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Abstract: We suggest a new technique for analysis and control of the forced
nonlinear oscillations based on stochastic sensitivity function (SSF). This function
describes the dispersion of random trajectories near deterministic attractor. The
possibilities of SSF to predict some peculiarities of dynamics for stochastically and
periodically forced oscillators are shown. The thin effects observed in Brusselator
and stochastic Lorenz model near chaos in a period-doubling bifurcations zone are
presented. The problem of stochastic cycles control based on SSF is considered.
The possibilities for formation of stochastic attractor with desired features by
feedback regulator are presented. An example of controlling chaos for Brusselator
is considered.
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1. INTRODUCTION

Stochastic fluctuations of nonlinear oscillations
play an important role for understanding of the
corresponding dynamical phenomena for elec-
tronic generators, lasers, mechanical, chemical
and biological systems. The various noise-induced
transitions through periodic to more complicated
regimes are a central problem in modern nonlin-
ear dynamics stochastic theory. The sensitivity
analysis of random forced oscillations is a key
for investigation of these transitions. Control of
stochastic and chaotic oscillations is challenging
and fundamental problem of nonlinear engineer-
ing (Chen and Yu (2003), Fradkov and Pogromsky
(1998)).

Analysis of nonlinear oscillations under the sto-
chastic disturbances was started by Pontryagin
et al. (1933) and continued by many researchers.
The random trajectories of forced system leave
the closed curve of deterministic limit cycle and
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due to cycle stability form some bundle around
it. Stochastic cycles were considered both near
and far from Hopf bifurcation point. A qualita-
tive effect of external fluctuations on the Hopf
scenario was found and investigated by Moss and
McClintock (1989) and Arnold et al. (1997). Small
external noises acting on limit cycles may give
rise of local phase-dependent response of the os-
cillations. Local instability of cycle is a reason of
its significant sensitive dependence and can cause
of noise-induced transition to chaos (Bashkirtseva
and Ryashko (2000)). A variance of stochastic
bundles perpendicular to the deterministic orbit
is a natural measure of limit cycles sensitivity.
Kolmogorov-Fokker-Planck (KFP) equation gives
the most detailed probabilistic description. How-
ever, the direct using of this equation is very
difficult even for the simplest situations. Under
these circumstances asymptotics and approxima-
tions are used. Asymptotic analysis of distribu-
tion density for small noises based on quasipoten-
tial function is actively developed (Freidlin and
Wentzell (1984), Naeh et al. (1990), Dembo and



Zeitouni (1995), Roy (1997), Smelyanskiy et al.
(1997)).

Quasipotential gives exponential asymptotics for
stationary probability density. In Section 2 we give
the first approximation of quasipotential in the
vicinity of limit cycle. This approximation is an
orbital quadratic form. Matrix of this quadratic
form defines a covariance of the normal devi-
ations of random trajectories for any point on
a cycle. This matrix function plays a role of
stochastic sensitivity function (SSF) of a cycle.
SSF is a natural probabilistic measure of stochas-
tic cycles response to small random disturbances
(Bashkirtseva and Ryashko (2002), Bashkirtseva
and Ryashko (2004)).

For the case of cycle on a plane (2D-cycle) a
scalar analytical representation of this matrix SSF
is given. The possibilities of this scalar SSF to
predict some peculiarities of 2D-cycles for forced
Brusselator are demonstrated. New critical values
of Brusselator parameters with the help of SSF are
shown. For these values very small disturbances
transfers Brusselator to chaotic regime.

Now the main interest of researchers is concen-
trated on the analysis of nonlinear systems with
3D-cycles. These systems demonstrate the period-
doubling bifurcation and transition to chaos. In
this paper, we present new effective method of the
SSF construction for 3D-cycles. On the basis of
singular expansion, the matrix differential equa-
tion is reduced a system of three scalar equations
only. A periodic solution of this simple system can
be found by stabilization method.

The results of the investigation of multiscroll
Lorenz cycles near chaos in a period-doubling
bifurcations zone are presented.

