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1. INTRODUCTION

Solution of many nonparametric statistical prob-
lems (such as identification, classification, filter-
ing, prediction, etc.) is based on estimation of
certain probabilistic characteristics of the follow-
ing type expressions:

J(x) =

= H
(
{ai(x)}, {a(1j)

i (x)}, i = 1, s, j = 1,m
)

=

= H
(
a(x), a(1j)(x)

)
. (1)

Here x ∈ Rm, H(t) : R(m+1)s → R1 is a given
function,

a(0j)(x) = a(x) = (a1(x), . . . , as(x)) ,

a(1j)(x) =
(
a

(1j)
1 (x), . . . , a(1j)

s (x)
)
,

ai(x) =
∫
gi(y)f(x, y)dy, i = 1, s,

a
(1j)
i (x) =

∂ai(x)
∂xj

, i = 1, s, j = 1,m,

where g1, . . . , gs are known Borel functions,∫
≡
∫
R1

, f(x, y) is an unknown probability density

function (p.d.f.) for the observed random vector
Z = (X,Y ) ∈ Rm+1.

If gi(y) ≡ 1, then

ai(x) =
∫
f(x, y)dy = p (x),

where p (x) is the marginal probability density of

the random variable X, and f(y|x) =
f(x, y)
p (x)

is a

conditional probability density.



Remark 1. Note that in (1) some variables of func-
tion H(·) may be absent (for example all deriva-
tives).

Here are some well known examples of such kind
of functions:

– the regression line

r(x) =
∫
yf(y|x)dy,

(H(a1, a2) =
a1

a2
, g1(y) = y, g2(y) = 1);

– the conditional initial moments

µm(x) =
∫
ymf(y|x)dy,

(H(a1, a2) =
a1

a2
, g1(y) = ym, m ≥ 1, g2(y) = 1);

– the conditional variance

D(x) = µ2(x)− r2(x),

(H(a1, a2, a3) = a1/a3 − (a2/a3)2, g1(y) = y2,

g2(y) = y, g3(y) = 1);

– the conditional standard deviation

σ(x) =
√
D(x),

(H(a1, a2, a3) =
√
a1/a3 − (a2/a3)2);

– the conditional central moments

Vm(x) =
∫

(y − r(x))mf(y|x)dy,

(g1(y) = y, g2(y) = y2, . . . ,

gm(y) = ym, gm+1(y) = 1);

– the conditional coefficient of skewness

β1(x) =
E((Y − r(x))|x)3

[D(Y |x)]3/2
,

H(a1, a2, a3, a4) =
b4 − 3b3b2 + 2b32

(b3 − b22)3/2
,

bi =
ai
a1
, qi(y) = yi−1, i = 1, 4;

– the sensitivity functions. For example

Tj(x) =
∂r(x)
∂xj

; H(a1, a2, a
(1j)
1 , a

(1j)
2 ) =

=
a

(1j)
1

a2
− a1a

(1j)
2

a2
2

= b
(1j)
1 , g1(y) = y, g2(y) = 1.

2. PROBLEM STATEMENT

Take the following expression as an estimate of
the functional a(x) = a(0j)(x) (r = 0) and its
derivatives a(1j)(x) (r = 1) at a point x:

a(rj)
n (x) =

1
n

n∑
i=1

g(Yi)
hm+r
i

K(rj)

(
x−Xi

hi

)
. (2)

Here Zi = (Xi, Yi), i = 1, n, is the (m + 1)-
dimensional random sample from p.d.f. f(x, y),
(hi) is a sequence of positive bandwidths tending

to 0 as i → ∞, K(0j)(u) = K(u) =
m∏
i=1

K(ui)

is a kernel m-dimensional multiplicative function
which does not need to possess the characteristic
properties of p.d.f.,

K(1j)(u) =
∂K(u)
∂uj

=

= K(u1) · · ·K(uj−1)K(1)(uj)K(uj+1) · · ·K(um),

K(1)(uj) =
dK(uj)
duj

,

a(rj)
n (x) =

(
a

(rj)
1n (x), . . . , a(rj)

sn (x)
)
,

g(y) = (g1(y), . . . , gs(y)) .

