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Abstract
In this paper stochastic approximation algorithm in

networks with incomplete information about the cur-
rent state of nodes and changing set of communication
links are presented. We consider consensus problem
in noisy model with switching topology. For the case
when the step size of the algorithm does not tend to
zero it is proposed to analyze closed loop system by
the method of continuous models (ODE approach or
Derevitskii-Fradkov-Ljung (DFL) scheme). The sim-
ulation results for workload balancing system are pre-
sented.
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1 Introduction
Distributed coordination in networks of dynamic

agents has attracted numerous researchers in recent
years. It is mostly due to broad applications of multi-
agent systems in many areas, formation control [Fax
and Murray, 2004], flocking [Toner and Tu, 1998],
distributed sensor networks [Cortes and Bullo, 2003],
congestion control in communication networks [Pa-
ganini, Doyle and Low, 2001], cooperative control of
unmanned air vehicles (UAVs), attitude alignment of
clusters of satellites, and others. Many of these prob-
lems can be reformulated in terms of achieving consen-
sus in multi-agent systems [Jadbabaie, Lin and Morse,
2003; Olfati-Saber and Murray, 2004; Ren and Beard,
2005].
The solutions of such problems are much more com-

plicated in the practical application. On the one hand,
it is because of imperfect information exchange, which
is, moreover, usually measured with noise. On the

other hand, it is due to the effects of quantization effect
common to all digital systems [Aysal and Barner, 2003;
Xiao, Boyd and Kim, 2007; Schizas, Ribeiro and Gi-
annakis, 2008; Cucker and Mordecki, 2008; Kashyap,
Basar and Srikant, 2007].
In [Huang, 2010] the stochastic approximation al-

gorithm for solving consensus problem was proposed
and justified for the group of cooperating agents that
communicate with imperfect information in discrete
time, under condition of switching topology and de-
lay. Stochastic gradient algorithms were used for such
problems before [Tsitsiklis, Bertsekas and Athans,
1986; Huang and Manton, 2009; Kar and Moura,
2009; Li and Zhang, 2009]. Stochastic approximation
with decreasing step sizes allows each agent to extract
state information from its neighbors while reducing the
noise effect.
Under dynamic changes of the external agents

states(getting new task, etc.), stochastic approximation
algorithms with decreasing step size are not applica-
ble. In [Granichin, Vakhitov and Vlasov, 2010; Vakhi-
tov, Granichin and Gurevich, 2009; Granichin, Gure-
vich and Vakhitov, 2009; Borkar, 2008] the efficiency
of stochastic approximation algorithms with constant
step size was studied. Their applicability to the prob-
lem of workload balancing in centralized network sys-
tem where noisy information about workload and pro-
ductivity of nodes was analyzed in [Granichin, Gure-
vich and Vakhitov, 2009; Vakhitov, Granichin and Pan-
shenskov, 2009].
In [Rajagopal and Wainwright, 2011; Huang and

Manton, 2009] authors consider the consensus aver-
aging problem on graphs with noisy measurements of
its neighbors states, under general imperfect communi-
cations. They use stochastic approximation-type algo-
rithms with decreasing to zero step size.
In this paper we consider the consensus problem in

networks with noisy information (for example, about
the workload and productivity, switching topology and



delay). Such problem is important for control of
production networks, multiprocessor or multicomputer
networks, etc.
The paper is organized as follows. Section 2 intro-

duces the basic concepts. In Section 3 the consensus al-
gorithm is described. In Section 4 the main results con-
cerning performance of stochastic approximation algo-
rithm is given. Section 5 presents simulation results in
workload balancing system.

2 Preliminaries. Consensus problem on graphs
We explain some notation used in this article follow-

ing [Olfati-Saber and Murray, 2004; Huang, 2010]. For
a matrix A, the element at the ith row and the jth col-
umn is called the (i, j)-th element and denoted by aij .
For column vectors Z1, . . . , Zl, [Z1; . . . ;Zl] denotes
the column vector obtained by vertical concatenation
of the l vectors.
To describe the network topology we will use the

concepts of graph theory. A directed graph (digraph)
G = (N,E) consists of a set of nodes N = {1, . . . , n}
and a set of directed edges E. An edge is denoted by an
ordered pair (i, j) ∈ N ×N , where i ̸= j. A directed
path (from node i1 to node is) consists of a sequence of
nodes i1, . . . , is, s ≥ 2, such that (ik, ik+1) ∈ E. The
digraph G is strongly connected if from any node to any
other node, there exists a directed path. The adjacency
matrix of G is an n × n matrix AG = (ai,j)1≤i,j≤n,
where ai,j = 1 if (i, j) ∈ E, and ai,j = 0 otherwise.
If G is an undirected graph, each edge is denoted as an
unordered pair (i, j), where i ̸= j.
The dynamic network topology is modeled by a se-