In Section 3, we consider the problem of stochas-
tic cycles control based on SSF. The possibilities
for formation of stochastic attractor with desired
features by feedback regulator are discussed. Con-
trollability analysis and effective algorithms for
regulators synthesis are presented. An example of
controlling chaos for Brusselator is considered.

2. STOCHASTIC SENSITIVITY OF LIMIT
CYCLES

For many dynamical processes with regular oscil-
lations, the basic mathematical model is the non-
linear deterministic system

ẋ = f(x) (1)

with T -periodic solution x = ξ(t). Here x is
n−vector, f(x) is n−vector function. Let γ be a
phase curve (limit cycle) of solution ξ(t) satisfying
the following stability property.

Definition 1. The cycle γ is called exponentially
stable if for small neighbourhood Γ of cycle γ there
exist constants K > 0, l > 0 such that for any
solution x(t) of system (1) with x(0) = x0 ∈ Γ
the following inequality holds

‖∆(x(t))‖ ≤ Ke−lt‖∆(x0)‖.
Here ∆(x) = x− γ(x) is a deviation of a point x
from a cycle γ, γ(x) is the point on cycle γ that
is nearest to x.

A system of stochastic differential equations (in
Ito’s or Stratonovich’s sense)

ẋ = f(x) + εσ(x)ẇ, (2)

is a traditional mathematical model allowing to
study quantitative description of results of exter-
nal disturbances. Here w(t) is a n−dimensional
Wiener process, σ(x) is n× n−matrix function of
disturbances with intensity ε.

The random trajectories of forced system (2) leave
the closed curve of deterministic cycle γ and due
to cycle stability form some bundle around it.

The detailed description of random distribution
dynamics of this bundle is given by Kolmogorov-
Fokker-Planck (KFP) equation. If the charac-
ter of transient is inessential and main inter-
est is connected with regime of steady-state sto-
chastic auto-oscillations then it is possible to
restrict the research by analysis of a station-
ary density function ρ(x, ε). Analytical research
of stationary KFP equation for stochastic limit
cycles considered here is a very difficult prob-
lem. Under these circumstances asymptotics and
approximations based on quasipotential v(x) =
− limε→0 ε

2 log ρ(x, ε) are actively used.

The probabilistic distribution for the bundle
of random trajectories localized near cycle has
Gaussian approximation

ρ ≈ Ke− v(x)
ε2 ≈ K exp

(
− (∆(x),Φ+(γ(x))∆(x))

2ε2

)

with covariance matrix ε2Φ(γ). This covariance
matrix characterizes a dispersion of the points of
intersection of random trajectories with hyper-
plane orthogonal to cycle at the point γ. A func-
tion Φ(γ) is a stochastic sensitivity function (SSF)
of limit cycle. This function allows to describe
non-uniformity of a bundle width along cycle for
all directions. It gives the simple way to indicate
the most and the least sensitive parts of cycle to
external noises.

It is convenient to search for a function Φ(γ) in
parametric form. The solution ξ(t) connecting the
points of cycle γ with points of an interval [0, T )
gives the natural parametrization Φ(ξ(t)) = W (t).
Matrix function W (t) is a solution of Lyapunov
equation (Bashkirtseva and Ryashko (2004))



Ẇ = F (t)W +WF>(t) + P (t)S(t)P (t), (3)

with conditions

W (0) = W (T ) (4)

W (t)r(t) ≡ 0, (5)

Here

F (t) =
∂f

∂x
(ξ(t)), S(t) = σ(ξ(t))σ>(ξ(t)),

r(t) = f(ξ(t)), P (t) = Pr(t), Pr = I − rr>/r>r,
where Pr is a projection matrix onto the subspace
orthogonal to the vector r 6= 0.

2.1 Sensitivity analysis of 2D-cycles

For the case n = 2 the projection matrix is given
by P (t) = p(t)pT (t), where p(t) is a normalized
vector orthogonal to f(ξ(t)). As a result the
matrix W (t) is written as W (t) = µ(t)P (t).
Here µ(t) > 0 is T-periodic scalar stochastic
sensitivity function (Bashkirtseva and Ryashko
(2000)). The valueM = maxµ(t), t ∈ [0, T ] plays
an important role in the analysis of stochastic
dynamics about a limit cycle. We shall consider
M as a sensitivity factor of a cycle γ response to
random disturbances.

