
ENOC 2008, Saint Petersburg, Russia, June, 30–July, 4 2008

COMPARISON OF NON-STANDARD FINITE DIFFERENCE
METHODS FOR VIBRO-IMPACT SYSTEMS

Yves Dumont
IREMIA

University of Reunion island
France

Yves.Dumont@univ-reunion.fr

Jean M.-S Lubuma
Department of Mathematics and Applied Mathematics

University of Pretoria
South Africa

jlubuma@scientia.up.ac.za

Abstract
The aim of this paper is to continue our investigation

in the application of the non-standard finite difference
methods in non-smooth mechanics. We focus our study
on N -dimensional vibro-impact systems. In particular,
we construct non-standard schemes associated to well
known schemes developed and studied by Paoli and
Schatzman (called here after the PS-scheme), Moreau,
Monteiro-Marques and Mabrouk (called here after the
MMM-scheme). We compare them and show that the
non-standard MMM-scheme can give spurious numer-
ical solutions, while the non-standard PS-scheme give
satisfactory results.
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1 Introduction
We continue our investigation started in [Dumont and

Lubuma, 2005; Dumont and Lubuma, 2007] in the ap-
plication of the non-standard finite difference (shortly
NSFD) method to non-smooth mechanical problems.
Here, we propose and discuss the numerical treatment,

with the NSFD method, of vibro-impact systems. We
are also mainly concerned into the numerical approx-
imation of the solution of the following type of prob-
lems coming from the mechanics: find q : [0, T ] −→
R

N, t 7−→ q (t) such that

Mq̈ (t) +Kq (t) + ∂ΨKN
(q) 3 h (t) ,

a.e. t ∈ (0, T ),
(1)

where M and K are positive definite matrix, h :
R −→ R

N is a vector-valued function related to the
given forces acting on the system and ∂ΨKN

is the
subdifferential of the indicator function of the closed
convex set KN =

∏N
i=1[q

min
i , qmax

i ] ⊆ R
N with

qmax
i ∈]0,+∞] and qmin

i ∈ [−∞, 0[. We complete the
formulation of the model with initial conditions such as

q (0) = q0, q̇ (0) = q1. (2)

For a complete description at the impacts we make a
supplementary assumption: for each impact, we con-
sider the constitutive law of impacts

q̇i(t+ 0) = −eiq̇i(t− 0), if qi(t) = qmax
i or qmin

i ,
(3)

with ei ∈ [0, 1] for i = 1, ..., N . Following [Moreau,
1983; Moreau, 1988], we can rewrite (1) into the form

f(t, q)−Mq̈ ∈ ∂ΨTK(q)(q̇), (4)

where TK (z) is the tangent cone of K to z.
In general, there are only a few cases for which an-

alytical solutions to Eqs. (1)-(2) can be found. Thus,
the need of numerical methods. Several numerical ap-
proaches exist: the event-driven method, the compliant
method and the time-stepping method. We are mainly
interested in the third approach and, in particular, in the
schemes developed by Paoli and Schatzman (see [Paoli
and Schatzman, 1993; Paoli, 2001]) and those devel-
oped by Moreau, Monteiro Marques and Mabrouk (see
[Mabrouk, 1998; Monteiro Marques, 1993; Moreau,
1983]). Up to now, most of these numerical meth-
ods are based on standard or classical finite difference
methods, and they usually fail to replicate a number of
essential physical properties. In this paper, we propose
the non-standard finite difference method to improve
the numerical simulations. Since the pioneer works of
R.E. Mickens in the mid 1980s, the non-standard ap-
proach has shown great potentials in the design of reli-
able schemes that preserve significant properties of so-
lutions of differential models in science and engineer-
ing (See, e.g. [Anguelov and Lubuma, 2000], [Mick-
ens, 1994] and [Mickens, 2000]). The paper is organ-
ised as follows. In the next section, we give a very short



self-contained presentation of the non-standard finite
difference method. Section 2 is devoted to the design
of non-standard finite difference schemes for friction-
less impact oscillators. Then, in section 3, we present
and discuss some simulations for a 2DOF vibro-impact
system.

