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Abstract
In this study, feedback control system for synchro-

nization of Generalized Chua’s circuits (GCC) has
been implemented on Field Programmable Gate Ar-
ray (FPGA). The feedback control rule has been de-
rived by feedback linearization method. In order to
implement the designed synchronized system, Matlab
Simulink design for the GCCs has been translated to
Xilinx System Generator design to generate a Very-
High-Speed Integrated Circuits Hardware Description
Language (VHDL) code which is used to produce a
bitstream file. By Xilinx Integrated Software Environ-
ment (ISE) program, a VHDL code is converted to a
bitstream file which has been embedded into FPGA by
Field Upgradeable Systems Environment (FUSE). Fi-
nally, the synchronized GCCs states and attractor have
been observed on the HP 54540C oscilloscope.
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1 Introduction
Synchronization of chaos is an important topic in the

nonlinear science. There are various notions of chaos
synchronizations such as generalized synchronization
[Afraimovich, Verichev and Rabinovich 1987], com-
plete synchronization [Pecora and Carrol 1991; Fe-
mat and Solis-Perales 2008], partial synchronization
[Maistrenko and Popovych 2000] and phase synchro-
nization [Rosenblum, Pikovsky and Kurths 1997]. The
pioneering work [Pecora and Carrol 1991], has in-
creased the interest in synchronization after having re-
cently found many applications particularly in telecom-
munications [Abel and Schwarz 2002], in mechani-
cal systems [Blekhman, Landa and Rosenblum] and in
control theory [Nijmeijer 2001]. Some different forms
of synchronization of chaotic systems such as practical
synchronization and almost synchronization have been
studied by [Femat and Solis-Perales 1999].

The paper is organized as follows: In Section 2 the
complete synchronization problem and the feedback
linearization method are explained based on the liter-
ature [Vidyasagar 1993; Fradkov 2007]. In Section 3,
the control command for complete synchronization of
GCCs have been derived. In Section 4, this control sys-
tem is simulated by Matlab Simulink then the simulated
design is converted to Xilinx System Generator design
and the designed synchronized GCCs is implemented
by FPGA by using ISE and FUSE programs. To the
best of our knowledge, although FPGA implementa-
tion of chaotic circuits exist in the literature [Sobhy,
Elkouny, Aseeri and Zakria 2003; Wang 2008], the im-
plementation of synchronized chaotic system by FPGA
is given as a first time by this manuscript. The imple-
mentation results of the GCCs have been observed on
the HP54540 scope. Finally, in Section 5, conclusions
are presented.

2 Complete Synchronization
In this study, the complete synchronization problem

will be considered as the tracking of the master system
trajectories by the slave system trajectories. The differ-
ence between master and slave system is called as the
error system which can be constructed using the defini-
tion given below.
Definition 2.1: Let ẋ = FM (x) and ẏ = FS(y) +
g(y)u(y) be two chaotic systems in a manifold M ⊂
Rn. FM , FS smooth vector fields with scalar output
functions sM = h(x), sS = h(y) and x, y ∈ Rn

and g(y) ∈ Rn is a smooth input vector [Femat and
Solis-Perales 2008] where subscripts M and S stands
for master and slave, respectively.

ẋ = FM (x), (1)
ė = FM (x)− FS(x, e)− g(x, e)u, (2)

se = h(x, e), (3)



where the error is defined as e = x − y and se is the
output of the synchronization error system then the ex-
tended synchronization error system can be defined in
affine form as:

Ẋ = F(X) + G(X)u, (4)

where X = [x, e]T , F(X) = [FM , FM −
FS ]T and G(X) = [0,−g(x, e)]T .

