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Abstract
The electromagnetic ball suspension systems (EM-

BSS) have many applications especially in transport for
high speed (Magnetic Levitation Trains) [Yadav et al.,
2013]. It is impressive to observe a ball suspended in
air without any support and while attracting many re-
searchers. The aim of this research is to investigate the
controllability and observability [Sontag, 2013] of the
system and stability of the solution of the system. We
perform a technique of optimization, known as linear
quadratic regulator (LQR) [Basile and Marro, 1992] to
find the optimal control input of the system. It is found
that the EMBSS is both controllable and observable.
Stability is guaranteed under certain conditions. The
optimal control for EMBSS is performed adequately on
both linearised models.
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1 Introduction
This work is devoted to present the mathematical for-

mulations in Control Theory. More emphasis is put on
the modelling of EMBSS. Two models are considered,
i.e. model one is when the input of the system is de-
signed to be the voltage and model two is when the in-
put of the system is designed to be the current. Ranks
of two special matrices are considered (the controlla-
bility matrix and the observability matrix) to check if
the above-mentioned systems are controllable or ob-
servable. Also the optimal control is performed so that
the required input can be chosen for the desired output
of the EMBSS; which gives the desired position of the
ball from the end of the electromagnet.

2 Model Formulation
The EMBSS is a mechanism consisting of electro-

magnet and a steel ball m as it is shown in Figures 1

and 2. The system functions by regulating the current
in electromagnet such that the steel ball of mass m is
suspended at a fixed distance, y0, from the end of elec-
tromagnet [Jayawant, 1982]. Two models are built, one
model having the voltage as an input and the other with
the current as an input. We shall use the following vari-
ables and parameters: I2: the variable current through
the electromagnet,R2: the resistor of the circuit, L: the
inductor of the electromagnet, y: the variable position
of the ball, m: the mass of the ball, k: the spring con-
stant, β: the damping coefficient due to air resistance
and any other disturbance, C: the capacitor, I: the cur-
rent input of the system, t : the variable time, R: the
resistor of the circuit, L: the inductor of the electro-
magnet and V : the input voltage.

2.1 Model one: EMBSS with Voltage as Input
From Figure 1, Kirchhoffs voltage and current law

give the following:

dI

dt
= −R

L
I +

V

L
(1)

Also, from Figure 1, the force F has three compo-
nents. The first component is the electromagnetic
force F (y, I) = α( Iy )2 [Suebsomran, 2014], which is
the attractive force from the electromagnet and α =
1
4µ0N

2A. Here µ0 is permeability, N is the number of
turns of the coil and A is the cross area section of the
electromagnet and I is the variable current through the
electromagnet. The second component is the air resis-
tance which is assumed to be proportional to the veloc-
ity of the steel ball and Fair = −β dydt , where β is the
proportional coefficient, t is the time and y is the posi-
tion of the steel ball. The third component is the effect
due to the gravitation, Fg = −mg where m is the mass
and g is the gravitational acceleration; it is assumed to
be 9.81m/sec2. Finally, another component is added
which serves as a supportive force to the electromag-
netic force. This supporting component is chosen to be



Figure 1. EMBSS with voltage as input.

the force due to a spring placed between the steel ball
and the lower end of electromagnet. Hence, the Hook’s
law provides Fs = ky, where Fs is the force due to the
spring elongation, k is spring constant and y is the po-
sition attained by the steel ball. Now putting all these
forces together provide the following:

F = α

(
I

y

)2

+ ky − β dy
dt
−mg (2)

Using Newton’s laws of motion:

d2y

dt2
= −g +

α

m

(
I

y

)2

+
k

m
y − β

m

dy

dt
(3)

The Equations (1) and (3) give the following system:

{ dI
dt = −RL I + V

L ,

d2y
dt2 = −g + α

m

(
I
y

)2
+ k

my −
β
m
dy
dt .

(4)

The variables domain are as follows:


0 ≤ I <∞,
0 < y < d <∞,
−∞ < dI

dt <∞,
−∞ < dy

dt <∞.