Consider forced system

ẋ = a− (b+ 1)x+ x2y + εθ

ẏ = bx− x2y
(6)

received by the addition of small disturbances
εθ(t) to classical Brusselator.

It is known that for b > b̄ = 1 + a2 the unforced
system (ε = 0) has a limit cycle (b̄ is bifurcation
value). We consider the results of the comparative
analysis of this system cycles for a fixed a = 0.2
and various values of parameter b > b̄ = 1.04 from
an interval [1.06,1.07].

Let disturbances in (6) be stochastic: θ(t) = ẇ,
where w(t) is an independent Wiener process.

For Lyapunov exponent λ and sensitivity factor
M dependence on values b is shown in Fig.1 and
Fig.2.

As we can see in Fig.1a, a parameter λ monotoni-
cally decreases with growth b. This means increase
of a stability degree of a cycle to disturbances
of initial data. One should think it should be
accompanied by the appropriate decrease in the
sensitivity of a cycle to random disturbances.
However, here the converse is observed. The value
M behaves absolutely otherwise (see Fig.1b).

On an examined interval the function M(b) is not
monotonic. Its graph has sharp high peak. As a
result the function M(b) has an essential overfall
of values. By critical value of parameter b here is
b∗ = arg maxbM(b) = 1.064082 , M(b∗) = 8.8 ·
1010.

In Fig.3 (left), the random trajectories found by
a direct numerical simulation for b∗ and ε = 10−5

are demonstrated. For small stochastic distur-
bances the burst of response amplitude is ob-
served.

Let disturbances in (6) be periodic: θ(t) =
cos(ωt), where ω is a frequency.

For a critical parameter value b∗ = 1.064082
increase in the periodic force intensity ε results
in the period-doubling bifurcations of system (6)
attractors: 1-cycle (ε = 0.0005) → 2-cycle
(ε = 0.0007) → 4-cycle (ε = 0.000763) and so
on. For ε = 0.00085 the bundle of trajectories (see
Fig.4 (left)) looks chaotic. For a critical parameter
value b∗ = 1.064082 the forced Brusselator is a
generator of chaos.

Thus, the function of sensitivity is the useful ana-
lytical tool for the prediction of singular responses
of a non-linear system both to stochastic and to
periodic disturbances.
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Fig. 1. Deterministic Lyapunov exponent (a) and
stochastic sensitivity factor (b).



2.2 Sensitivity of 3D-cycles

For 3D-cycles, due to singularity, the matrix W (t)
has the following decomposition

W (t) = λ1(t)v1(t)v>1 (t) + λ2(t)v2(t)v>2 (t).

Here λ1(t) ≥ λ2(t) ≥ λ3(t) ≡ 0 are eigen-
values, and v1(t), v2(t), v3(t) are eigenvectors of
the matrix W (t). The constructive method for
computation of this decomposition is presented
in (Bashkirtseva and Ryashko (2004)). Consider
a stochastic Lorenz system

ẋ = σ(−x+ y) + εẇ1 σ = 10, b =
8
3

ẏ = rx− y − xz + εẇ2

ż = −bz + xy + εẇ3

received by the addition of small additive stochas-
tic disturbances to classical deterministic Lorenz
model. Here wi(t) (i = 1, 2, 3) are independent
standard Wiener processes, ε is a parameter of
noise intensity.

For deterministic Lorenz model (ε = 0) an in-
terval 99.524 < r < 100.795 is well-known as
a period doubling bifurcations zone with infinite
chain of limit cycles. This r-interval is divided into
subintervals I1, I2, I4, ..., I2n , ... with limit cycles
Γ1, Γ2, Γ4...,Γ2n , ... . Here Γk is a non-symmetric
stable (y2x)k periodic orbit (k− cycle) observed
on subinterval Ik.