2 A brief Introduction to the non-standard finite
difference method for differential system

To simplify the exposition in this part, we consider the
following N -dimensional second order system

{

M2Ẍ +A2X = 0;

X(0) = X0 and Ẋ(0) = V0.
(5)

where,A2 is a symmetric square matrix of orderN that
is positive definite and diagonalizable, and M2 is the
diagonal mass-matrix with positive coefficients. Then
setting B2 = M−2A2, it is well known from classical
Analysis and Algebra theories that the unique solution
of system (5) is

X (t) = cos (tB)X0 +B−1 sin (tB)V0, (6)

where B is a square root of B2. Here we consider the
matrix trigonometric functions, cosine and sine (see the
remark below for a general definition of matrix func-
tion)

Remark 1. Let B2 a square matrix of order N that is
positive definite and diagonalizable. Thus, there exists
a transition matrix Λ such that

Λ−1B2Λ = Ω2 = diag(ω2
1 , · · · , ω2

N )) (7)

where ω2
1 , · · · , ω2

N are the eigenvalues of B2 counted
according to their multiplicities. The representation (7)
is essential in the understanding of matrix functions.
More precisely, given an arbitrary real-valued function
g of real variable, a matrix function B2 7→ g(B2) is
well-defined, via (7), by

g(B2) := Λdiag(g(ω2
1), · · · , g(ω2

n))Λ−1. (8)

Remark 2. Let M be a square matrix of order n such
that Λ−1MΛ is diagonal, Λ being the same transition
matrix as in (7) and (8). Since the product of two di-
agonal matrices is commutative, Eq. (8) readily yields
the commutativity property

Mg(B) = g(B)M, (9)

which will be used at several occasions in what follows.

Let us emphasize that the solution of the problem (5)
satisfies the principle of conservation of energy

||MẊ(t)||2 + ‖AX(t)‖2 = constant, (10)

where, with || · .|| being the Euclidean norm on R
n, the

energy of the system is given by

E ≡ E(X, t) :=
1

2

[

∥

∥

∥MẊ(t)
∥

∥

∥

2

+ ‖AX(t)‖2
]

.

(11)
Denoting (Xn)n≥0 a sequence of approximations to a

solution X of (5) at the discrete time tn = n∆t, where
∆t is the step size, standard numerical techniques leads
to the following standard approximation

Xn+1 − 2Xn +Xn−1

(∆t)2
+ B2Xn = 0. (12)

In [Dumont and Lubuma, 2007], we only consider
M = Id and we show that the non-standard approach
consists in replacing the traditional denominator ∆t
with a matrix-function ΦB (∆t), which satisfy

ΦB (∆t) = ∆t2I +O
(

∆t4
)

as ∆t→ 0.

In fact, using (6) and some properties of trigonometric
matrix function, we have

X (t+ ∆t) = cos ((t+ ∆t)B)X0 + B−1 sin ((t+ ∆t)B)V0

= (cos(tB) cos∆tB − sin tB sin ∆tB)X0

+B−1 (sin tB cos∆tB + cos tB sin ∆tB)V0

X (t−∆t) = cos ((t−∆t)B)X0 +B−1 sin ((t−∆t)B)V0

= (cos(tB) cos∆tB + sin tB sin ∆tB)X0

+B−1 (sin tB cos∆tB − cos tB sin ∆tB)V0.

Then summing the previous equalities, leads to

X (t+ ∆t) +X (t−∆t) = 2 cos tB cos∆tBX0

+ B−1 sin tB cos∆tBV0.

The using the commutativity property, we finally obtain

X (t+ ∆t) +X (t−∆t) = 2 cos (∆tB)X (t)

Thus we obtain the following exact schemes of (5), i.e.
Xn = X (tn), for such that we obtain

Xn+1 − 2 cos (∆tB)Xn +Xn−1 = 0, (13)



or equivalently, using the fact that cos (∆tB) = Id −
2 ∗ sin2 (∆tB/2)

Φ−1
B

(

Xn+1 − 2Xn +Xn−1
)

+M−2A2Xn = 0,
(14)

with ΦB ≡ ΦB (∆t) = 4 sin2
(

∆t
2 B

)

B−2 .
It is well known that (5) is equivalent to the following

first-order system of 2N differential equations

{

Ẋ = V

M2V̇ = −A2X
(15)

with dependent variables (X,V ) and independent vari-
able t.
The second-order system of N difference equations

(12) is equivalent to the following one-step system of
2N difference equations

{

Xk+1 −Xk = ∆tV k

M2
(

V k+1 − V k
)

= −∆tA2Xk+1.
(16)

In the same way, (14) is equivalent to the one-step sys-
tem of 2n difference equations

{

Xk+1 − cos (∆tB)Xk = sin (∆tB)B−1V k

V k+1 − cos (∆tB)V k = − sin (∆tB)BXk,
(17)

which is an exact scheme of the system of differential
equations (15).
Finally, it is not always possible to construct exact

schemes like the ones before. An other way to con-
struct non-standard schemes is a discrete form of the
principle of conservation of energy. The main idea is
to approximate the derivative in (11) by using Mick-
ens’ rule regarding the denominator. We consider the
approximation

Ẋ(tn) ≈ Φ
−1/2
B (Xn+1 −Xn).