(5)

with I = x1, y = x2 and dy
dt = x3 the system looks

like:


dx1

dt = −RLx1 + V
L ,

dx2

dt = x3,
dx3

dt = −g + α
m (x1

x2
)2 + k

mx2 −
β
mx3,

(6)

Y (X) = x2. (7)

Figure 2. EMBSS with current as input.

The vector X is state of variable vector and it is given
by the following equationX =

(
x1 x2 x3

)T
. The out-

put of the system is Y (X) = x2 which is the position
of the ball from the electromagnet.

2.2 Model Two: EMBSS with Current as Input
The current acting as the input of the system from the

source V is passing through the resistor R1. Then the
current is divided into two parts, one through the ca-
pacitor C and the other through the resistor R2. This is
shown in Figure 2. The electromagnet produces the at-
tractive force which is capable to suspend the steel ball
of mass m. Kirchhoffs voltage and current law yields

d2I2
dt2

= −R2

L

dI2
dt
− I2
LC

+
I

LC
. (8)

As stated before, the force F has three components, so
F = α( Iy )2 + ky− β dydt −mg. With Newton’s laws of
motion,

d2y

dt2
= −g +

α

m

(
I2
y

)2

+
k

m
y − β

m

dy

dt
. (9)

The Equations (9) and (8) give the following system:


d2I2
dt2 = −R2

L
dI2
dt −

I2
LC + I

LC ,

d2y
dt2 = −g + α

m

(
I2
y

)2
+ k

my −
β
m
dy
dt .

(10)

The domain of variables is as follows:


0 ≤ I2 <∞,
0 < y < d <∞,
−∞ < dI2

dt <∞,
−∞ < dy

dt <∞.

(11)



with I2 = x1,dI2dt = x2, y = x3 and dy
dt = x4, the

system is:


dx1

dt = x2,
dx2

dt = −R2

L x2 −
x1

Lc + I
LC ,

dx3

dt = x4,

dx4

dt = −g + α
m

(
x1

x3

)2
+ k

mx3 −
β
mx4.

(12)

Y (X) = x3. (13)

The vector X is state of variables vector and it is given
by the following equation X =

(
x1 x2 x3 x4

)T
. The

output of the system is Y (X) = x3 which is the posi-
tion of the ball from the electromagnet.

2.3 Linearized Model of EMBSS with Voltage In-
put

The equilibrium point and Jacobian matrix evaluated
at that point linearizes the model one given by the sys-
tem (6) as follows: Let δx1 = x1−x1e, δx2 = x2−x2e,
δx3 = x3−x3e and δv = v− ve, then we have the fol-
lowing:

dδx1

dt
dδx2

dt
dδx3

dt

 =

 −RL 0 0
0 0 1

2α

√
gm−kx2e

α

mx2e
− 2 gm−3 kx2e

mx2e
− β
m


δx1δx2
δx3

+

 1
L
0
0

 δv. (14)

δx2 =
(
0 1 1

)δx1δx2
δx3

+ 0δv. (15)

The equation (14) is representing the dynamics of the
linearised model of EMBSS with the voltage input δv.
The equation (15) represents the output of the system
δx2. From the system (14) we identify the following:

A =

 −RL 0 0
0 0 1

2α

√
gm−kx2e

α

mx2e
− 2 gm−3 kx2e

mx2e
− β
m

 , (16)

B =

 1
L
0
0

 , C =
(
0 1 0

)
and D = 0. (17)

2.3.1 Stability Analysis of the Solution for Lin-
earized Model of EMBSS with Voltage as Input
This section is investigating the stability of the equi-
librium point. Different cases that are going to be dis-
cussed here are the following: Case one: when β = 0
and k = 0, Case two: when β = 0 and k 6= 0, Case
three: when β 6= 0 and k = 0, Case four: when β 6= 0
and k 6= 0. The equilibrium point of the System (6) is

stable if all eigenvalues of the Jacobian matrixA evalu-
ated at this point have negative real parts. These eigen-
values of the matrix A from equation (14), are given by
the following equations:

λ1 = −βx2e +
√
−8 gm2x2e + (β2 + 12 km)x22e

2mx2e
, (18)

λ2 = −βx2e −
√
−8 gm2x2e + (β2 + 12 km)x22e

2mx2e
, (19)

λ3 = −R
L
. (20)

The Equation (20) shows that the real part of the eigen-
value λ3 is negative. But it is not clear whether to draw
a conclusion for eigenvalues λ1 and λ2 given by equa-
tions (18) and (19) respectively. It needs to be used
case by case basis, Table 1 forms the conclusions on
the stability of this equilibrium point.