For Lorenz model I1 = (99.98, 100.795), I2 =
(99.629, 99.98), I4 = (99.547, 99.629) etc.

The appearance of noise results in stochastic de-
formation of the deterministic unforced cycles.
Under the random disturbances the trajectories
of a stochastically forced system leave the deter-
ministic cycle and form some bundle around it.

For the description of stochastic cycle as a whole
it is possible to use stochastic sensitivity factor
m = maxλ1(t), t ∈ [0, T ]. Function m = m(r)
describes a variation of cycles stochastic sensitiv-
ity as parameter r changes.

Consider this function on the intervals I1, I2, I4, ...
(see Fig.2). The branches of m(r) are qualitatively
similar on these intervals.

The minimum m(r) on each interval corresponds
to values r1, r2, r4, ... (supercycles).

As parameter r decreases or increases from rk,
function m(r) monotonically grows. As parameter
approaches bifurcation points function m(r) tends
to infinity. However, minimum values mk = m(rk)
for different intervals are unequal essentially. Here
we have some self-similarity: m2 ≈ 5m1,m4 ≈
5m2, .... Thus transition to the next bifurcation

Fig. 2. Stochastic sensitivity factor

interval is accompanied by increase of cycle sen-
sitivity five times. It is possible to resume that
sensitivity function predicts chaos signaling about
increase of cycle sensitivity by fast rising of values
m1,m2,m4, ....

3. SENSITIVITY CONTROL

Consider a stochastic system with a control of the
form

ẋ = f(x, u) + εσ(x, u)ẇ, (7)

where x is n−dimensional state variable, u is r-
dimensional vector of control functions, f(x, u),
σ(x, u) are vector functions, w(t) is n−dimensional
Wiener process, ε is scalar parameter of distur-
bances intensity. It is supposed that for ε = 0
and u = 0 the system (7) has T−periodic solution
x = ξ(t) with a phase trajectory γ (cycle).

The stabilizing regulator we shall select from
the class U of admissible feedbacks u = u(x)
satisfying conditions:

(a) u(x) is sufficiently smooth and u|γ = 0;
(b) for the deterministic system

ẋ = f(x, u)

the solution x = ξ(t) is exponentially stable in the
neighbourhood Γ of cycle γ.

3.1 Control and SSF

Consider in detail the case n = 2. Sensitivity
function µ for u ∈ U is a solution of boundary-
value problem

µ̇ = a(t)µ+ b(t), µ(0) = µ(T ). (8)

Here



a(t) = p>(t)(F>(t) + F (t))p(t),

b(t) = p>(t)S(t)p(t)

F (t) =
∂f

∂x
(ξ(t), 0) +

∂f

∂u
(ξ(t), 0)

∂u

∂x
(ξ(t))

S(t) = σ(ξ(t), 0)σ>(ξ(t), 0),

(9)

p(t) is normalized vector orthogonal to cycle γ at
a point ξ(t).

As we see, the variation of control u allows to
change the only coefficient a(t) in the equations
(9). Note that outcome of control depends only on

values of the derivative
∂u

∂x
. It gives us possibility

to simplify the structure of used regulator.

3.2 Choice of regulator structure

Consider Taylor’s expansion of control function
u(x) at a point γ

u(x) = u(γ) +
∂u

∂x
(γ)(x− γ) +O(‖x− γ‖3).

For γ = γ(x) taking into account condition (a),
we get

u(x) =
∂u

∂x
(γ(x))∆(x) +O(‖∆(x)‖3).

As we see, a first approximation u1(x) for arbi-
trary smooth control function u ∈ U for small
deviations ∆(x) = x− γ(x) is the feedback

u1(x) = Φ(γ(x))∆(x). (10)

Here Φ(γ(x)) is the feedback matrix coefficient.
Appropriate t-parametric representation for this
matrix looks like K(t) = Φ(ξ(t)).

