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Abstract—We present a controller design based on
parametric resonance concepts for a pendulum with
erratic bounded motion of the support point and an
actuator consisting of a sliding mass along the bar. The
control algorithm is sustented on relations of poten-
tial/cinematic energy in synchronized manner according
to principle of parametric resonance. In this way, the
induced nonlinear oscillation of the pendulum is damped
down using a generic control law. A bifurcation study
is made for the Simulations and lab experiments with a
prototype illustrate our approach.

I. INTRODUCTION

In the framework of control of oscillations, physical
pendulum has been investigated academically in many
areas ranging from dynamics aspects, for instance in
Control Theory ([8]; [2]; [13]) and nonlinear oscil-
lations within the Theory of Bifurcations ([4]; [3];
[12]; [1]). There exists many applications where the
system dynamics is partial or totally approximated
by a pendulum-like dynamics, e.g., in buoys ([13]),
cranes ([6]), manipulators ([9]), automatic balancer
([5]) among others.

The analysis of pendulum dynamics seems usually
complex. Often the motion of pending loads excited
through the pivot is handled as simple nonlinear pendu-
lum. For small amplitudes one can apply the theory of
Floquet for linear and periodic-varying dynamics ([7]).
However the system contains nonlinearities that play an
important role in the behavior and in the control of the
induced nonlinear oscillations. The principles of control
of pending weights, for instance in cranes, are based
generally on horizontally or vertical displacement of
the pivot with information of the pendulum angle and
pivot position or cable length.

This paper explores the principle of parametric res-
onance and attempts to extend it to the control of
nonlinear oscillations through a regulated time-varying
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mass center. To this end, the system is represented by
a swinging bar subject to strong perturbations of the
support point, while the actuator to exert the control
action consists in a sliding mass along the bar (see Fig.
1). A controller for moving the sliding mass within a
specified span is designed on the basis of a synchronism
with the forced oscillation. So a significative nonlinear
damping is created in the bar. A study of bifurcations
in the controlled dynamics is carried out employing the
frequency of the pivot motion in the main dimension
and the span of the sliding mass position in the codi-
mension. Alternatively, the midpoint of the oscillation
is used as codimension in the analysis. Numerical
simulations and runs in a prototype show the properties
and advantages of the proposed oscillation control.
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II. PENDULUM DYNAMICS

The pendulum dynamics in space state is deduced in
the paper by stating the Lagrangian and Hamiltonian
of the system. The resulting dynamics is

α̈ = − 1

I0 +m z2L(t)

µ
δ α̇+

1

2
g sinα (1− d(t)

L
)(1)

(L M0 + 2 m zL(t)) + 2 m α̇ zL(t) żL(t)) ,

where α is the bar angle, zL the sliding mass position, d
is the pivot displacement, I0 is the bar inertia moment,



L the bar length, m the sliding mass, M0 the bar
mass, g the gravity acceleration, α̇ and żL are rates
of the oscillation and the slide velocity, respectively.
For control purposes let us defined u(t) = zL(t) as the
control action and d(t) the pivot perturbation with

d(t) = L ε sin (ωt) , (2)

and 0 ≤ ε ≤ 1. Moreover, let us assume that α̇ and α
are available for the control law while d is unknown
and bounded.

III. HEURISTICS

The heuristics taken for controller design can be
better illustrated with help of Fig. 2. Let us first
consider null friction, the pivot fixed and an initial
nonzero angle α(0). Assume the mass m is displaced
between two levels in the bar according to the points
0 to 8 until completing a cycle and repeated again
indefinitely. The time points to push down the mass are
defined when α̇ = 0, also the most slanted positions of
the bar. Similarly, the time points to push up the mass
occur when α = 0, i.e., when the bar is on the vertical
line. In completing this cycle, one can show in the paper
that the maximal potential energy is reduced stepwise
in each semi-cycle. So, with many successive cycles,
the amplitude of the oscillation is reduced uniformly in
time to null. On the other hand, if the cycles are made
reversely, then the oscillation will be unstable.

