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Abstract
In this paper we discuss the frequency domain per-

formance analysis of a marginally stable linear time-
invariant (LTI) system with saturation in the feedback
loop. We present two methods, both based on the no-
tion of convergent systems, that allow to evaluate the
performance of this type of systems in the frequency
domain. The first method uses simulation to evaluate
performance, the second method is based on describing
functions. For both methods we find sufficient condi-
tions under which a frequency domain analysis can be
performed. Both methods are practically validated on
an electromechanical setup and a simulation model of
this setup.
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1 Introduction
For linear systems it is common practice to analyse the

performance in the frequency domain. Such an analy-
sis provides valuable information on how the system
reacts (in terms of gain and phase) to inputs with var-
ious frequencies. That is, it provides insight in how
good the system can follow a certain periodic reference
signal, and how it reacts on disturbances of a certain
frequency.
For nonlinear systems, a similar frequency domain

analysis would be very useful as well to indicate the
performance of the system. However, such a frequency
domain analysis is virtually impossible to perform for
nonlinear systems in general, due to specific nonlinear
behavior, such as the existence of multiple steady-state
solutions, non-harmonic responses to harmonic inputs,
dependence on initial conditions, etcetera. Nonethe-
less, for some nonlinear systems a frequency domain

analysis is possible, as will be demonstrated in this pa-
per. Some other recent results in this field can be found
for example in (Jönsson et al., 2003).

In this paper we focus on the class of marginally stable
LTI system with saturation in the feedback loop, and
discuss conditions under which it is possible to perform
a frequency domain analysis for these systems. We de-
scribe and demonstrate two different approaches, both
based on the notion of convergent systems, that can be
used to obtain a frequency domain analysis for these
nonlinear systems, i.e. a simulation approach and a de-
scribing function approach. It is interesting to note that
for these marginally stable LTI systems with saturation,
it is impossible to compute a finite L2-gain between in-
put and arbitrary output using a quadratic storage func-
tion, while with the two approaches presented in this
paper it is possible to find even more detailed input-
output results than an L2-gain.

Both approaches that we discuss are based on the no-
tion of convergent systems. Convergent systems are,
roughly speaking, a class of nonlinear systems with in-
puts that have a unique bounded globally stable limit
solution, which is dependent on the input signal. In the
past, quadratic/exponential convergence and quadrat-
ically/exponentially convergent design of asymptoti-
cally stable systems has been investigated in several
publication, see e.g. (Pavlov et al., 2004; Pavlov et
al., 2007a) and references therein. However, these
(design) methods are not applicable if the system is
marginally stable. It is only recently that uniform con-
vergence was proven for a marginally stable system
(van den Berg et al., 2006). If a system is uniformly
(or exponentially) convergent, this implies that for each
periodic input there is a unique periodic output with the
same period as the input, which in turn implies that a
(nonlinear) frequency response function can be found
(Pavlov et al., 2007b). In the first approach, this fre-
quency response function is found using simulation. In
the second approach the frequency response function is



approximated using the ideas of the describing function
method, see e.g. (Khalil, 2002; Rosenwasser, 1969). If
a harmonic input is applied to the considered LTI sys-
tem with saturation, then the describing function can
be used to compute a linear approximation of the sys-
tem, which in turn can be evaluated in the frequency
domain. Since it is also possible to compute an upper
bound on the error between the linear approximation
and the original nonlinear system, see (van den Berg
et al., 2007), an interval can be indicated within which
the frequency response function of the nonlinear sys-
tem lies. Both approaches are practically validated on
an experimental setup (an electromechanical system)
and a simulation model of this setup.
The outline of this paper is as follows. Section 2

presents the class of LTI systems with saturation that
is considered throughout this paper, and the electrome-
chanical system that is used as a validation case. Fur-
thermore it is demonstrated by means of an example
why frequency domain analysis can not be performed
for nonlinear systems in general. Section 3 deals with
the notion of convergent systems and discusses how for
convergent systems the simulation approach can lead to
a frequency domain performance analysis. In Section 4
it is discussed how the describing function approach
can lead to a frequency domain performance analysis.
The results in Sections 3 and 4 are validated using the
electromechanical system. Finally, Section 5 concludes
the paper.

