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Abstract— Chaos controllers used for stabilizing unstable 
periodic orbits and/or unstable steady states are very sensitive 
to unavoidable latency of the controlling feedback force. When 
the delay value exceeds some critical value the controller fails 
to work. We consider a specific case of a derivative control 
applied to stabilize unstable steady state in a third-order 
autonomous chaotic oscillator. We demonstrate from 
equations, by PSPICE simulations, and hardware experiments 
that inserting in the feedback control loop the Taylor predictor 
essentially improves the performance of the controller. 

I. INTRODUCTION 
Control of chaotic behaviors in dynamical systems has 

become one of the most rapidly developing topics in 
nonlinear science and engineering in the last two decades. 
Most investigations in the field of controlling chaos deal with 
stabilization of unstable periodic orbits embedded in chaotic 
attractors [1, 2]. Along with unstable periodic orbits any 
autonomous chaotic system contains at least one unstable 
steady state (USS) that can also be stabilized by various 
feedback techniques [3-9]. Most simple is the derivative 
control technique [3-5], successfully applied to lasers [3], 
electrical circuits [4] and electrochemical reactions [5]. More 
sophisticated is the delayed feedback method [6-9]. The latter 
has been employed to stabilize steady states in electrical 
circuits [6, 7] and electrochemical systems [8, 9] A serious 
limitation of the feedback methods is the additional time lag 
in the control loops [10-12], especially in fast experimental 
systems. Latency decreases the range of feedback gains over 
which control is achieved. Eventually longer latency times 
can totally destroy the control algorithm. To overcome the 
latency problem a straightforward solution is to insert in the 
feedback loop a time lead device that compensates time lag 
effects. In the context of broadband and fast chaotic systems 
the Taylor type analogue predictors [13-15] are very 
promising. In the present paper we consider an extremely 
simple first-order Taylor predictor used to assist the 
derivative controller, which is intended to stabilize unstable 
steady state in a chaotic circuit. 

 

II. CHAOTIC SYSTEM 
We consider extremely simple third-order autonomous 

chaotic oscillator, the so-called Vilnius chaotic oscillator 
[16], described in details elsewhere [17-19]. Though 
intended as a training tool for students the oscillator due to its 
simplicity seems to be a convenient circuit for demonstrating 
various techniques of chaos control. 
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The circuit diagram of the oscillator and the chaotic 
phase portrait are shown in Fig. 1 and Fig. 2, respectively. 
The oscillator includes three inertial elements (L1, C1, and 
C2), one nonlinear device (diode D), and a single OA1 based 
amplifying stage. An auxiliary unit is the current source Io 
used to set the dc bias of the diode D. The voltage across the 
R (also the output voltage of the OA1), the voltage across 
C1, and the voltage across C2 can be taken as the output of 
the oscillator. High frequency implementation of the 
oscillator using fast Schottky diodes is discussed in [20]. 

 
Fig. 1. Circuit diagram of the oscillator. L1 = 1 µH, C1 = 100 pF; 
fundamental frequency f* = 1/2π(L1C1)1/2 ≈ 16 MHz, surge 
impedance Z = (L1/C1)1/2 = 100 Ω. C2 = 15 pF, R = 100 Ω, R1 = 10 
kΩ, R2 = 6.8 kΩ (trimmer-pot). Open-loop gain γ1 = R2/R1 + 1. 

 

 
Fig. 2. Phase portrait from the chaotic oscillator. Current IL1 has 
been taken as a voltage drop across grounded resistor R, voltage 
VC1 has been taken via differential amplifier (not shown in the 
diagram). Io = 7.5mA, R2 = 4kΩ (γ1 = 1.4). Triangle in the center 
of the attractor marks unstable steady state (VC1 ≈ −0.4V, IL1 = 0). 