quence of digraphs {Gt = (N,Et)}t≥0, where N =
{1, . . . , n} and Et ⊂ E changes with time. The ad-
jacency matrix AGt is a matrix-valued variable and
completely determines Et. If (j, i) ∈ Et , node i
receives information from node j which is called a
neighbor of node i. The neighbor set of node i is
N i

t = {j|(j, i) ∈ Et}. The neighbor set of subset NN

is defined by

NN :=
∪
i∈N

N i
t = {j ∈ N : i ∈ N, (i, j) ∈ E}. (1)

Let xi
t ∈ R denotes the state of node i at time

t ∈ {0, 1, 2, . . .}. We refer to Gt = (Gt, Xt) with
Xt = [x1

t , . . . , x
n
t ], t ≥ 0 as a network with the state

Xt ∈ Rn and topology Gt. The state of a node may
represent physical quantities including attitude, posi-
tion, temperature, voltage, and so on. We say that the
nodes i and j agree in a network if and only if xi

t = xj
t .

We say the nodes of a network have reached a consen-
sus if and only if xi

t = xj
t ∀i, j ∈ N, i ̸= j. Similar

definitions are given for continuous time, t ∈ [0,∞).
Let nodes of the graph be dynamic agents, described

by difference equations:

xi
t+1 = xi

t + f(xi
t, u

i
t), i ∈ N (2)

or differential equations

ẋi
t = f i(xi

t, u
i
t), i ∈ N. (3)

Then the dynamic network is a dynamical system with
a state (Gt, Xt) in which the state evolves accord-
ing to the network dynamics Ẋt = F (Xt, Ut) =
[f1(x1

t , u
1
t , . . . , f

n(xn
t , u

n
t ], where Ut = [u1

t , . . . , u
n
t ]

— vector of control variables.
We assume that at time t, if N i

t ̸= ∅, node i receives
(possibly outdated) noisy information from its neigh-
bors modeled by

yikt = xk
t−dik

t
+ wik

t , k ∈ N i
t , (4)

where wik
t is the noise and dikt ≥ 0 is an integer-valued

random delay. Since the system starts at t = 0, the
implicit requirement for the neighbor set is that

k ∈ N i
t ⇒ t− dikt ≥ 0. (5)

Each node uses its own state and its noisy measure-
ments to form its control strategy. We call a feedback
on observations

ui
t = kit(y

ij1
t , . . . , y

ijmi
t ) (6)

a protocol(control algorithm) with topology Gt. The
sets {j1, . . . , jmi} ∈ N

i,t ⊆ {i} ∪N i
t ∀i of nodes

j1, . . . , jmi ∈ N satisfy property: N
i ⊆ {i} ∪ N i

t .
If |N i| < n ∀i ∈ N then (6) is called a distributed
protocol.
Let (Ω,F , P ) be the underlying probability space and

we assume that part or all of the above-defined vari-
ables, vectors and matrices are random variables. De-
note the maximal set of communication links Emax =
{(k, i)|supt≥0P ((k, i) ∈ Et) > 0}. For convenience
of statistical modeling, we make the convention: wik

t

and dikt are defined for all (k, i) ∈ Emax. If (k, i)
does not appear in Et so that (4) does not physically
occur, we still introduce wik

t and dikt as dummy ran-
dom variables. If (k, i) /∈ Et, we set dikt = 0. Let
wik

t |(k, i) ∈ Emax be listed by a fixed ordering of (k, i)
to obtain a noise vector Wt of n1 dimension.
Definition 1: The n nodes are said to achieve asymp-

totic mean square consensus if E|xi
t|
2

< ∞, t ≥
0, 1 ≤ i ≤ n, and there exists a random variable x∗

such that limt→∞ E|xi
t − x∗|2 = 0 for 1 ≤ i ≤ n.

Definition 2: The n nodes to achieve asymptotic mean
square ε-consensus if E||xi

t||2 < ∞, t ≥ 0, 1 ≤ i ≤
n, and there exists a random variable x∗ such that
limt→∞ E||xi

t − x∗||2 ≤ ε for 1 ≤ i ≤ n.

3 Consensus protocols
We use two consensus protocols known from the liter-

ature [6-13].