2.4 Linearized Model of EMBSS with Current In-
put

The equilibrium point and Jacobian matrix evaluated
at that point linearizes the model one provided by the
system (12) as follows: Let δx1 = x1 − x1e, δx2 =
x2 − x2e, δx3 = x3 − x3e, δx4 = x4 − x4e and δv =
v − ve, then one has the following:


dδx1

dt
dδx2

dt
dδx3

dt
dδx4

dt

 =


0 1 0 0

− 1
CL −

R2

L 0 0
0 0 0 1

2α

√
gm−kx3e

α

mx3e
0 − 2 gm−3 kx3e

mx3e
− β
m



δx1
δx2
δx3
δx4

+


0
1
LC
0
0

 δv. (21)

δx3 =
(
0 0 1 0

)
δx1
δx2
δx3
δx4

+ 0δI. (22)

The equation (21) represents the dynamics of the lin-
earised model of EMBSS with the current input δI .
The equation (22) represents the output of the system
δx3. From the system (21) we identify the following:

A =


0 1 0 0

− 1
CL −

R2

L 0 0
0 0 0 1

2α

√
gm−kx3e

α

mx3e
0 − 2 gm−3 kx3e

mx3e
− β
m

 ,(23)

B =


0
1
LC
0
0

 , C =
(
0 0 1 0

)
and D = O. (24)



Models Case one: Case two:

k = 0, β = 0 k 6= 0, β = 0

Input voltage Not stable Not stable

Input current Not stable Not stable

Models Case three: Case four:

k = 0, β 6= 0 k 6= 0, β 6= 0

Input voltage Stable Not stable if
2gm
3x2e
≤ k < gm

x2e
.

Stable if

k < 2gm
3x2e

.

Input current Stable Not stable if
2gm
x3e
≤ k < gm

x3e
.

Stable if

k < 2gm
x3e

.

Table 1. Stability analysis

3 Stability Analysis of the Solution for Linearized
Model of EMBSS with Current Input

This subsection is investigating the stability of the
equilibrium point. Different cases that are going to
be discussed here are the following: Case one: when
β = 0 and k = 0, Case two: when β = 0 and k 6= 0,
Case three: when β 6= 0 and k = 0 and Case four:
when β 6= 0 and k 6= 0. The equilibrium point of the
System (12) is stable if all eigenvalues of the Jacobian
matrix A evaluated at this point has negative real parts.
These eigenvalues of the matrix A from equation (21),
are given by the following equations:

λ1 = −CR2 +
√
C2R2

2 − 4CL

2CL
, (25)

λ2 = −CR2 −
√
C2R2

2 − 4CL

2CL
, (26)

λ3 = −βx3e +
√
−8 gm2x3e + (β2 + 12 km)x23e

2mx3e
, (27)

λ4 = −βx3e −
√
−8 gm2x3e + (β2 + 12 km)x23e

2mx3e
. (28)

The Equations (25) and (26), show that the real part of
the eigenvalue λ1 and λ2 is negative. But it is not clear
to draw a conclusion for eigenvalues λ3 and λ4 given
by equations (27) and (28) respectively. We need to
investigate on case by case basis to draw the conclusion
on the stability of this equilibrium point. (See Table:1)