The complete synchronization is achieved if and
only if all the states of both the master and the
slave systems are exactly synchronized [Femat and
Solis-Perales 2008]. In order to obtain complete
synchronization, the synchronization error system
in Eq. (2) should be stabilized around the point
e∗ = 0. The definitions and the theorems given in
the following sequel will be used to find the proper
invertible transformation which will be used to derive
the control command for synchronization.
Definition 2.2: System (4) is said to have relative
degree ρ, ρ ≤ n at point x0 ∈ Rn with respect to the
output

se = h(x)

if for any x ∈ Ω, where Ω is some neighborhood of x0,
the following conditions are valid

(i)LGLk
F h(x) = 0, k = 0, 1, ...ρ − 2, ∀x in a

neighborhood of x0 and k < ρ− 1,
(ii)LGLρ−1

F h(x0) 6= 0.

where Lψφ(x) ,
n∑

i=1

∂φ

∂xi
ψ(x) stands for the

Lie derivative of the vector function φ along the vector
field ψ. Relative degree ρ is exactly equal to the
number of times one has to differentiate the output
in order to have the input explicitly appearing in the
equation which describes the evolution of s

(r)
e (t) in

the neighborhood of x0 [Fradkov 2007; Vidyasagar
1993].
Theorem 2.3: System (4) is feedback linearizable in

the neighborhood Ω of a point x0 ∈ Rn if and only if
there exists a smooth scalar function h(x) defined in Ω
such that the relative degree ρ of (3) and (4) is equal to
n [Fradkov 2007].
Theorem 2.4: Consider the system (4). Suppose

that there exist 2n − ρ functions Φi(x, e) such that
LGΦi(x, e) = 0, i = ρ + 1, ..., 2n. This system is
feedback linearizable at (x, 0) if and only if there ex-
ists a function h(x, e) such that
(i) < ∂h, adk−1

F G > (x, e) = 0 for k = 1, ..., ρ −
1; ρ > 1 and (x, e) in a neighborhood Ω of (x, 0),

(ii) < ∂h, adi
F G > (x, 0) 6= 0 for i = ρ, ..., n at (x, 0),

where ρ = d stands for the dimension of the tangent
space and the accessibility distribution function C(x, e)
can be expressed as Cd = span{add−1

F G} where
adF = [F, G] and add−1

F = [F, [F, [..., [F, G], ..., ]]] for
d = 1, ..., n where [F, G] is called the Lie bracket of F
and G [Femat and Solis-Perales 2008].
Corollary 2.5: Two chaotic systems with the same or-

der are completely synchronizable if and only if the dy-
namical error system is feedback linearizable at (x, 0)
[Femat and Solis-Perales 2008].
Feedback linearization problem: The system in (4)

is called feedback linearizable if there exist a smooth
reversible change of coordinates z = Φ(x, e) and
smooth transformation of the feedback [Vidyasagar
1993; Andrievskii and Fradkov 2003].

u = λ(x, e) + µ(x, e)v, (5)

where v ∈ Rm is the new control if the closed-loop
is linear and then the resulting variables z and v satisfy
linear dynamical system in the form of

ż = Az + bv (6)

z = Φ(x, e) = [h(x, e), LF h(x, e), ..., Lρ−1
F h(x, e)]T

u =
1

LGLρ−1
F h(x, e)

(−Lρ
F h(x, e) + v) (7)

λ(x, e) =
−Lρ

F h(x, e)
LGLρ−1

F h(x, e)

µ(x, e) =
1

LGLρ−1
F h(x, e)

ν = Ki(zi − z∗i )

where Ki with i = 1, ..., ρ are the control gains and
chosen in such a way that the closed-loop subsystem
ż converges to the origin and z∗i ’s are the coordinates
of the stabilization point. In order to achieve complete
synchronization z∗i ’s are set to zero.

3 Synchronization of Generalized Chua’s circuits
In this manuscript master system has been chosen as

the GCC [Suykens and Vandewalle 1997] which is de-
scribed by

ẋ1 = α[x2 − f(x1)]
ẋ2 = x1 − x2 + x3 (8)
ẋ3 = −βx2



where

f(x1) = m2q−1x1 +
1
2

2q−1∑

i=1

(mi−1 −mi)(|x1 + ci| − |x1 − ci|)

In order to obtain 7-scroll attractor in the GCC, the pa-
rameters have been chosen [Yalcin, Suykens and Van-
dewalle 2005] as below:

α = 9
β = 100/7
q = 3
c = [1 2.15 3.6 6.2 9 14 25]

m = [0.9/7 − 3/7 3.5/7 − 2.4/7
2.52/7 − 1.68/7 2.52/7 − 1.68/7]