As mentioned above (see (8), (9)), capabilities of
control by sensitivity function µ(t) are completely
determined by linear approximation of a function
u(x) and independent on higher order terms. It
allows to restrict our consideration without loss
of generality by more simple regulators(10) in the
following form

u = K(t(x))∆(x). (11)

Thus the feedback coefficient matrix K(t) com-
pletely determines capabilities of the regulator
(11) to synthesize SSF µ(t).

Connect controlled coefficient a(t) in the equation
(8) with feedback matrix K(t) directly. Really, it
follows from (9) that

a(t) = a0(t) + a1(t)

a0(t) = 2q>(t)p(t)

a1(t) = 2β>(t)k(t),

(12)

where

q(t) = A(t)p(t), β(t) = B(t)p(t)

A(t) =
[
∂f

∂x
(ξ(t), 0)

]>

B(t) =
[
∂f

∂u
(ξ(t), 0)

]>

k(t) =
∂u

∂x
(ξ(t))p(t) = K(t)p(t)

(13)

Note that the vector k is a derivative of a control
function u from (11) in the direction of normal
vector p.

3.3 Control goal and choice of regulator parameters

The aim of control is the synthesis of desired SSF
for cycle γ of stochastic system (7). Let µ̄(t) ∈M
be a some assigned SSF. Here

M = {µ ∈ C1
[0,T ] | µ(t) > 0, µ(0) = µ(T )}.

Denote by µu a SSF of cycle γ for stochastic
system with control u ∈ U .

Definition 2. A cycle γ is called completely sto-
chastic controllable if for all µ̄ ∈ M there exists
u ∈ U such that µu = µ̄.

Theorem. A cycle γ is completely stochastic con-
trollable if and only if

β(t) 6= 0 ∀t ∈ [0, T ]. (14)

The function µ̄(t) is connected with control para-
meter k(t) by the following equation

β>(t)k(t) =
ā1(t)

2
, (15)

where

ā1(t) = ( ˙̄µ(t)− a0(t)µ̄(t)− b(t))/µ̄(t).

The equation (15) for (14) has infinite set of
the solutions (control is not unique). Consider
additional optimal criterion

‖k(t)‖2 −→ min . (16)

The problem (15), (16) has the unique solution

k̄(t) =
ā1(t)β(t)

2β>(t)β(t)
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Fig. 3. Stochastic forced Brusselator
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Fig. 4. Periodic forced Brusselator

Here feedback matrix in (11) can be found as
follows

K̄(t) =
ā1(t)

2β>(t)β(t)
B(t).

Consider forced Brusselator (6) with control

ẋ = a− (b+ 1)x+ x2y + u1 + εθ1

ẏ = bx− x2y + u2 + εθ2, a = 0.2

where ε is an external force intensity, u1 and u2

are control functions.

For b∗ = 1.064082 in absence of control this sys-
tem for stochastic and periodic disturbances θi(t)
is generator of chaos (see subsection 2.1). An ex-
traordinary sensitivity of Brusselator is connected
with huge values of stochastic sensitivity function.

Now we demonstrate the controlling chaos for this
model. Let us take µ̄(t) ≡ 5. Such choice of SSF
is dictated by the desire to have oscillations with
small sensitivity.

The results of a direct numerical simulation of
the forced trajectories for controlled Brusselator
are presented in Fig.3 (for stochastic θi(t) = ẇi)
and Fig.4 (for periodic θ1 = cos(ωt), θ2 = 0.
Here left plots demonstrate dynamics of system
without control and right plots with control. As
we see, constructed regulator gives us the solution
of chaos control problem.

4. CONCLUSION

Suggested stochastic sensitivity function tech-
nique is a useful tool for a quantitative description
for a system response on the random external
disturbances. Using SSF, we can predict some
singularities in dynamics of stochastically and pe-
riodically forced oscillators. The critical (chaotic)
values of Brusselator parameter were found and
the thin effects observed in stochastic Lorenz

model near chaos in a period-doubling bifurca-
tions zone were investigated. The new method of
stochastic cycles control based on SSF allows to
form the stochastic attractor with desired features
by feedback regulator. This constructed regulator
really provides the solution of a controlling chaos
problem.
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