2 LTI system with saturation
In this section, we first describe the class of systems

that is considered throughout this paper. Then, we in-
troduce an electromechanical system within this class
of systems, that will be used as a case study to prac-
tically validate the theoretical results discussed in this
paper. Finally, we show by means of an example that
this system can –under certain settings– exhibit rich
nonlinear dynamics, which make a frequency domain
performance analysis virtually impossible. Based on
these observations, we make some statements on the
conditions that a nonlinear system should satisfy in or-
der to allow frequency domain analysis. These state-
ments will be elaborated in Sections 3 and 4.

2.1 System description
In this paper we consider the type of systems visual-

ized in Figure 1. Here, the plant dynamics are given
by

ẋp = Apxp +Bpsat(u)
yp = Cpxp

where Ap has one eigenvalue at 0 and the other eigen-
values (if any) in the open left-hand plane, i.e. the plant
is marginally stable. The controller dynamics are given
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Figure 1. LTI System with marginally stable plant.

by

ẋc = Acxc +Bc(w − yp) + LAW (sat(u)− u)
u = Ccxc +Dc(w − yp)

in which LAW is a static anti-windup gain, and
the saturation function is defined as sat(u) =
sign(u) min(1, |u|).
The closed-loop dynamics of this system can be writ-

ten in Lur’e form

ẋ = Ax+Bsat(u) + Fw

u = Cx+Dw

y = Hx

(1)

with state x = [ xp, xc ]T ∈ Rn, input w ∈ R, per-
formance output y ∈ R, matrix H to be defined freely,
and

A =
[

Ap, 0
LAWDcCp −BcCp, Ac − LAWCc

]
,

B =
[
Bp
LAW

]
, F =

[
0

Bc − LAWDc

]
,

C =
[
−DcCp, Cc

]
, D =

[
Dc

]
.

Although the theory that we present in Sections 3
and 4 applies to the whole class of systems described
by (1), we focus in this paper on a case that has been
investigated by means of simulation and real-time ex-
periments in order to validate the theoretical findings.
This case is discussed in the following subsection.

2.2 Case: electromechanical system
As a special case of (1), we consider the electrome-

chanical system (see Figure 2) that is shown schemat-
ically in Figure 3. The hardware consists of two ro-
tating rigid bodies (masses) connected by an element
that has a certain stiffness and damping. The first body
is driven by an actuator (brushless DC motor) and the
rotation of the second body is measured by a sensor (in-
cremental encoder, 8192 counts/revolution). The hard-
ware is connected (at sample rate: 1 kHz) to a computer
with a Matlab Simulink model (Real Time Workshop),
which contains a PI controller, a saturation function and
a static anti-windup gain as shown in Figure 3. The



Figure 2. Case: electromechanical system (photo). From left to
right: encoder, body 2, spring/damper, body 1, motor+encoderi
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Figure 3. Case: electromechanical system (schematic).

actuator is driven by a velocity controller (not shown
in Figure 3), which receives its reference value v from
the Simulink model. The settling time of the velocity
controller is negligible, so that we can assume that the
actuator exactly follows the reference velocity v.

In order to perform also simulations on this case, the
parameters of the electromechanical system have been
identified and a simulation model has been created.
The model is of the form (1) with xp = [r1, r2, ṙ2]T

(ri denoting the rotation angle [revolutions] of body i)
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Figure 4. Example 1: multiple steady-state solutions (experiments:
dashed lines, simulations: solid lines).

and matrices

A =


0 0 0 0
0 0 1 0

3.9 · 103 −3.9 · 103 −10.7 0
0 −1 + LAWKP 0 −LAWKI

 ,

B =


1
0

10.7
LAW

 , F =


0
0
0

1− LAWKP

 , (2)

C =
[
0−KP 0 KI

]
, D =

[
KP

]
, H =

[
0 1 0 0

]
,

where KI , KP and LAW are controller parameters to
be chosen.