4 Non-Linear Simulation of EMBSS
In this section the solutions of the models are pre-

sented with appropriate simulations. Four different

Parameters R2 L m α β

Values 1 1 0.5 0.0001 0.8

Units Ω Henry kg Nm2

A2
Ns
m

Table 2. Parameter values

Parameters C x3e g k R x2e

Values 1 0.5 9.81 3 1 0.5

Units Farad m m
s2

N
m Ω m

Table 3. Parameter values

Figure 3. Case two: Position of the ball when k = 0 and β = 0
(input voltage).

cases are considered in order to visualize the be-
haviours of the solution of the non-linear system. These
are the following: Case one: k = 0 and β = 0, Case
two: k 6= 0 and β = 0, Case three: k 6= 0 and β 6= 0,
Case four: k = 0 and β 6= 0.
Without other stated information on parameters the fol-
lowing Tables 2 and 3 is are useful: The Figures 3,
4, 5 and 6 represent the simulations of the model one,
with the position of the ball and and the current distri-
bution of the EMBSS given by equation (6), ie when
the input of the system is the voltage. Whereas Figures
7, 8, 9 and 10 represent the simulations of the model
two which is the EMBSS given by the Equation (12),
i.e when the input of the system is the current.

5 Controllability and Observability of the Lin-
earized Models

This subsection is investigating the controllability and
observability of the systems provided by equations (14)
and (21). We shall discuss for which conditions or re-
lationship the involved parameters in the system must
satisfy such that the system is controllable and observ-
able. We also identify the parameters on which control-
lability and observability could depend. We calculate



Figure 4. Case two: Position of the ball when k 6= 0 and β = 0
(input voltage).

Figure 5. Cases three: Position of the ball when k 6= 0 and β 6=
0 (input voltage).

first of all the controllability and observability matri-
ces CO andOBS respectively and their corresponding
ranks. The following two theorems help to conclude
about controllability and observability of a system.

Theorem 5.1 (R. Kalman’s Criteria ). The linear
continuous time-invariant system is controllable if and
only if the controllability matrix C has a full rank, that
is rank (C) = n.

Theorem 5.2 (R. Kalman’s Criteria). The linear
continuous time-invariant system is observable if and
only if the observability matrix O has a full rank, that
is rank (O) = n.

Proof. The proof of the above theorems can be found
in several literatures for example [Davis et al., 2009].

Figure 6. Cases four: Position of the ball when k = 0 and β 6= 0
(input voltage).

Figure 7. Case one: Position of the ball when k = 0 and β = 0
( input current).

5.1 Controllability and Observability of the Lin-
earized Model of EMBSS with Voltage as In-
put

Noting that n = 3, the controllability matrix CO is
calculated as follows:

(
B AB A2B

)
, where matrices

A and B are given by Equations (16) and (17). Its de-
terminant is given by the following equation:

Det(CO) = −4 (αgm− αkx2e)
L3m2x22e

. (29)

Also noting that n = 3, the observability matrix OBS

is calculated as follows:

 C
CA
CA2

, where matrices A

and C are given by Equations (16) and (17). Its deter-
minant is given by the following equation:

Det(OBS) =
2α
√

gm−kx2e

α

mx2e
. (30)



Figure 8. Case two: Position of the ball when k 6= 0 and β = 0
( input current).

Figure 9. Cases three: Position of the ball when k 6= 0 and β 6=
0 ( input current).

These calculations introduce the following theorem.

Theorem 5.3. The system given by the Equation (14)
is controllable and observable if and only if the relation
gm
x2e

> k holds.

Proof. We prove this theorem, using the two theorems
(5.1) and (5.2). That is , one needs to show that the
matrices CO and OBS have full rank if and only if
this inequality gm

x2e
> k holds. Since all the two matri-

ces CO and OBS are square matrices, one only has to
show that their determinants are different from zero if
and only if gm

x2e
> k holds. This can be seen obviously

from (29) and (30).

5.2 Controllability and Observability of the Lin-
earized Model of EMBSS with Current Input

In this subsection also R. Kalman’s Criteria for con-
trollability and observability are going to be used here
to check the controllability and observability of EM-
BSS with current input. Theorems (5.1) and (5.2) are

Figure 10. Cases four: Position of the ball when k = 0 and β 6=
0 ( input current).

the powerful tool to be used here. The following the-
orem guarantee us that EMBSS with current input is
both controllable and observable under certain condi-
tions.