Note that (2) can be computed recursively by

a(rj)
n (x) = a

(rj)
n−1(x)−

− 1
n

[
a

(rj)
n−1(x)− g(Yn)

hm+r
n

K(rj)

(
x−Xn

hn

)]
. (3)

This property is particularly useful in large sample
size since (3) can be easily updated with each addi-
tional observation. The recursive kernel estimate
of p (x) (m = 1, s = 1, g(y) = 1, H(a1) = a1)
was introduced by Wolverton and Wagner (1969)
and apparently independently by Yamato (1971),
and has been thoroughly examined in (Wegman
and Davies, 1979). Semi-recursive kernel type es-
timates of conditional functionals

b(x) = (b1(x), . . . , bs−1(x))

bi(x) = ai(x)/p (x) =
∫
gi(y)f(y|x)dy

at a point x are designed as

bn(x) =

n∑
i=1

g(Yi)
hmi

K
(
x−Xi

hi

)
n∑
i=1

1
hmi

K
(
x−Xi

hi

) =



=
an(x)
p n(x)

=
a

(0j)
n (x)

a
(0j)
sn (x)

, gs(x) = 1. (4)

The substitution estimates are often used for the
estimation of ratios. The possible unboundedness
of the ratio estimates at some points (see (Cramér,
1975) for details) creates a difficulty in the job.
Such estimates are called semi-recursive because
they can be updated sequentially by adding ex-
tra terms to both the numerator and denomina-
tor when new observations became available. If
g1(y) = y (s = 2) we obtain semi-recursive ker-
nel type estimates of the regression line (see (Ah-
mad and Lin, 1976; Buldakov and Koshkin, 1977;
Devroye and Wagner, 1980)). Weak and strong
universal consistency of such estimates was inves-
tigated in (Krzyźak, and Pawlak, 1984; Greblicki,
and Pawlak, 1987; Krzyźak, 1992; Györfi, et al.,
1998; Walk, 2001). For estimation of (1) we are
going to use the following statistic (the substitu-
tion estimate)

J n(x) = H
({
a(rj)
n (x)

}
, j = 1,m, r = 0, 1

)
.

(5)

But the studying of the MSE for J n(x) has some
difficulties due to the possible instability (for ex-
ample, the denominator in (4) may be close to
zero), and the theorems for MSE making use of the
dominant sequences can not be applied (Cramér,
1975; Koshkin, 1999). The problem can be re-
solved by using a piecewise smooth approxima-
tion. Therefore, similar to (Penskaya, 1990; Kosh-
kin, 1999) we use the estimate

J̃n, ν(x) =
J n(x)

(1 + δn, ν |J n(x)|τ )ρ
, (6)

where τ > 0, ρ > 0, ρτ ≥ 1, (δn) ↓ 0 as n→∞.

3. MEAN SQUARE ERRORS

Denote by sup
x

= sup
x∈Rm

, Tj =
∫
ujK(u)du,

j = 1, 2, . . . .

Definition 1. A function H(z) : Rs → R1 belongs
to the class Nν(t) (H(z) ∈ Nν(t)) if it is con-
tinuously differentiable up to the order ν at the
point t ∈ Rs. A function H(z) ∈ Nν(R) if it is
continuously differentiable up to the order ν for
any z ∈ Rs.

Definition 2. A Borel function K(u) ∈ A(r),

r = 0, 1 (A(0) = A) if
∫
|K(r)(u)| du < ∞,

and
∫
K(u) du = 1.

Definition 3. A Borel function K(u) belongs
to the class A(r)

ν (A(0)
ν = Aν) if K(u) ∈ A(r),∫

|uνK(u)|du < ∞, Tj = 0, j = 1, . . . , ν − 1,

Tν 6= 0, and K(u) = K(−u).

Definition 4. A sequence (hn) belongs to the class
H(m+ r + q) if

(hn + 1/(nhm+r+q
n )) ↓ 0,

and

1
n

n∑
i=1

hλi = Sλh
λ
n + o(hλn),

where λ is a real number, Sλ is some constant in-
dependent on n.

Definition 5. Let tn, X1, . . . , Xn are vectors, and
tn = tn(X1, . . . , Xn). A sequence of functions
{H(tn)} belongs to the classM(γ) if for any pos-
sible values X1, . . . , Xn the sequence {|H(tn)|}
is dominated by a sequence of numbers (C0d

γ
n) ,

(dn) ↑ ∞ as n→∞, 0 ≤ γ <∞, C0 is a constant.

Put

A = A(x) =
({
a(rj)(x)

}
, r ∈ [0, 1], j = 1,m

)
,

(7)

Htjr = ∂H(A)/∂a(rj)
t ;

H
({
a(rj)
n (x)

}
, r ∈ [0, 1] j = 1,m

)
= H(An);

at, p(x) =
∫
gt (y)gp (y) f(x, y) dy;

a1+
t, p(x) =

∫
|gt (y)gp (y)| f(x, y) dy, t, p = 1, s;

as+(x) =
∫
|gs(y)|f(x, y)dy;

for r, q = 0, 1

L(r, q) =
∫
K(r)(u)K(q)(u) du;

B(r, q)
t, p = L(r, q)

(
L(0, 0)

)m−1

at, p (x);

ω
(rj)
iν (x) =

Tν
ν!

m∑
l=1

∂ νa
(rj)
i (x)
∂xνl

.