2.3 Motivating example: nonlinear behavior
Although it is common practice for linear systems

to evaluate the performance in the frequency domain,
e.g. steady-state response (gain, phase) to harmonic in-
puts, for nonlinear systems in general this is not pos-
sible. In this subsection two examples are given that
clearly indicate what difficulties arise when trying to
make a frequency domain analysis of the steady-state
response of nonlinear systems.
For the first example, consider the system (1), (2) with
KI = 20, KP = 8, LAW = 0, and w = sin(t).
We evaluate the solution of this system for two ini-
tial conditions, i.e. x(0) = [0, 0, 0, 0] and x(0) =
[3, 3, 0, 0], using both the experimental setup (see Fig-
ure 3) and simulation. The resulting rotation angle of
body 2 as a function of time is given in Figure 4.
For the second example, consider again the sys-

tem (1), (2) with KI = 20, KP = 8, LAW = 0, but
now with w = 5 sin(t). In this example we show that
different initial conditions can not only lead to differ-
ent 1-periodic steady-state solutions, but also to multi-
periodic steady-state solutions. For four initial condi-
tions the solution of the system is evaluated using both
the experimental setup and simulation. The control out-
put u, which clearly displays the multi-periodic solu-
tions, is shown as a function of time in Figure 5.
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Figure 5. Example 2: multi-periodic steady-state solutions (experi-
ments: dashed lines, simulations: solid lines).

Since frequency domain analysis is based on a one-to-
one mapping from input signal (e.g. reference or distur-
bance) to output signal (e.g. error signal or performance
output) of a system, we need to guarantee that for each
input signal a unique output signal exists, which has the
same period as the input signal and which is indepen-
dent of the initial conditions. As shown in this subsec-
tion, the output signal of a nonlinear system, however,
does not necessarily satisfy these conditions, i.e. mul-
tiple 1-periodic steady-state solutions (see Figure 4)
or multi-periodic steady-state solutions (see Figure 5)
may exist. This motivated us to investigate whether
there exist conditions under which the steady-state per-
formance of nonlinear system (1) can be analyzed in
the frequency domain.
Two approaches have been found that allow to find

sufficient conditions under which a frequency do-
main analysis can be performed for system (1), i.e. a
simulation-based approach and a describing function
approach, which are both based on the notion of con-
vergent systems. These approaches will be discussed
in respectively Section 3 and Section 4.

3 Convergent systems and simulation-based fre-
quency domain analysis

In this section, we first give a definition and some
properties of convergent systems. Then, we discuss the
conditions under which system (1) is uniformly conver-
gent. Finally, we show how to perform a simulation-
based frequency domain analysis for the convergent
system.

3.1 Convergent systems
Consider the following class of systems,

ẋ(t) = f(x,w(t)) (3)

with state x ∈ Rn and input w ∈ PC. Here, PC is the
class of bounded piecewise continuous inputs w(t) :
R → Rm. Furthermore, assume that f(x,w) satisfies
some regularity conditions to guarantee the existence of

local solutions x(t, t0, x0) of system (3) for any input
w ∈ PC.

Definition 1. System (3) is said to be uniformly con-
vergent for a class of inputsW ⊂ PC if for every input
w(t) ∈ W there is a solution x̄(t) = x(t, t0, x̄0) satis-
fying the following conditions:

1. x̄(t) is defined and bounded for all t ∈
(−∞,+∞),

2. x̄(t) is globally uniformly asymptotically stable for
every input w(t) ∈ W .

The solution x̄(t) is called a limit solution. As fol-
lows from the above definition, any solution of an uni-
formly convergent system ‘forgets’ its initial condition
and converges to a limit solution which is independent
of the initial conditions. The following statements de-
scribe some properties of this limit solution.

Property 1. (Pavlov et al., 2007a) For a uniformly
convergent system, the limit solution x̄(t) is unique, i.e.
it is the only solution bounded for all t ∈ (−∞,+∞).

Property 2. (Pavlov et al., 2006) Suppose system (3)
is uniformly convergent. Then, if the input w(t) is con-
stant, the corresponding limit solution x̄(t) is also con-
stant. If the input w(t) is periodic with period T , then
the corresponding limit solution x̄(t) is also periodic
with the same period T .