1) For fixed or switching topology and zero communi-
cation delay the linear consensus protocol is as follows:

ui
t =

∑
j∈Ni

t

aij(xj
t − xi

t), (7)

where the set of neighbors N i
t of node i is variable in

networks with switching topology.
2) For fixed topology and communication delay dijt >
0 corresponding to the edge i, j ∈ E with the linear
time-delayed consensus protocol:

ui
t =

∑
j∈Ni

t

aij(xj

t−dij
t

− xi
t−dij

t
). (8)

Define the matrix Bt = (bi,kt )1≤i,k≤n as follows
[Huang, 2010]. If N i

t = ∅, define

bi,kt = 0 ∀k ∈ N. (9)

If N i
t ̸= ∅, define


bi,kt ∈ [b, b], k ∈ N i

t

bi,kt = 0, k /∈ N i
t ∪ {i}

bi,it = −
∑

k∈Ni
t
bi,kt

, (10)

where 0 < b ≤ b < ∞ — are two deterministic con-
stants. If the sequence {Gt}t≥0 changes randomly in
time, {Bt}t≥0 is a matrix-valued random process.
The above defined two types of consensus protocols

apply to the networks of discrete-time model (16). In
our case only noisy measurement can be used. There-
fore we apply stochastic approximation consensus pro-
tocol [Huang, 2010; Stankovic, Stankovic and Sti-
panovic, 2007]

ui
t = αt

∑
j∈Ni

t

bij(yijt − xi
t), (11)

where αt > 0 are step-sizes.

4 Analysis of the closed loop dynamics
In case when the step size αt does not tend to zero

asymptotic consensus is not achieved in general and
reasonable goal is to achieve an approximate con-
sensus (ε−consensus). To analyze system dynam-
ics in this case it is proposed to use the so called
method of continuous models [Derevitskyand and Frad-
kov, 1974; Derevitskyand and Fradkov, 1981], (also
called ODE approach [Ljung, 1977], or Derevitskii-
Fradkov-Ljung (DFL) scheme [Gerencser, 2006]). The

DFL scheme consists in the approximate replacement
of initial discrete-time stochastic equation

Xt+1 = Xt + αtΦ(Xt,Wt), t = 0, 1, 2, . . . , T
(12)

where Xt ∈ Rn — state vector, Wt ∈ Rm — random
disturbance vector, αt — gain parameter by the ordi-
nary differential equation

dX

dt
= Φ̄(X), (13)

where Φ̄(X) = EΦ(X,Wt). It was shown in [Dere-
vitskyand and Fradkov, 1974; Derevitskyand and Frad-
kov, 1981] under small additional regularity assump-
tions the trajectories {Xt} of (12) are close in the
mean-square sense to the trajectories of (13) {X̄(τt)},
where τt = α0 + · · ·+ αt−1 namely,

E max
0≤τt≤τmax

∥Xt − X̄(τt)∥2 ≤ C1e
C2τmaxα, (14)

where α = max
1≤t≤T

αt, C1 > 0, C2 > 0, α — maximal

step size. In [Derevitskyand and Fradkov, 1974; Dere-
vitskyand and Fradkov, 1981] it was shown also that if
the continuous time model (13) is exponentially stable
then solutions of (12) and (13) are close over infinite
time interval:

E∥Xt − X̄(τt)∥2 ≤ Cαµ (15)

for some µ, 0 < µ < 1. The same is valid for sys-
tems with switches, if the intervals between switches
are separated from zero. Based on the results of [Dere-
vitskyand and Fradkov, 1974; Derevitskyand and Frad-
kov, 1981] we arrive at the following statement.
Theorem 1: Let the number of switches be finite

at each bounded time interval and intervals between
switches (dwell time) are separated from zero. Graphs
Gt are strongly connected for all t and noise vectors
Wt, t ≥ 0 are centered and independent. Then in-
equalities (14), (15) hold.
Theorem 1 allows to reformulate the problem of study

the dynamics of workload balancing as investigation of
the continuous model (13) which can be performed ei-
ther analytically or numerically.