The discrete energy En at the time tn is then

En = 1
2

(

(Xn+1 −Xn)TM2Φ−1
B (Xn+1 −Xn)

+(Xn+1)TA2Xn
)

.
(18)

Thus, we can prove that

Proposition 3. The equivalent schemes (14) and (13)
satisfy the following discrete principle of conservation
energy for every n ≥ 1:

En = En−1. (19)

Proof: in order to show the previous principle, we
need some additionnal results. We know that B2 =
M−2A2, thus M2B2 = A2 and

(

M2B2
)T

=
(

B2
)T M2 = M2B2

which implies that
(

B2
)T

= M2B2M−2.

Using the fact that (sin (B))T = sinBT ,
and using the previous result, we deduce that
(

(

sin ∆t
2 B

)−2
)T

= M2
(

sin ∆t
2 B

)−2M−2. Setting

Fn+1 = 1
2

(

(Xn+1 −Xn)TM2Φ−1
B (Xn+1 −Xn)

)

and multiplying (14) by
(

M2
(

Xn+1 −Xn−1
))T

, we
obtain

Fn+1 − Fn−
(

Xn+1 −Xn
)T M2B2

(

sin2
(

∆t
2

)

B
)−1 (

Xn −Xn−1
)

+
(

Xn −Xn−1
)T M2B2

(

sin2
(

∆t
2

)

B
)−1 (

Xn+1 −Xn
)

= 0

The last term can be rewritten as follows

(

Xn+1 −Xn
)T (

sin2
(

∆t
2

)

B
)−T (

B2
)T M2(Xn −Xn−1) =

(

Xn+1 −Xn
)T (

sin2
(

∆t
2

)

B
)−T M2B2

(

Xn −Xn−1
)

=
(

Xn+1 −Xn
)T M2

(

sin2
(

∆t
2

)

B
)−1 B2

(

Xn −Xn−1
)

=
(

Xn+1 −Xn
)T M2B2

(

sin2
(

∆t
2

)

B
)−1 (

Xn −Xn−1
)

.

Finally, we have

Fn+1 − Fn +
(

Xn+1 −Xn−1
)T M2B2Xn = 0,

Fn+1 +
(

Xn+1
)T
A2Xn = Fn + (Xn)

T
A2Xn−1

which implies the result.
Then, it is possible to consider the discrete energy,En

at the time tn, associated to (17) is

En =
1

2

(

‖MV n‖2 + ‖AXn‖2
)

. (20)

Thus, we can prove that

Proposition 4. The scheme (17 ) satisfy the following
discrete principle of conservation energy for every n ≥
1 and for all ∆t > 0:

En = En−1. (21)

Proof. Set B = M−1A. We first compute

∥

∥MV n+1
∥

∥

2
= ‖Mcos(∆tB)V n‖2 + ‖Msin(∆tB)BXn‖2
−(V n)T (cos(∆tB)TMA sin(∆tB)BXn−
−(Xn)T sin(∆tB)TAM cos(∆tB)V n

∥

∥AXn+1
∥

∥

2
= ‖M cos(∆tB)Xn‖2 +

∥

∥Msin(∆tB)B−1V n
∥

∥

2−
−(Xn)T (cos(∆tB)TMA sin(∆tB)V n−
−(V n)T sin(∆tB)TAM cos(∆tB)Xn



Then it is easy to check that

‖M cos(∆tB)BXn‖2+‖M sin(∆tB)BXn‖2 = ‖AXn‖2 ,

‖M sin(∆tB)V n‖2+‖M cos(∆tB)V n‖2 = ‖MV n‖2 .

Finally, we deduce that
∥

∥MV n+1
∥

∥

2
+

∥

∥AXn+1
∥

∥

2
=

‖MV n‖2 + ‖AXn‖2 for all n ∈ N. �

Although, the use of matrix function is not easy to
handle because we need to know the eigenvalues w2

i ,
with i = 1, ..., N , of the matrix M−1Aand to find
the transition matrix. An alternative it is possible to
consider q ≥ max

{

ω2
1 , .., ω

2
N

}

and to replace the usual

denominator (∆t)
2by a real-valued function φ2, whic

satisfies φ2 (z) ≤ 4for z ≥ 0as well as the asymptotic
relation

φ (z) = z +O
(

z2
)

.

Thus, we obtain the following new non-standard
method

M2X
n+1 − 2Xn +Xn−1

φ2
(√
q∆t

)

/q
+A2Xn = 0. (22)

Although the non-standard scheme (22) is not exact,
this scheme has the following properties, which makes
it more interesting than (12).