Finally note that a system is called exponentially con-
vergent for a class of inputsW ⊂ PC if it is uniformly
convergent and x̄(t) is globally exponentially stable for
every input w(t) ∈ W .

3.2 Convergent system design
Consider again the system in Figure 1 with the

marginally stable plant, as described by (1). Theo-
rem 1 provides conditions under which this system is
uniformly convergent.

Theorem 1. Assume the following conditions hold:

1. Ac − LAWCc is Hurwitz
2. vlBCvr < 0, where vl and vr are respectively the

left- and right eigenvector of A corresponding to
the eigenvalue λ = 0

3. A Lyapunov matrix P = PT > 0 exists for which:
PA+ATP ≤ 0
and
P (A+BC) + (A+BC)TP < 0

Then, system (1) is uniformly convergent for all w ∈
W , where W is the class of uniformly continuous
bounded inputs. Furthermore, for any compact set Ω,
if the initial condition x(0) ∈ Ω then the system has an
exponential convergence rate for all w ∈ W .

Proof. See (van den Berg, 2008).

Note that if there exists a Lyapunov matrixP = PT >
0 such that PA+ ATP < 0 and P (A+ BC) + (A+



BC)TP < 0 hold (instead of condition 3), then the
corresponding system can be proven to be exponen-
tially convergent for all w ∈ PC, and conditions 1
and 2 of Theorem 1 and uniform continuity of w are
not even required. However, the system we consider
has a marginally stable plant thus PA+ATP < 0 can
not be satisfied.

3.3 Performance analysis in frequency domain
Under the conditions of Theorem 1 system (1) is uni-

formly convergent, which implies that for any input
w ∈ W the system has a unique limit solution x̄ and
thus a unique output ȳ. That is, if we apply a har-
monic input signal with period T to the system, then
the limit output ȳ is unique (i.e. independent of ini-
tial conditions) and has period T . Thus, we can find a
kind of frequency response function if we evaluate the
input-output behavior for a range of frequencies. Since
the output signal is not necessarily harmonic, however,
we can not obtain a typical gain and phase plot (Bode
plot) as for linear systems. Instead, we determine a
nonlinear frequency response function, as discussed in
(Pavlov et al., 2007b), i.e. for the convergent system
we determine the gain between the RMS (root mean
square) value of the input signal and the RMS value of
the limit output signal. As phase is not defined for non-
linear systems, only the gain as discussed above will be
considered in our frequency domain analysis.
Note that the periodic output ȳ can easily be de-

termined using simulation (or real-time experiments).
Since the limit solution of a convergent system only de-
pends on the input and is independent of the initial con-
ditions, a single simulation run (experiment) suffices to
determine the limit solution of the system. This is a
major difference with ‘non-convergent’ nonlinear sys-
tems, for which in principle all initial conditions should
be evaluated (i.e. an infinite amount of simulations) to
obtain a reliable analysis.
This simulation-based frequency domain analysis is

now demonstrated for system (1), (2). By choosing
KI = 20, KP = 8, and LAW = 0.5 all conditions
of Theorem 1 are met, and thus the system is uniformly
convergent for all inputs w ∈ W . Evaluating the solu-
tion for the inputs signals w = b sin(ωt) for b = 1 and
ω ∈ [10−1, 102], and computing the ‘complementary
sensitivity’ gain (RMSȳ(t) / RMSw(t)) results in the
frequency response function shown in Figure 6. Any
other desired frequency response function can be com-
puted in a similar way.
For ω > 10 rad/s, the experiments and simulation give

different results. Due to the relatively high frequency
in combination with the saturation function, the am-
plitude of the motion of the rigid bodies becomes so
small that nonlinear behavior of the experimental setup
becomes significant, which in turn results in a different
RMS-gain. However, since dealing with the undesired
nonlinear behavior of the experimental setup lies out-
side the scope of this paper, it will not be discussed
further here. In the remainder of this paper, we will
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Figure 6. Nonlinear frequency response function (experiments:
dots, simulations: solid line).