→ VC1

↑IL1 



III. MATHEMATICAL MODEL 
The oscillator in Fig. 1 is described by a set of three 

ordinary differential equations [17, 19]: 
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Let us apply the control via the equation for ‘y’: 
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Here QN is the control term; N = 1, 2, or 3 depends on the 
specific control scheme, i.e. (a), (b), or (c) in Fig. 3. Solution 
(2) is an unstable point and it is just the goal of the controller. 
In this paper we consider the derivative control algorithm 
given by 

.)(1 xktQ =            (4) 

Here k is the feedback coefficient. For the specific system, 
given by (1), the derivative in (4) can be replaced by ‘y’: 

 ( ) .1 kytQ =  (5) 

Then it is evident that for k > a the overall system is a 
damped system and the USS (2) becomes globally stable. 
The control term Q1(t) asymptotically vanishes when the 
system approaches (x0, y0, z0). The numerical results 
including the uncontrolled stage, the transients and the goal 
steady state are illustrated in Fig. 4. The variable x(t) 
converges, as expected, to its non-zero state x0 = − 22.7 (for 
b = 30, c = 4x10−9); the control term Q1(t) after a short 
transient reduces to zero. 

 

(a) 
 

(b) 
 

(c) 
Fig. 3. Block diagrams of the control setup. (a) ideal control, (b) 
control with parasitic latency, (c) control with latency compensated 
by means of the Taylor predictor. 

 
Fig. 4. Numerical results from (3) with the control term Q1. k = 0.8. 
Other parameters a = 0.4, b = 30, c = 4x10−9, ε = 0.13. Lower trace 
is variable x(t). Upper trace is the control signal Q1 (the latter is 
arbitrarily shifted up by 60 from zero level for clarity). Control is 
activated at t = 300. 
 

To imitate the latency we employ the first-order circuit, 
specifically a low-pass RC filter. There are three motivation 
points behind such a choice. Firstly, the R imitates loss 
effects in a real circuit and the capacitor C represents 
parasitic mounting capacitance. Secondly, the filter is 
characterized by a constant unity gain and a constant delay 
time Tdel ≈ RC at lower frequencies, also by rather natural 
falloff of the gain (minus 6 decibels per octave) at higher 
frequencies. Thirdly, the mathematics is extremely simple: 

,1 uQuh −=                                   (6) 

where parameter h is the normalized dimensionless latency. 
The output signal of the filter u is just the control term: 
Q2(t) = u. For h = 0, Q2 = Q1, as expected. At low frequencies 
Q2(t) ≈ Q1(t−h). Numerical results with Q2 applied to (3) are 
presented in Fig. 4b. In contrast to the previous case the 
controller with latency fails to stabilize the USS. Moreover, it 
raises high frequency undesired oscillations. 

 

 
Fig. 5. Numerical results from (3) with the control term Q2. h = 1. 
Other parameters and layouts are the same as in Fig. 4. 
 

To compensate the latency we suggest inserting in the 
control loop the first-order Taylor predictor. Then the control 
signal reads 

( )( ).)()( 123 uQhguugugtQtQ −+=+≈+≈     (7) 



The following approximate relation between Q3, Q2, and Q1 
is valid at lower frequencies 

 ).()()( 123 ghtQgtQtQ +−≈+≈  (8) 

We note that g in (8) should not necessarily equal h. 
However, when this is the case both (8) and (9) read: 
Q3(t) ≈ Q1(t). So, the compensating effect of the predictor 
becomes very clear. Numerical results are shown in Fig. 6 for 
Q3 described by (8) with g = h. They do confirm perfect 
performance of the improved controller. 

 

 
Fig. 6. Numerical results from (3) with the control terms Q3. 
h = g = 1. Other parameters and layouts are the same as in Fig. 4. 
 

Let us consider now more complicated and more realistic 
latency unit introduced by an RLC low-pass filter, were L 
imitates parasitic wiring inductance. The dimensionless 
equations read 
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Here the output variable is u. So the control signal with 
latency is Q2(t) = u. The effective latency time for the RLC 
filter is hheff 2=  at the same threshold frequency as for 
the RC filter, considered before. Therefore, the parameter h 
in (9) should be diminished by a factor of 2 (see caption to 
Fig. 7) to have the same latency time as for the RC filter. 
 

 

Fig. 7. Numerical results from (3) with the control term Q2(t) = u 
from (9). h = 0.71. Other parameters and layouts are the same as in 
Fig. 4. 

Correspondingly the control signal with prediction is 

( ) .)()( 23 vhguugugtQtQ +=+≈+≈      (10) 

 

 
Fig. 8. Numerical results from (3) with the control term Q3(t) from 
(10). h = 0.71, g =1. Other parameters and layouts are the same as 
in Fig. 4. 
 