Driving the master system by control input u and
changing the parameter β to γ in Eq. (8) then describ-
ing equations for the slave system can be written as:

ẏ1 = α[y2 − f(y1)] + g1(y)u
ẏ2 = y1 − y2 + y3 + g2(y)u (9)
ẏ3 = −γy2 + g3(y)u

and the error dynamics in Eq. (2) is written as:

ė1 = α[e2 − f(e1)]− g1(x, e)u
ė2 = e1 − e2 + e3 − g2(x, e)u (10)
ė3 = −βx2 + γ(x2 − e2)− g3(x, e)u

then, the extended synchronization error system dy-
namics in Eqs. (1), (2) for GCCs can be obtained as:

ẋ1 = α[x2 − f(x1)]
ẋ2 = x1 − x2 + x3

ẋ3 = −βx2 (11)
ė1 = α[e2 − f(e1)]− g1(x, e)u
ė2 = e1 − e2 + e3 − g2(x, e)u
ė3 = −βx2 + γ(x2 − e2)− g3(x, e)u

F(X) and G(X) can be found as in Eq. (4)

F =




α[x2 − f(x1)]
x1 − x2 + x3

−βx2

α[e2 − f(e1)]
e1 − e2 + e3

(γ − β)x2 +−γe2




, G =




0
0
0

−g1(x, e)
−g2(x, e)
−g3(x, e)




(12)

The corresponding accessibility distribution func-
tion C3(x, e) can be calculated where C3(x, e) =
span{G, adF G, ad2

F G}. Let G be defined as G =
[0, 0, 0, −g1, −g2, −g3]T with g1, g2 and g3 con-
stants, then adF G and ad2

F G will be calculated to ob-
tain C3(x, e).

C3(x, e) = span








0 0 0
0 0 0
0 0 0
−g1 −g1αf(ė1) + g2α a∗

−g2 g1 − g2 + g3 b∗

−g3 −γg2 c∗








(13)

a∗ = αf(ė1)[g2α− g1αf(ė1)] + α(g2 − g1 − g3)
b∗ = g1[αf(ė1) + 1] + g2(γ − α− 1) + g3

c∗ = γ(g1 − g2 + g3)

For simplicity by setting g1 = 0, g2 = 0 and g3 = 1
then C3(x, 0) can be written as in Eq. 14.

C3(x, 0) = span








0 0 0
0 0 0
0 0 0
0 0 −α
0 1 1
−1 0 γ








(14)

In order to derive the control command, we need to de-
termine the dimension of the tangent space d which is
generated by the corresponding distribution so the con-
ditions of Theorem 2.4 must be satisfied. The dimen-
sion of the tangent space d is determined to be equal to
3 since the conditions below have been satisfied.

− ∂h

∂e3
= 0

∂h

∂e2
= 0

−α
∂h

∂e1
+

∂h

∂e2
+ γ

∂h

∂e2
6= 0



For this case h(x, e) = e1 can be chosen as an output
function which satisfies conditions of Theorem 2.4 then
d = ρ = Dim(C3(x, 0)) = 3, ∀x ∈ R3 and consider-
ing Theorem 2.3, to have feedback linearizable system
for ρ = 3, the conditions below must be fulfilled.

LGh(x, e) = 0
LGLF h(x, e) = 0
LGL2

F h(x, e) 6= 0

then the transformation can be found as

z1 = h(x, e) = e1

z2 = LF h(x, e) = ė1 = α[e2 − f(e1)] (15)
z3 = L2

F h(x, e) = ë1 = α[e1 − e2 + e3 − f(ė1)]

The complementary functions which should satisfy
such that LGΦi(x, e) = 0, i = 2n − ρ, ...2n can be
found as

z4 = x1

z5 = x2 (16)
z6 = x3

Eqs. (16) and (17) constitute an invertible transforma-
tion around (x, 0) which means there is a proper con-
trol command u(x, e) such that the slave system trajec-
tory tracks master system trajectory exactly. The trans-
formed system can then be written as follows:

ż1 = z2

ż2 = z3

ż3 = L3
F h(x, e) + LGL2

F u(x, e)
ż4 = ẋ1

ż5 = ẋ2

ż6 = ẋ3

where the control command in Eq. (7) can be found as:

u(x, e) =
1

LGL2
F h(x, e)

(−L3
F h(x, e) + κ1z1 +

κ2z2 + κ3z3)

and hence based on Eq. (15) and Definition 2.2
the control command can be obtained as:

u(x, e) = α[e2 − f(e1)] − (e1 − e2 + e3) +

(γ − βx2 − γe2 − f(ë1) − 1
α
{κ1e1 + κ2α[e2 −

f(e1)] + κ3α[e1 − e2 + e3 − f( ˙e1)]}

κ1 = −50, κ2 = −25 and κ3 = −20 have been
chosen to make the subsystem (z1, z2, z3)T is stable at
(x, 0).

4 Simulation and implementation results of the
designed synchronized system

After deriving the control command for the GCCs
with different initial conditions and different parame-
ters, Matlab Simulink has been used to simulate pro-
posed system. The GCC master and the slave sys-
tem block and the designed control system is built with
Simulink blocks.
The simulation results of the waveforms x1(t) and

y1(t); x2(t) and y2(t); x3(t) and y3(t) can be seen in
Fig. (1). In the same figure, the error signals e1(t),
e2(t) and e3(t) approaching to zero after some short
transient can be seen.
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Figure 1. Simulink - 7-scroll Chua’s Master and Slave System
state variables (x1(t), y1(t)), (x2(t), y2(t)), (x3(t), y3(t))
and e1(t), e2(t), e3(t), respectively.

After simulating the designed synchronized GCCs
system, in order to generate a VHDL code, Xilinx Sys-
tem Generator blocks can be used. System Genera-
tor is a very useful tool since Simulink design is easily
converted to System Generator blocks and it works un-
der Matlab as a toolbox which provides re-simulation
of the designed synchronized for generating a VHDL



code, and the new results are bit and cycle accurate.
System Generator blocks representation of the GCC
master system can be seen in Fig. (2).

Figure 2. 7-scroll Chua’s Master System with System Genera-
tor Blocks.

System Generator simulation results can be seen in
Figs. (3) and (4). Since these results are the same
with Simulink results hence the conversion opera-
tion is achieved successfully. After assigning proper
pinout specifications for XtremeDSP Development Kit
for Virtex-4 and defining clock period then the VHDL
code has been generated.
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Figure 3. System Generator - 7-scroll Chua’s Master and
Slave System state variables (x1(t), y1(t)), (x2(t), y2(t)),
(x3(t), y3(t)) and e1(t), e2(t), e3(t), respectively.

Figure 4. 7-scroll Chua’s Master and Slave System Generators with
Simulink and System Generator Blocks, respectively.

Logic Utilization Used Available Utilization

Number of Slice Flip Flops 1,944 30,720 % 6

Number of 4 input LUTs 7,033 30,720 % 22

Number of occupied Slices 5,412 15,360 % 35

Number of DSP48s 189 192 % 98

Table 1. Device Utilization Summary

After generating a VHDL code, ISE program has been
used to produce bitstream file. ISE program provides
the report of device utilization to detect whether de-
signed system is realizable, as can be seen in Table
I. Synchronized 7-scroll Chua’s circuits and the con-
troller can be implemented on a XtremeDSP Develop-
ment Kit for Virtex-4 device as our device utilization
constraints are fulfilled.
Bitstream file has been obtained with ISE then to con-

figure XtremeDSP Development Kit for Virtex-4 board
FUSE program is used. After configuring FPGA,
the implementation results have been observed on the
scope as can be seen in Figure 5 and 6. These results
exactly match with the results obtained with Simulink
and System Generator, which show the successful im-
plementation of synchronization of the GCCs.

5 Conclusion
The control system, the GCC master system and the

GCC slave system have been embedded in FPGA. The
control command has been designed to synchronize the
GCC master and the slave system by feedback lin-
earization method. Since FPGAs are digital circuits
the robust nonlinear control command can thus be ob-
tained. As a future work a chaotic communication sys-
tem using GCC will be embedded in FPGA
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