focus on the dynamics as described by the simulation
model.
Figure 6 provides valuable information on the fre-

quency domain performance of the system. It clearly
shows how the limit output ȳ behaves under input sig-
nals for respectively low and high frequencies. A
similar plot can be made for the ‘sensitivity’ gain
(RMSw(t)−ȳ(t) / RMSw(t)) to investigate for exam-
ple tracking behavior.
Note, however, that the computed frequency response

function in Figure 6 is only valid for harmonic input
signals with amplitude b = 1. For other input ampli-
tudes the frequency response function can be computed
as well, but will be different since the limit solution ȳ
does not only depend on frequency ω but also on ampli-
tude b. For the same reason, the superposition principle
does not hold. On the other hand, computing the fre-
quency response function for any multi-harmonic input
signal is as simple as computing this function for a har-
monic input signal, so the steady-state response to any
periodic input can be obtained by this approach.
Furthermore, note that even if we were able to find

a finite L2-gain for this marginally stable system, this
would only be a horizontal line in Figure 6, i.e. an up-
per bound for the frequency domain performance. Our
approach based on convergence and simulation pro-
vides more detailed information on the frequency do-
main behavior of the system.
Although this approach leads to an exact performance

analysis in the frequency domain, it can be very time-
consuming, since the limit solution x̄(t) has to be ob-
tained by simulation (or a real-time experiment): tran-
sient behavior should be ruled out by simulating long
enough, and the simulation should be performed with
high accuracy.
In the following section we will consider another

approach, based on the describing function method,
which is much more time-efficient, but at the cost of
accuracy, i.e. instead of an exact solution, an upper-
and lower bound on the performance are given. Also,
this approach can only be used for harmonic input sig-
nals.



4 Frequency domain analysis based on describing
function approach

In this section, we first give a short overview of the
describing function method and explain how this the-
ory can be expanded for application to convergent non-
linear systems with harmonic inputs. Then, we discuss
a theorem which gives sufficient conditions for compu-
tation of a linear approximation and upper- and lower
bound of the error of this approximation. Finally, we
apply the theory on the system (1), (2).

4.1 Describing function method
Following the describing function method, see

e.g. (Khalil, 2002; Rosenwasser, 1969), the limit solu-
tion x̄ of system (1) is approximated by a periodic limit
solution ξ̄ of the linear system

 ξ̇ = Aξ +BKζ + Fw
ζ = Cξ +Dw
η = Hξ

(4)

in which gain K is to be determined. If the matrix
A + BKC does not have eigenvalues on the imagi-
nary axis then for a periodic input w(t) = b sin(ωt) the
system has a unique periodic limit solution ξ̄(t), and
thus a unique periodic limit output ζ̄(t), which can be
described by

ζ̄(t) = a sin(ωt+ ψ), (5)

for some amplitude a > 0 and phase ψ. In the process
of harmonic linearization gainK is chosen to minimize
the following criterion

J :=
1
T

∫ T

0

[sat(ζ̄(t))−Kζ̄(t)]2dt,

where ζ̄(t) = Cξ̄(t) + Dw(t) and T is the period of
input w. The optimal gain K can be found by solving
the condition

dJ

dK
= 0

and is given by

K =

(∫ T

0

ζ̄2(t)dt

)−1 ∫ T

0

sat(ζ̄(t))ζ̄(t)dt.

Applying the fact that the saturation nonlinearity is an
odd function and filling in (5), this simplifies to

K(a) =
1
πa

∫ 2π

0

sat(a sin θ) sin θdθ,

i
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which leads to the describing function:

K(a) =

{
1, a ≤ 1

2
π

(
sin−1

(
1
a

)
+ 1

a

√
1− 1

a2

)
, a > 1

Under the assumption thatA does not have eigenvalues
±iω, the value of amplitude a can be determined by
solving the so-called harmonic balance equation, which
for system (4) is given by

|1−K(a)G(iω)|2a2 = |C(iωIn −A)−1F +D|2b2
(6)