A surprisingly feature of this synchronization is that
the frequency of the mass is twice the frequency of
the oscillation like in the parametric resonance property
given by the Floquet theory for linear pendulum with
harmonically moving pivot. Another property is that
the enclosed areas in each cycle path are proportional
to the lost mechanical energy per cycle.

IV. CONTROL ALGORITHM

The proposed basic control law is a two-level algo-
rithm and inspired in the heuristics developed previ-
ously. We suppose two specified mass levels termed
z
L0

and z
L1

for the lower and upper levels in the
bar, respectively, and a mass sliding velocity v. The
synchronization of m according to the previous key
idea occurs at points t1 and t2 in the mass descent
from zL1 to zL0 , respectively, when the bar is more
slanted. The mass ascent takes place at points t3 and
t4 from zL0 to zL1 , respectively, with the bar crossing
the vertical line. The mass will remain at zL1 to zL0
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Fig. 1. Figure 2 - Cycle of the sliding mass for stable pendulum

as long as the synchronization conditions α̇(t) = 0 or
α(t) = 0 do not occur. Thus

z
L
(t) = z

L1
+
R t2
t1
v dt, from t1 up to t2,

where t1, t2 fulfill: α̇(t1) = 0 and z
L
(t2) = z

L0

z
L
(t) = z

L0
− R t4t3 v dt, from t3 up to t4,

where t3, t4 fulfill: α(t3) = 0 and z
L
(t4) = z

L1

z
L
(t) = constant from t2 to t3 and from t4 to t1 ,

(3)
where the instants ti will depend on the fulfillment of
the synchronization conditions only.

There exists complex relations between the values
of the set {z

L0
, z

L1
,
z
L0
+z

L1

2 , v} and the synchronism
of the control system. Given a span and a midpoint
there exists a critical sliding velocity to maintain the
synchronism so that it is valid

t2−t1 =
z
L0
− z

L1

v̄
≤ Tc
4

and t4−t3 =
z
L0
− z

L1

v̄
≤ Tc
4
,

(4)
where Tc is the period of the controlled oscillation of
α and v̄ the mean mass velocity which is considered
equal in both ascent and descent.

There are many ways by which the basic control law
can be optimized in the context of the control law (3).
One important strategy is to accomplish a forced path
of m such that the areas in each cycle be maximized.
More precisely for a given pair of levels z

L0
and z

L1

the control law is optimized according to

maxn
t1,t3,zL0

,z
L1

o
I
x-z
sign(α) A((zL, v) ds (5)

where the integral is the Green integral along the path
x(t)-z(t) and A is the area enclosed. Hence an optimal
set
©
t1, t3, zL0 , zL1

ª
is found according to the provided

v and taking into account conditions (4).



V. BIFURCATION ANALYSIS

In the rest of the paper we analyze the stability of the
nonlinear oscillations for harmonic perturbations in the
pivot. Both stationary and transient states are focused in
the analysis. Basically we search the dynamics for large
periods caused for a set of parameters characterized
mainly for the excitation frequency with codimensions
in the span and midpoint of the mass levels, and the
sliding velocity of m.

The bifurcations diagrams are constructed as a series
of power lines in the spectral function of the stationary
orbit in the space (α, α̇) for the basic control law. To
this end, we employ the FFT function and classify the
low-frequency power lines that are to the left of the
excitation frequency. As a bifurcation occurs, a change
in the periodicity or a chaotic behavior take place.
These are detected by counting the number of low-
frequency power lines plus one, which are plotted in
the diagram for the main direction. Very high periods
(i.e., higher than 10) or chaotic states are depicted by
vertical segments.

