 has 

function A1* = C0 and B1, so C0 and B1 are connected 

indirectly to A0 via composite node 'C0 and B1'.  



 

 

motifs and oscillating motifs in the reduced network 

and plug in the motif values again, until this cannot be 

done any more. In the end, if all nodes have stabilized, 

a steady state attractor is found; if there are nodes 

remaining, those nodes must be in an oscillating 

attractor. The reduction process can be represented in 

a motif succesion diagram. Figure 5 demonstrates an 

example motif succession diagram, where iterative 

network reduction based on identified motifs leads to 

identification of attractors.  

 

2.6 Description of the algorithm 

  Here we give a description of the algorithm3. The 

algorithm requires specific form of input regulatory 

functions.  

1. Reduce the source nodes of the network model 

by plugging their values into the nodes they 

regulate. Repeat until no source node is present.  

2. Transform the regulatory functions to Blake 

canonical form using the multi-level Quine-

McCluskey algorithm.  

3. Create the expanded network according to the 

definition in 2.2.  

4. Search the expanded network for stable motifs 

and oscillating motifs. 

5. For each stable motif and oscillating motif 

identified, create a copy of the network, with the 

                                                           
3 The source code is available by request. 

node states specified in the motif plugged in. 

Specifically for oscillating motifs, the nodes in 

the oscillating motif are marked, and their sibling 

nodes not in the motif are set to 0.  

6. Repeat 1, 2, 3, 4, 5 until cannot identify any 

more motifs. In step 1 the reduction process, 

marked oscillation virtual nodes are considered 

as ‘unknown’, and are not reduced when 

evaluating regulatory functions.  

7. Discard duplicate attractors.  

 

3 Results 

To test the effectiveness of our method, we apply it 

to an ensemble of synthetic networks, and a biological 

network from the literature.  

 

3.1 Benchmark on synthetic network models 

We test the method on synthetic networks of 

different size. To approximate biological models, we 

first generate Random Boolean Networks where the 

in-degree is k=2 for each node. Next, we generate the 

number of states for each node according to an equal 

distribution of 2 and 3, that is, each node has 50% 

chance of having 2 states (Boolean), and 50% chance 

Figure 5: Attractor identification for a four-node network by 

a motif succession diagram. A. The network and the 

regulatory function of each node. B. Motif succession 

diagram. Three motifs are found from the original network, 

including 2 stable motifs (A0, B0), (C1, D1), and 1 

oscillating motif (A1, A2, B1, B2). For each motif, the 

values of the motif are plugged into the regulatory 

functions, reducing the network. Then new motifs are 

identified from the reduced networks. This iteration leads to 

the ultimate identification of attractors. For example, when 

the stable motif (A0,B0) is chosen, the network is reduced 

down to two nodes, C and D, with new regulatory functions 

C0* = D0, C1*= D1, D0* =C0, D1*=C1. Two new stable 

motifs, (C0, D0) and (C1, D1) are found in the reduced 

network, leading to two attractors (A=0, B=0, C=0, D=0) 

and (A=0, B=0, C=1 D=1). Note that a sequence of stable 

motifs unique determines an attractor.  

 

Figure 4. An example of oscillating motif in the multi-level 

network. A. is the network and regulatory functions; B. the 

expanded network and motifs. A0 and B0 form a stable 

motif, indicating a steady state A=0, B=0; while A1, A2, B1 

and B2 form an oscillating motif, indicating a possible 

complex attractor involving states A=1, A=2, B=1 and B=2. 

The stable motif and oscillating motif identified in 4B 

correspond to a steady state attractor and an oscillating 

attractor, respectively. This co-existence of a steady state 

and an oscillation of the same node does not exist in 

Boolean models. 



 

 

being 3 states. Then we randomly generate a 

regulatory function among those consistent with the 

number of regulators and number of states for each 

node.  

To test whether the method finds attractors correctly, 

we perform simulations similar to Wang et al. (Wang 

& Albert, 2013). We start from different random 

initial conditions, and let the system evolve for Tstep 

effective time steps. At each time step, one node is 

randomly chosen and its state is updated according to 

its regulatory function. If the new state of the node is 

the same as before, another node will be selected, until 

the selected node changes state. If no node can reach a 

new state, a steady state attractor is reached. If no 

steady state attractor is reached within Tstep effective 

time steps, we consider the system being in an 

oscillating attractor, and then find the attractor from 

the state transition graph (STG). Note that the 

sampling method is a heuristic method, and is likely to 

fail or become inaccurate when the state space is large. 

For each simulated steady state, we check if it is 

predicted by the multi-level stable motif algorithm; for 

each steady state and partial steady state predicted, we 

check if there is a simulated attractor that contains 

them. If the predicted and simulated attractors pass 

both checks, we say they are consistent. As for 

oscillating attractors, they depend on update schemes, 

and there is no definite conclusion. The expectation is 

that an oscillation found by simulation should be a 

part of a predicted oscillation. If this is indeed the case 

(in addition to being consistent), we say the results are 

highly consistent. In all tests, our method shows 

highly consistent attractors with the sampling method. 

Table 1 shows time complexity of the algorithm on 

synthetic networks. 