IV. ANALOGUE CIRCUITS 
All the blocks in Fig. 3 have been implemented by means 

of analogue components. The corresponding circuit diagrams 
are shown in Fig. 9 through Fig. 13. As discussed in Section 
III the oscillator has unstable non-zero steady state. By 
setting L1, C1, and C2 values the oscillator has been tuned to 
operate in a megahertz frequency band [20]. The diode D in 
Fig. 9 is low junction capacitance (≈1 pF) fast recovery 
(≈10 ps) BAT68 Schottky device; Io = 7.5 mA. All the 
operational amplifiers from OA1 to OA9 are the HFA-002 
(fth = 1 GHz) type chips. Other circuit parameter values and 
necessary comments are given in the specific figure captions. 

 
Fig. 9. Controlled oscillator. Circuit parameters of the oscillator are 
the same as in Fig. 1. DIFF is a differential amplifier; Vout = VC1. 
Circuit diagram of the CONTROL unit is shown in Fig. 10. 



 
 

Fig. 10. CONTROL unit (a derivative controller). OA2 stage is a 
differentiator. Vout = R3C3×dVin/dt. R3C3 = (L1C1)1/2. OA3 stage 
is an inverter. R4 = R5 = 1 kΩ. 
 

 
 

Fig. 11. RC latency imitator. R6 = 100 Ω, C4 = 100 pF. Tdel ≈ 
R6C4 = 10 ns. OA4 stage is a buffer. 
 

 
 

Fig. 12. RLC latency imitator. R7 = 150 Ω, L2 = 0.7 µH, C3 = 68 
pF. Tdel ≈ (2L2C5)1/2 = 10 ns. OA5 stage is a buffer. 
 

 
Fig. 13. First-order Taylor predictor. C6 = 10 pF, R8 = 10 Ω, R9 =  
R10 = R11 = R12 = R13 = R14 = 1 kΩ. Prediction time Tpred ≈  
R11C6 = 10 ns. 
 

Simulation of the overall analogue circuit has been 
performed using the ‘Electronic Workbench Professional’ 
simulator, based on the PSPICE software. The simulation 
results presented in Fig. 14 through Fig. 16 are in qualitative 
agreement with the numerical results of Section III obtained 
from a simplified mathematical model. 

 

Fig. 14. PSPICE simulation results of the circuit in Fig. 9. Lower 
trace is Vout = VC1(t), the voltage across capacitor C1. Upper trace is 
the control signal Vcontr(t); it is shifted up by 2V for clarity. Switch 
is closed at t = 7 µs. 
 

 

Fig. 15. PSPICE simulation results of the circuit in Fig. 9 with RC 
latency unit in Fig. 11. Signals, parameters and layouts are the 
same as in Fig. 14. 
 

 

Fig. 16. PSPICE simulation results of the circuit in Fig. 9 with RC 
latency unit in Fig. 11 and predictor in Fig. 13. Signals, parameters 
and layouts are the same as in Fig. 14. 

 

V. HARDWARE EXPERIMENTS 
Practical circuit diagram is sketched in Fig. 17. 

Experiments for simplicity have been performed at lower 
frequencies, than simulated in Section IV, namely in the 
kilohertz range. Correspondingly, the L1C1C2 tank 
parameters of the oscillator in Fig. 9, the circuit parameters 
of the RC and the RLC latency units in Fig. 11 and Fig. 12, 
and the R11C6 value of the Taylor predictor in Fig. 13 have 



been rescaled to larger values. Moreover, in the case of the 
specific oscillator considered in this paper the control loop 
can be simplified. The signal for control can be taken, 
alternatively to Fig. 9, not from the differential amplifier 
DIFF, but from the output of the OA1. The point is, that the 
output voltage of the OA1 is proportional to the voltage drop 
VR across the resistor R, which is proportional to the current 
IL1 through the inductor L1. The IL1 is proportional to the 
derivative of the voltage across C1 (IL1 ∝ dVC1/dt). Thus, a 
simpler controller can naturally replace the two-stage 
derivative controller in Fig. 10, specifically the noninvertible 
OA9 based amplifier (Fig. 17). 