5 Simulation results for workload balancing prob-
lem

To illustrate the theoretical results we give an exam-
ple of simulation for the workload balancing system of
computer network.
We consider the system of separation the same type

of tasks between different nodes for parallel comput-
ing with feedback. Denote N = {1, . . . , n} as a set of
intelligent agents (nodes), each of which serves the in-
coming requests a first-in-first-out queue. We assume



that all agents receive the same type tasks, which can
be divided into equal in complexity atomic units. Tasks
are received at different times and on different nodes
randomly. Size of each task, i. e, its complexity, in sec-
onds is assumed known.
At any time t state of agent i, i = 1, . . . , n is described

by two characteristics:
1) qit — queue length of the atomic elementary tasks

at time t
2) pit — productivity of the node (the number (or per-

centage) of carried out atomic tasks in the previous time
step, subject to full load).
In what follows we assume pit do not depend on time,

i. e. pit ≡ pi. Then the state of the node is defined as
xi
t = qit.
Problem for the network of agents is to carry out se-

quentially received tasks. If all tasks are carried out
only by the agent by which they were received. The
implementation time of all tasks defined as: Tm =
maxi q

i
0/p

i. To minimize the implementation time of
all tasks redistribution of tasks among agents should be
done.
The new tasks can appear in network over time. New

tasks can come directly to any of the n nodes. Each
node i at time t can “see” only neighbors of the set
N i

t . Moreover, we assume that graph is strongly con-
nected, i. e., from each node there is a directed path to
any other. We assume that the tasks are sent and re-
ceived at discrete time instants: t = 0, 1, 2, . . .. Then
the dynamics of each node are described by the follow-
ing equations:

˙qit+1 = qit − pi + ui
t i = 1, . . . , n, t = 0, 1, 2, . . . .

(16)
At each time t a node i can receive from its ”visible”

neighbors j ∈ N i
t following information:

1) observations about the loading yijt ;
2) pjt — productivity of the node.
The problem is to make a protocol of communication

between agents, providing that all nodes are equally
loaded. It means that if the system will not receive new
tasks so all nodes should finish working at the same
time. Since qit are random variables the problem is
to achieve asymptotic consensus which will be under-
stood in the mean square sense, see Definition 1.
Fig. 1 shows a computing network of the six agents,

indicating the possible communication links, some of
which may be “closed” and “open up” over time.

Fig. 1. Maximal set of communication links.

We use stochastic approximation algorithm for con-
sensus problem in the following form:

xi
t+1 = xi

t − pi + αt

∑
j∈Ni

t

(yjt /p
j − xi

t/p
i), (17)

where αt is a sequence of positive step sizes. xi
t denote

the state of node i at time t. pi is a productivity of the
node i.
We carry out simulation for the system shown in Fig.

1, consisting of 6 computing blocks. The following ini-
tial node workloads were chosen: x1

0 = 5000, x2
0 =

3500, x3
0 = 2300, x4

0 = 3150, x5
0 = 7400, x6

0 =
1100. Productivity of the nodes: p1 = 2.5, p2 =
0.5, p3 = 1.7, p4 = 1.1, p5 = 2.7, p6 = 4.2 and
they are not changing in time.
The initial network topology is shown in Fig. 2A. The

network topology changes twice over time: Fig. 2B
and Fig. 2C.

Fig. 2. Network topology.

The system receives new orders in different nodes
while working (when t = 150, t = 450, t = 550). We
use constant step size αt = 0.1. The states of nodes
xi
t are shown in Fig. 3. The network topology changes

twice — at time t = 100 and in t = 700.

Fig. 3. States of nodes in nonstationary case

In Fig. 4 we see normed state variables for nonstation-
ary case.



Fig. 4. Normed state variables in nonstationary case

For estimating the asymptotic mean square conver-
gence to consensus of algorithm we denote Err =∑

i

√
(xi

t/p
i
t−x∗)2

n — characteristic of convergence rate
of the algorithm (17). It is shown in Fig. 6.

Fig. 6. Asymptotic mean square convergence to consensus

6 Conclusion
In the paper the decentralized workload balancing

problem with incomplete information for networks
with switching topology is considered.
Stochastic approximation algorithm is used to achieve

asymptotic mean square consensus. In the case when
the step size of the algorithm does not tend to zero
asymptotic consensus is not achieved in general and
we considered approximate consensus (ε−consensus).
To analyze system dynamics in this case we used
the method of continuous models (ODE approach or
Derevitskii-Fradkov-Ljung (DFL) scheme).
The simulation results for decentralized workload bal-

ancing of computing network system demonstrate good
performance of the algorithm. After receiving each
new order the algorithm converges in about 100-150
steps.
In future work it would be of interest to analyze the al-

gorithm under the influence of different types of noise.

Also attempts will be made to improve the algorithm
for use in the case of biased measurement errors.
The work was supported by Russian Federal Program

”Cadres” (contract 16.740.11.0042) and by RFBR
(project 11-08-01218).
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