Proposition 5 ([Dumont and Lubuma, 2007]). The
non-standard scheme (22) is unconditionally stable in
the sense of Lax Richtmyer. Furthermore, this scheme
satisfies the discrete principle of conservation energy
(19) provided that the matrix function Φ

−1/2
A in (18) is

replaced with the scalar function
√
q/φ(

√
q∆t).

Remark 6. Since M = Id, it is possible to construct
exact schemes associated to N -dimensional damped
systems, like

q̈ + 2Cq̇ +Kq = 0, (23)

such that C and K are symmetric positive definite and
have the same transition matrix Λ (see [Dumont and
Lubuma, 2007]).

3 Applications to a 2DOF vibro-impact system.
Following [Dumont and Lubuma, 2007], we con-

sider the following two-degree-of-freedom mass spring
damper system, depicted in figure 1.
Setting µk = k2

k1
and making the change of indepen-

dant variable t =
√

k1

m1
τ , the previous system can be

2 1
kk

12

��� ���� �

qq

q q

Figure 1. 2DOF mass-spring-damper system with impacts

rewritten in the dimensionless form in the following
manner with q = (q1, q2)

T

{Mq̈ +Kq + ∂ΨK2
(q) 3 0,

q̇ (t+ 0) = Proju(t)

(

TK2
(u(t)) , u̇ (t− 0)

) (24)

where K2 = [qmin, qmax]× R,

M2 =

(

1 0
0 µm

)

, A2 = K =

(

1 −1
−1 1 + µk

)

.

Note also that K is symmetric and positive definite.
First, we consider C = 0. The eigenvalues of M−1K
are

w2
1 =

1+µk+µm−
√

(1+µk+µm)2−4µkµm

2µm
,

w2
2 =

1+µk+µm+
√

(1+µk+µm)2−4µkµm

2µm
,

and the transition matrix is Λ =




1√
1+(1−w2

1
)2
− 1√

1+(1−w2
2
)2

w2
1−1√

1+(1−w2
1
)2

1−w2
2√

1+(1−w2
2
)2



. We have exis-

tence of a Lipschitz continuous solution [Paoli and
Schatzman, 1993]. Based on the exact schemes in
Section 2, we now design, for the constrained problem
(24), (2) & (3), non-standard schemes. Following
[Dumont and Lubuma, 2005], we consider the ap-
proach proposed and studied by Paoli and Schatzman
[Paoli and Schatzman, 1993; Paoli, 2001]. To dis-
cretize ∂ΨK2

(q) , we assume that the e-weighted

position
qn+1 + eqn−1

1 + e
has to meet the constraint

qn+1 + eqn−1

1 + e
∈ K2. Thus, the exact schemes (13)

and (14) of the free motion lead to the non-standard
finite difference schemes

Φ−1
B

(

qn+1 − 2qn + qn−1
)

+ ∂Ψ(1+e)K2

(

qn+1 + eqn−1
)

3 −M−2A2qn

(25)
and

qn+1 − 2
(

cos
(

∆tM−1A
))

qk + qn−1+
∂Ψ(1+e)K2

(

qn+1 + eqn−1
)

3 0.
(26)



Of course, the last one is the easiest to implement. Fol-
lowing Moreau, problem (24) can be rewritten in the
following way

{

−M2q̈ −A2q ∈ ∂ψT
K2

(q) (q̇) ,

q̇ (t+ 0) = Projq(t)
(

TK2
(q(t)) , q̇ (t− 0)

)

We now consider numerical schemes adapted to the
previous formulation [Moreau, 1983; Monteiro Mar-
ques, 1993; Mabrouk, 1998]

{

qn+1 = qn + ∆tvn,
−

(

vn+1 − vn
)

−∆tM−2A2qn+1 ∈ ∂ψT
K2

(qn+1)

(

qn+1
)

,

(27)
For all q ∈ R

N , TK2
(q) is a closed, non-empty convex

set. Thus the previous inclusion is equivalent to: for all
n ≥ 0











qn+1 = qn + ∆tvn,
vn+1 = −evn + (1 + e) Projqn+1

(

TK2

(

un+1
)

, vn

− ∆t
1+eM−2A2qn+1

)

.

(28)
where Projq (TK2

(q) , .) denotes the projection on
TK (q) for the kinetic metric
Using (17), the corresponding non-standard fully ex-

plicit scheme is











qn+1 = Ψqn + Φvn,
vn+1 = −evn + (Ψ + eId) Projqn+1

(

TK2

(

un+1
)

, vn−
− (Ψ + eId)

−1
ΦM−2A2qn

)

.