Multi-level Networks 

Size of 

network 

10 15 20 25 

Time(s) 0.07 1.1 48 251 

Boolean Networks 

Size of 

network 

10 20 30 40 

Time(s) 0.07 0.89 74 600 
Table 1. Benchmark of our algorithm on synthetic 

networks of different size (number of nodes). For each size, 

50-100 Kauffman networks with connectivity k=2 are 

generated. For multi-level networks, each node has 50% 

chance being 2-level and has 50% chance being 3-levels. 

These parameters are chosen to resemble biological 

networks. In all benchmark runs, our method shows highly 

consistent results with the sampling method.  

 

3.2 Application on a biological network in the 

literature 

Next we test our method on a published model of a 

biological signal transduction network describing 

stomatal opening in plants (Sun, Jin, Albert, & 

Assmann, 2014). The model captures different 

stomatal opening levels in response to different input 

signals, namely light of different wavelength, carbon 

dioxide, and the plant hormone abscisic acid. In a 

previous study (Gan & Albert, 2016), we reduced the 

original model and analyzed the dynamic repertoire of 

the model by combining several methods. The reduced 

model has 32 nodes and 81 edges, with multi-level 

nodes that can have as many as 6 to 7 states. Even 

after the reduction, the state space is still very large, 

and features multi-stability and oscillations, making 

the model difficult to analyze with conventional tools. 

We identify the multi-level motifs and find exactly the 

same attractors with the previous study, including 

multi-stability and oscillations, for all input signal 

combinations4. The motifs are found in four cycles of 

the network: 1. the self-regulation cycle of node PMV 

(plasma membrane voltage) determines three stable 

motifs, two of which form bi-stability; 2. A two-node 

cycle representing the regulation of the concentration 

of cytosolic Calcium, forms one oscillating motif and 

one stable motif; 3. A two-node cycle regulating the 

intercellular CO2 concentration (Ci) forms one stable 

motif; 4. A three-node NO (nitric oxide) cycle forms 

one stable motif. Table 2 exemplifies the motifs found 

under select signal combinations.  

Input signal Motifs Agreement  

Dual beam, 

medium CO2, 

ABA absent 

PMV stable motif; 

Calcium oscillation; 

(multi-stability absent) 

Yes 

Dual beam, 

high CO2, 

ABA absent 

PMV bistability; 

Calcium oscillation  

Yes 

Red light, 

medium CO2, 

ABA present 

PMV bistability; 

Calcium stable motif 

Ci stable motif  

NO stable motif 

(oscillation absent) 

Yes 

Table 2. Examples of stable motif algorithm result on the 

stomatal opening model. The first column is the input signal 

combination of blue light, red light, carbon dioxide (CO2), 

and abscisic acid (ABA). The motifs column lists all motifs 

found, with the conclusion whether multi-stability or 

oscillation is predicted. The last column states whether the 

complete attractors is exactly the same as the results from 

the previous study. Altogether there are 24 input 

combinations, and in all those cases, our method finds 

exactly the same attractors as the results from the previous 

study.  

 

4 Discussion 

The complexity of the algorithm is mainly in the 

identification of cycles. We search for stable motifs 

from the intersection of simple cycles in the expanded 

network. Identifying simple cycles in a directed graph 

is known to be NP-complete, with time complexity 

O((N + E)(c + 1)) using Johnson’s algorithm 

(Johnson, 1975), where N is the number of nodes, E is 

the number of edges, and c is the number of directed 

cycles. The last can grow faster than 2N for highly 

connected networks. In addition, the introduction of 

multi-level nodes dramatically increases the number 

                                                           
4 The complete attractor analysis result is available by 

request. 



 

 

of nodes in the expanded network. These facts limit 

the algorithm's effectiveness on networks with a large 

size, a high number of levels, or with high 

connectivity. Typical biological network models have 

a low connectivity of k=2, and low number of states 

for each node. In addition, only a proportion of the 

nodes are in SCCs. So our method can be successfully 

applied to these networks. For other types of networks, 

although our method can theoretically work, the 

computational complexity may be a challenge. We are 

working on optimizations of the algorithm so it can 

work on more complex network models. We are also 

trying to find more necessary conditions of multi-level 

oscillation to reduce the number of oscillation 

candidates.  

  Stable motifs can control the system by driving the 

system into specific attractors. Zanudo et al. proved 

that for the Boolean case, a sequence of stable motifs 

uniquely determines an attractor (Zanudo & Albert, 

2015). This means that by driving certain nodes into 

their states in a stable motif, the network is driven into 

the corresponding attractor. The same principle 

applies to multi-level stable motifs as well, and the 

algorithm to find the nodes that need to be controlled 

can be adapted as well. This is particularly valuable in 

biological networks, as the control of stable motif can 

suggest possible practical methods to switch the 

system from an undesired attractor to a desired one.  

 

5 Conclusion 

  In this paper, we propose a method to find all 

attractors of a network model, by extending an 

existing method from Boolean to any discrete level. 

Benchmark has proven the correctness of the method. 

This method can find all attractors of the network 

including both steady states and complex attractors, 

and is theoretically general enough to work on any 

discrete model. In addition, the stable motifs offer a 

way to control the attractor of the network model.  
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