Remark 2. Note that in (7) the notation r ∈ [0, 1]
means r = 0 or r = 1, or r = 0, 1. For instance for
the last example in Introduction r = 0, 1 and for
the rest examples r = 0.

Let the set

Q =

 {0} if ∀j r = 0;
{1} if ∀j r = 1;
{0, 1} if ∃j r = 0

∧
r = 1



in formula (7).

Theorem 1 (MSE of the estimate J n(x)).
Let t, p = 1, s, j = 1,m, r ∈ Q,
1) functions at, p (z) ∈ N0(R);
2) sup

x
a1+
t, p (x) <∞, sup

x
a1+
t (x) <∞,

sup
x
a4+
t (x) <∞;

3) the kernel function K(u) ∈ A(max(r))
ν ,

sup
x

∣∣∣K(r)(x)
∣∣∣ < ∞, K(r)(z) ∈ N0(R) if the inte-

ger r takes both the value 0 and the value 1 (i. e.
Q = {0, 1}), lim

|u|→∞
K(u) = 0 if 1 ∈ Q;

4) a (rj)
t (z) ∈ Nν(R), sup

x
| a(rj)

t (x)| <∞,

sup
x

∣∣∣∣∣ ∂ νa
(rj)
t (x)

∂xl∂xt . . . ∂xq

∣∣∣∣∣ <∞, l, t, . . . , q = 1,m;

5) the sequence (hn) ∈ H(m+ 2 max(r)).
Moreover, if
6) H(z) ∈ N2(A);
7) {H(An)} ∈ M(γ), 0 ≤ γ ≤ 1/4,
then MSE u2(J n(x)) of the estimate (1) can be
written in the form

u2(J n(x)) =
s∑

t, p=1

m∑
j, k=1

∑
r, q∈Q

HtjrHpkq ×

×

[
S−(m+2 max(r, q))

B(r, q)
t, p

nhm+r+q
n

+

+S2
ν ω

(rj)
tν (x)ω(qk)

p ν (x)h2ν
n

]
+

+O

([
1

nh
m+2 max(r)
n

+ h2ν
n

] 3
2
)
.

As above mentioned restriction 7) of Theorem 1
is the most problematical and we don’t need one
when piecewise smooth approximation (6) is used.

Theorem 2 (MSE of the piecewise smooth approx-
imation estimate J̃n, ν(x)). Suppose that condi-
tions 1)–6) of Theorem 1 hold and restriction 7)
is replaced by
7∗) J(x) = H(A(x)) 6= 0 or τ ≥ 4,
τ is a positive integer. Then as n→∞

u2(J̃n(x)) ∼ u2(J n(x)).

4. ALMOST SURELY CONVERGENCE

Theorem 3. Suppose the conditions of Theorem 1
(or Theorem 2) hold, and, moreover,∫

|K(r)(u)| du <∞,

∞∑
n=1

(
n−2h−2(m+2 max(r))

n + h4ν
n

)
<∞.

Then the sequence of estimates {Jn(x)} (or
{J̃n(x)}) as n → ∞ converges almost surely to
J(x).

5. ESTIMATION OF PRODUCTION
FUNCTION AND ITS CHARACTERISTICS

Example 1. Let r(x), x = (x1, x2) ∈ R2 be a re-
gression model of production function,

a(x) = (a1(x), a2(x)), a1(x) =
∫
yf(x, y)dy,

a2(x) =
∫
f(x, y)dy = p (x). Here x1 > 0 is a

capital input, x2 > 0 is a labor input, y > 0 is a
product, and f(x, y) > 0 only if x1 > 0, x2 > 0,
y > 0. Then

Jn(x) = rn(x) =

n∑
i=1

Yi
h2
i

K
(
x−Xi

hi

)
n∑
i=1

1
h2
i

K
(
x−Xi

hi

) =

=
a

(0j)
1n (x)

a
(0j)
2n (x)

=
a1n(x)
p n(x)

. (8)