Theorem 5.4. The system provided by the Equation
(21) is controllable and observable if and only if the
relation gm

x3e
> k holds.

Proof. One needs to show only that the determinant of
the controllability and observability matrices CO and
OBS respectively is different from zero when gm

x3e
> k.

We calculate the CO as follows:
(
B AB A2B A3B

)
,

where matrices A and B are given by Equations (23)
and (24) respectively. It’s determinant is given by the
following:

Det(CO) =
4α

C4L4m2x23e
(gm− kx3e) . (31)

The observability matrix OBS is given by the follow-

ing matrix:


C
CA
CA2

CA3

, where matrices A and C are

given by Equations (23) and (24) respectively. It’s de-
terminant is given by the following:

Det(OBS) =
4α

mx23e
(gm− kx3e) . (32)

Using the information given by equations (31) and (32),
one concludes that the linearized model of EMMBSS
with current input is both controllable and observable
when gm

x3e
> k.

Theorem 5.5. The system given by the Equation (21)
is controllable and observable if and only if the relation
gm
x2e

> k holds.



6 Optimal Control for the Linearized EMBSS
Model with Input Voltage

The linearized model given by the equation (14) is be-
ing optimized in this section. We need to chose positive
matrices R and Q. Let them be R = 100 and

Q =

1 0 0
0 1 0
0 0 1

 . (33)

The remaining is to solve for P in the Riccati’s equa-
tionATP+PA−PBR−1BTP+Q = 0. The matrices
A and B are given by the equations (16) and (17). The
octave function lqr() is used to produce the following
matrix P :

 4.9902× 10−1 −1.2836× 10−4 7.1108× 10−3

−1.2836× 10−4 1.3126 3.0864× 10−1

7.1108× 10−3 3.0864× 10−1 5.0540× 10−1

 . (34)

Then K is calculated using the formula, K =
−R−1BTP to obtain the following:

K =
(
4.9902 −1.2836× 10−3 0.071108

)
× 10−3. (35)

The input of the system is then calculated by the input
voltage with KX , where X =

(
δx1 δx2 δx3

)T
.

7 Optimal Control for Linearized EMBSS Model
with input current

The linearized model given by the equation (21) is be-
ing optimized in this section. One needs to chose posi-
tive matrices R and Q. Let them be R = 1000 and

Q =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (36)

The remaining is to solve for P in the Riccati’s equa-
tionATP+PA−PBR−1BTP+Q = 0. The matrices
A and B are given by the equations (23) and (24). The
octave function lqr() is used to produce the following
P :


1.4981701 0.4991131 −0.0010295 0.0097175

0.4991131 0.9941712 −0.0043303 0.0020641

−0.0010295 −0.0043303 1.3125769 0.3086419

0.0097175 0.0020641 0.3086419 0.5054012

 . (37)

Then K is calculated using the formula, K =
−R−1BTP to obtain the following:

K =
(
4.9911 9.9417 −4.3303 2.0641

)
× 10−3. (38)

The input of the system is then calculated by the input
voltage with KX , where X =

(
δx1 δx2 δx3 δx4

)T
.

8 Conclusion
Two models were built depending on whether the in-

put is voltage or current. All these models are non-
linear that why for better analysis linearization tech-
niques were used. They were also represented in
state space representation form and then the lineariza-
tion was made around their corresponding equilibrium
points. The controllability and observability of the two
models together with their corresponding stability were
investigated. They have been guaranteed under cer-
tain conditions and combination of parameters k, β and
the position of the ball. It was found out that the two
models of EMBSS are all both controllable and observ-
able. The controllability and observability of the EM-
BSS with the input as voltage were guaranteed when
gm
x2e

> k. This is the same as the case of EMBSS with
the input as current where the controllability and ob-
servability were guaranteed when gm

x3e
> k. In both

cases x2e and x3e stand for the position of the ball from
the end of the electromagnet.
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