with G(iω) = C(iωIn − A)−1B. Note that the left-
hand side of (6) is a nonlinear function of a, and the
value of the right-hand side of (6) depends on the in-
put amplitude b and input frequency ω. Therefore, if
we want to solve this equation for a, there may ex-
ist multiple solutions of a for one pair of (b,ω), see
e.g. Figure 7. In this Figure we plotted the left-
hand side of (6) as a function of a, and if for example
|1−K(a)G(iω)|2a2 = |C(iωIn−A)−1F +D|2b2 =
300 for some pair of (b,ω), then multiple solution of
a exist. If, on the other hand, there is a unique posi-
tive real solution a(b, ω) for a given pair of (b,ω), we
can easily compute the limit solution ξ̄(t) of (4) by fill-
ing in K(a(b, ω)), and compute how accurate this so-
lution ξ̄(t) approximates x̄(t). However, if the solution
a(b, ω) is not unique positive and real, e.g. there are
multiple solutions for a, then this approach is not ap-
plicable.
Denote

ρ1 := sup
k=3,5,...

|C(ikωIn −A−
1
2
BC)−1B|

ρ2 := sup
k=3,5,...

|H(ikωIn −A−
1
2
BC)−1B|

γ =
2ρ2

2− ρ1



v(a) =
(

1
2π

∫ 2π

0

[
2
π

∫ π

0

sat(a sin θ) sin θdθ · sinϑ

−sat(a sinϑ)]2 dϑ
) 1

2
.

to be used in the following theorem.

Theorem 2. Consider system (1) with periodic input
w(t) = b sin(ωt) and assume the following conditions
are met

1. (A,B) is controllable, (A,C) is observable,
2. the harmonic balance equation (6) has a unique

positive real solution a(b, ω),
3. ρ1 < 2,
4. for the linear system (4) with K = K(a(b, ω))

where a(b, ω) is the unique positive real solution
of (6), the matrix A+BKC does not have eigen-
values on the imaginary axis.

Then system (1) has a unique 2π/ω-periodic solution
x̄(t) and the error between the limit output ȳ(t) and
η̄(t) is bounded by:

(
ω

2π

∫ 2π/ω

0

[ȳ(t)− η̄(t)]2 dt

) 1
2

≤ γv(a(b, ω)).

(7)

Proof. See (van den Berg et al., 2007).

Note that under the conditions in Theorem 2, the sys-
tem is not necessarily convergent. Although the system
is guaranteed to have a unique 2π/ω-periodic solution
x̄(t) under the given conditions, periodic solutions with
a different period may exist. An example in which there
is a unique positive real solution to the harmonic bal-
ance equation, but multiple steady-state solutions exist,
is given in Figure 5. In order to make sure that the
linear approximation (4) and error bounds (7) actually
describe the only solution of the nonlinear system, one
needs to prove convergence of the system first.

4.2 Performance analysis example
To demonstrate the use of Theorem 2 consider again

system (1), (2), with KI = 20, KP = 8, LAW = 0.5,
and w(t) = b sin(ωt) with b = 1 and ω ∈ [10−1, 102].
From Section 3 we know that this system is convergent.
Instead of performing many time-consuming simula-
tions, we now simply compute the linearization and er-
ror bounds for the given range of frequencies using the
approach given in Subsection 4.1. The result is given
in Figure 8. For comparison, the results of the simu-
lation approach, and the gain of the linear system, i.e.
system (1) with sat(u) = u, are plotted as well.
As one can see, the exact results as obtained with the

simulation approach lie well within the error bounds
of the approximation obtained by the describing func-
tion approach. Since the error bounds are relatively
small for this case, the describing function approach
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Figure 8. Frequency domain results of describing function ap-
proach in comparison with simulation approach and linear system.

gives a quite accurate description of the frequency do-
main behavior of nonlinear system (1), (2). It can also
be clearly seen that the frequency domain behavior of
the system with saturation substantially differs from the
system without saturation.

5 Conclusion
Two approaches have been described that can be used

to obtain a frequency domain performance analysis for
a class of marginally stable LTI systems with satura-
tion. The first step in both approaches is to prove/obtain
convergence of the system. Then, the simulation ap-
proach leads to an exact performance analysis, but can
be time-consuming. The other approach, based on the
describing function method, is computationally much
faster, but at the cost of some accuracy: only an upper-
and lower bound can given on the performance of the
nonlinear system, although these bounds can be very
close. An electromechanical system has been used as
a case to demonstrate and practically validate both ap-
proaches.
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