(29)
with Ψ = cos(∆tM−1A) and Φ =
sin(∆tM−1A)A−1M (see also [Dumont, 2005]
for application of MMM-scheme to one-degree of
freedom vibro-impact oscillators).

Remark 7. The non-standard schemes (26) or (29)
satisfies both the continuous and the discrete princi-
ples of conservation of energy (19) and (21) between,
two consecutive impact times.

3.1 Numerical experiments
Like in [Dumont and Lubuma, 2007], we first con-

sider the special case, where m = 1012, i.e the mass of
the second spring is very large. In this case the second
body can be considered as a “rigid wall”; thus, only the
first body will move. We consider the following data:

∆t e (q1, v1) (q2, v2) qmin qmax µ
0.01 0.5 (1, 0) (0, 0) 0 +∞ 5

We use the non-standard methods (13) or ( 17). In par-
ticular, we make a comparison with the standard ex-
plicit (or semi-implicit) scheme in order to show the
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Figure 2. Displacement and Phase portrait for e = 0 andm = 1
(NSMMM-scheme)

efficiency of the non-standard schemes when no im-
pacts occur. We obtain, with self-explanatory notation,
the results:

max
n

∣

∣qPS−NS
1 (tn)− qexact

1 (tn)
∣

∣ = 4.18× 10−11,

max
n

∣

∣qMMM−NS
1 (tn)− qexact

1 (tn)
∣

∣ = 9.21× 10−13,

max
n

∣

∣qS
1 (tn)− qexact

1 (tn)
∣

∣ = 4.99× 10−3,

As expected, the non-standard schemes give very good
results for q1. If we add impacts (with e = 0.5), the
first body bounces until it stops while the second one
does not move: we obtain exactly the same result as in
[Dumont and Lubuma, 2005] (see Fig. 3, page 1942),
as expected. Note that if we consider a huge value
for µ, for instance µ = 1012, the standard schemes
blow-up while the non-standard ones not [Dumont and
Lubuma, 2007].
Let ∆t = 0.005, we now consider the general case

e (q1, v1) (q2, v2) qmin qmax µ m
0 (1,−1) (0, 5) 0.2 1 5 1, 1000

We compute the solution with the nonstandard MMM
and PS-schemes. Since e = 0, the motions of both
bodies are regular and become periodic after a while
(see Figures 2 and 4). Note the difference between
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Figure 3. Sticking zone: comparison between the NSPS-scheme

and the NSMMM-scheme (m = 1)
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(NSPS-scheme)

the numerical solutions: the MMM-solution allows
some penetration (see the phase portraits in figures 2
and 5), that may depend on ∆t, while the PS-solution
not. Moreover, as seen in figure (3), during the stick-
ing phase the solution computed with the nonstandard
MMM-scheme is not good (the lower rigid stop be-
haves like a flexible stop and allows more and more
penetration), while the solution computed with the non-
standard PS-scheme do not penetrate during the stick-
ing phase, as expected. Since m = 1000, the sec-
ond body oscillates periodically. Unfortunately, in that
case, the non-standard MMM-scheme leads to a spu-
rious solution for the first mass: during the sticking
phase, the penetration of m1 becomes more and more

important (see Figure 6). For the same data, the non-
standard PS-scheme performs very good result.
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Figure 6. Sticking zone: comparison between the NSPS-scheme

and the NSMMM-scheme (m = 1000)

See [Dumont and Lubuma, 2007] for additional ex-
amples that may be investigate with the MMM-scheme
and compare with the PS-scheme.

4 Conclusion
One of the main concerns in the study of impact os-

cillators is that these are non-smooth systems, which
could have complex behaviors. When we perform nu-
merical computations, it is essential to design schemes,
which preserve as much as possible the significant
physical properties of the systems.
In this paper, we have constructed non-standard ap-

proximations for N -dimensional vibro-impact oscilla-
tors. Motivated by the structure of the exact scheme
of the harmonic oscillator, the construction makes use
of one of Mickens’ rules. This is the renormaliza-
tion of the denominator and the numerator of the dis-
crete derivative [Mickens, 1994]. Compared to classi-
cal methods, which are based on the usual finite dif-
ference method, the scheme under consideration in this
work is unconditionally stable and it replicates, a num-
ber of key physical properties of the vibro-impact sys-
tem. We showed that the non-standard PS-scheme
gives very satisfactory results, while the non-standard
version of the MMM-scheme not really. We need to
investigate further and to understand why these differ-
ences between both approaches.
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