The effective feedback coefficient k = γ1 γ2 γ3 ≈ 0.8, 
where the open-loop gain γ1 = R2/R1 + 1 = 1.5, the open-
loop gain γ2 = R15/R16 + 1 = 1.1 and the open-loop gain via 
the inverting input of the OA1 γ3 = R2/R1 = 0.5. Circuitry of 
the electronic switch is not displayed for simplicity. 

 

 
 
Fig. 17. Circuit diagram of the chaotic oscillator and the controller. 
D is an 1N4001 type general-purpose diode. DC bias Io = 10 mA. 
DIFF is a differential amplifier; Vout = VC1. L1 = 20 mH, 
C1 = 1.5 µF; fundamental frequency f* = 1/2π(L1C1)1/2 ≈ 1 kHz, 
surge impedance Z = (L1/C1)1/2 = 115 Ω. C2 = 100 nF, R = 115 Ω, 
R1 = 10 kΩ, R2 = 5.1 kΩ, R15 = 1 kΩ, R16 =10 kΩ, 
 

Hardware experimental snapshots of the output signals 
VC1(t) and the control signals Vcontr(t) shown in Fig. 18 
through Fig. 20 are in a good agreement, both with the 
numerical solutions of equations (3) and with the PSPICE 
simulation results. They include all the main features, namely 
fast convergence to the stabilized steady state in the case of 
ideal controller (Fig 18), parasitic oscillations caused by 
latency (Fig. 19) and improved performance due to the 
insertion of the Taylor predictor (Fig. 20). 

 
Fig. 18. Experimental results from the circuit in Fig. 17. Lower 
trace is VC1(t), the voltage across C1. Upper trace is the control 
signal Vcontr(t); it is shifted up for clarity. Horizontal scale: 
5 ms/div., vertical scales: VC1(t) − 1 V/div. Vcontr(t) − 0.5 V/div. 
 

 

Fig. 19. Experimental results from the circuit in Fig. 17 but with 
additional RLC latency unit in Fig. 12 (R7 =1.6 kΩ, L2 =200 mH, 
C5 = 100 nF, Tdel = 200 µs). Signals and scales are the same as in 
Fig. 18. 
 

 

Fig. 20. Experimental results from the circuit in Fig. 17 but with 
additional RLC latency unit in Fig. 12 (R7 =1.6 kΩ, L2 =200 mH, 
C5 = 100 nF, Tdel = 200 µs) and the first-order Taylor predictor in 
Fig. 13 (C6 = 20 nF, R8 = 100 Ω, R9 = R10 = R11 = R12 = R13 = 
R14 = 10 kΩ, Tpred ≈ R11C6 =200 µs). Signals and scales are the 
same as in Fig. 18. 



VI. CONCLUSIONS 
We have investigated the possibility to improve chaos 

controller by adding in the feedback loop an analogue Taylor 
predictor. Analysis shows that even for small latency times, 
e.g. 10 ns, the derivative control technique fails to stabilize 
USS of a chaotic system oscillating at the fundamental 
frequency f* ≈ 16 MHz (the mean period 1/f* is about 60 ns). 
The time lag in the control loop of only 17% does not allow 
achieving stabilization. Moreover, it gives rise to high 
frequency parasitic oscillations at about 20 MHz. Meanwhile 
the inserted Taylor predictor compensates the latency effects 
and ensures perfect stabilization of the USS. An important 
result from a practical point of view is, that the prediction 
time should not exactly match the latency time. In addition, 
the order of the Taylor predictor should not necessarily equal 
the order of the circuit, causing the latency effect. The 
PSPICE and experimental results obtained for a realistic 
third-order chaotic circuit qualitatively confirm the findings 
from a simplified mathematical model. 

In this paper we employed the simplest RC differentiator 
based first order Taylor predictor. Evidently, higher order 
Taylor predictors can be used. In addition, more 
sophisticated analogue predictors, like active filters based 
circuits [13, 14] and extended Taylor−Lagrange predictors 
[15] can be exploited.  

Though the investigation has been performed for a 
specific system we expect similar results for other fast 
chaotic systems. The Taylor type predictors can be useful not 
only for the derivative control technique stabilizing USS, but 
also for various techniques designed to stabilize unstable 
periodic orbits, e.g. by the time-delayed feedback [21] and by 
second order resonant negative feedback [22] controllers. 
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