Let K(u) = K(u1)K(u2), K(u) ∈ Aν , and
(hn) ∈ H(m). To find the MSE of the estimate
rn(x), we use Theorem 1. In view of 1)–4) con-
ditions of the theorem we have: functions ai(x),
i = 1, 2, and their derivatives are continuously dif-
ferentiable up to the order ν for any z ∈ R2, and

the function
∫
y4f(x, y)dy is bounded on R2. Also

sup
u∈R1

|K(u)| < ∞. If p (x) > 0, then condition 6)

is fulfilled obviously. We can not find the domi-
nant sequence (dn) (condition 7)) of Theorem 1,
since the denominator in (8) may be equal to zero.
Therefore it seems impossible to determine the
MSE of the estimation rn(x), ν > 2 (Nadaraya,
1964; Nadaraya, 1965; Nadaraya, 1983; Collomb,
1976). But it is shown in these papers that we
can find the dominant sequence with γ = 0 under
ν = 2 according to Definition 5 if, for example,
K(u) ≥ 0, and Y <∞. In this case as n→∞

u2(rn(x)) =
2∑

i, p=1

HiHp

(
S−2

CBi, p
nh2

n

+

+S2
2 ωi2(x)ωp 2 (x)h4

n

)
+O

([
1
nh2

n

+ h4
n

]3/2
)
,

where

H1 =
1

p (x)
, H2 = − r(x)

p (x)
; B1,1 =

∫
y2f(x, y)dy,



B1, 2 = B2,1 =
∫
yf(x, y)dy, B2, 2 = p (x);

ω12(x) =
T2

2

(
∂ 2a1(x)
∂x2

1

+
∂ 2a1(x)
∂x2

2

)
,

ω22(x) =
T2

2

(
∂ 2p (x)
∂x2

1

+
∂ 2p (x)
∂x2

2

)
;

C =
∫
K2(u)du.

For ν > 2 we can use the piecewise smooth ap-
proximation r̃n(x):

r̃n(x) =
rn(x)

(1 + δn, ν | rn(x)| τ )ρ
, (9)

where τ > 0, ρ > 0, ρτ ≥ 1, δn, ν = O
(
h2ν
n +

+1/(nh2
n)
)
, (δn, ν) ↓ 0 as n→∞. In view of con-

dition 7) of Theorem 2 it is enough to take even
τ ≥ 4, and as n→∞

u2(r̃n(x)) =
2∑

i, p=1

HiHp

(
S−2

CBi, p
nh2

n

+

+S2
ν ωiν(x)ωpν (x)h2ν

n

)
+O

([
1
nh2

n

+ h2ν
n

]3/2
)
,

where

ω1ν(x) =
Tν
ν!

(
∂ νa1(x)
∂xν1

+
∂ νa1(x)
∂xν2

)
,

ω2ν(x) =
Tν
ν!

(
∂ νp (x)
∂xν1

+
∂ νp (x)
∂xν2

)
.

Example 2. In the case of the marginal productiv-

ity function T1(x) =
∂r(x)
∂x1

a dominant sequence

finding difficulties force us to use the piecewise
smooth approximation T̃1n(x) at once:

T̃1n(x) =
T1n(x)

(1 + δn|T1n(x)| τ )ρ
,

where

T1n(x) =
1
hi


n∑
i=1

YiK(11)

(
x−Xi

hi

)
n∑
i=1

K
(
x−Xi

hi

) −

−

n∑
i=1

YiK
(
x−Xi

hi

) n∑
i=1

K(11)

(
x−Xi

hi

)
[
n∑
i=1

K
(
x−Xi

hi

)]2

 ,
(10)

K(11)(u) = K(1)(u1)K(u2). The kernel K(u) has
to satisfy the complementary conditions (added
to Example 1 restrictions): sup

u∈R1
|K(1)(u)| < ∞,

lim
|u|→∞

K(u) = 0, K(α)(z) ∈ N0(R), α = 1, 2;

furthermore, the sequence (hn) has to satisfy the
condition lim

n→∞

(
hn + (nh3

n)−1
)

= 0. To use The-

orem 2 result and obtain u2
(
T̃1n(x)

)
functions

a1(x), a2(x) and their derivatives up to the or-
der (ν+1) need to be continuous and bounded on
R2.

Example 3. Let Tj(x) = ∂r(x)/∂xj and

MRTS12, n(x) = T1n(x)/T2n(x)

be the estimate of the marginal rate of techni-
cal substitution of an input x2 with an input x1,
where the denominator T2n(x) is given by (10),
where K(11)(u) is replaced by

K(12)(u) = K(u1)K(1)(u2).

The piecewise smooth approximation of the es-
timate MRTS12, n(x) can be written easily. In
view of condition 6) of Theorem 1 the inequality

r(x) 6= ∂a1(x)
∂x2

/
∂p (x)
∂x2

have to hold in addition

to Example 2 restrictions.
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