Fig. 3 depicts the bifurcation diagram in form of
power density functions of the first harmonic and
subharmonics of the swing motion in the frequency
domain for an uncontrolled pendulum (superior curve)
and for four controlled pendulums with different mass
ranges. Clearly, the uncontrolled pendulum behavior
does not produce any bifurcation, yet the power of
the oscillation for a fixed pivot frequency is almost
greater tan the other cases, above all in low and mean
frequencies. This is not the case with the controlled
pendulums, whose behaviors show one periodic and
high periodic oscillations, inclusive chaos, mainly for
low frequencies and high frequencies. However, the
power of this oscillation is drastically lower in these
bands of the domain. Similar analysis and conclusions
can be carried out from Fig. 4 when the mass velocity
is put as codimension in the bifurcation diagram. How-
ever, if both results are compared, one can draw out that
the mass velocity is much more effective to produce a
strong nonlinear damping in the control behavior of the
pendulum than the mass range.

In all cases, the power of the subharmonics is lower
than that of the excitation frequency. On the other
side, the superharmonics were not included in the
diagram because they are relatively lower in power,
inclusive in chaotic cases. Moreover, one knows that
the fundamental frequency (referred here to as ω0), it
is, that one of the pivot excitation, corresponds to the
largest power of the spectrum in all dimensions.
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If now we interpolate the lower envelope of all
bifurcation diagrams, we obtain a region of minimum
energy. This is also illustrated in Figs. 3 and 4. As
expected, the smallest zone corresponds to the codi-
mension of the mass velocity and a mass range at the
bottom extreme of the bar.

More surprisingly is that the envelope of this zone is
composed by two bifurcation diagrams, namely those
for extreme mass velocities. On the contrary, the enve-
lope of the zone in Fig. 3 is composed by four stretches.
For control purposes, the results in Fig. 4 seem to
be more significative from the viewpoint of oscillation
control than the results in Fig. 3.

The qualitative behavior of the system is good re-
flected in Poincaré maps in phase diagrams. In Fig. 5,
for instance, the evolution of the control behavior for
a chaotic case is illustrated.



Figure 5 - Comparison of Poincaré maps between a
chaotic orbit (strange attractor) and the uncontrolled

orbit
Simultaneously, it is compared with the evolution of the
pendulum without control. Clearly, the performance in
steady state is quite superior in the control case from
the viewpoint of the power attenuation. The change of
the foregoing chaotic property to a lower periodic orbit
can be appreciated in steady state in Fig. 6. This occurs
when the frequency of excitation on the pivot changes
slightly to 0.17 (Hz.). Doing it the periodicity becomes
3 in steady state. Also here, the power attenuation
of the oscillation in comparison with the uncontrolled
pendulum orbit is drastically reduced.

Figure 6 - Comparison of Poincaré maps between a
periodic-3 orbit and the uncontrolled orbit

VI. KNOWLEDGE-BASED CONTROL ALGORITHM

Based on previous results of the bifurcation analysis
we propose now a knowledge-based algorithm that
take advantage of the bifurcation diagrams in the main
dimension and in the codimensions of mass rate and
range. The key question is how this information is at the
efficient as possible used on-line to rich the strongest
nonlinear damping of the oscillations. First, we notice
from previous Figs. 3 and 4 that the periodicity can be
modified more easily by changing slightly the midpoint
of the range of the sliding mass, i.e., by adjusting the
codimension of the mass range in the bifurcation dia-
gram. However, the best way to maintain the energy of
the orbit as low as possible is to regulate the mass rate
(see Fig. 4). Hence, according to our expertise, we see
the frequency ωs = 0.47 (Hz) as the critical frequency

for switching properties of the control between the two
tested velocities in our prototype.
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Figure 7 - Knowledge-based control diagram

One critical point in coordinating the switching of
diagrams is to know the excitation frequency ω0 of
the pivot. To this end, we can sample continuously the
orbit and analyze its power spectrum by means of an
FFT algorithm. As we know, the maximal power line
corresponds to the excitation, hence it is then easy to
extract an estimation of ω0.

The proposed algorithm is illustrated in Fig. 7. The
basic switching control governs the sliding mass by
achieving automatic synchronization with ω0, but the
optimal parameters to make orbits more predictable
and/or with lowest energy are provided by employing
knowledge of the codimensions in order to switch the
best controller as in a gain-scheduling form.

It is worth noticing that the simplicity of the ba-
sic controller is maintained by the supervision loop.
Basically the synchronization is not affected, only the
range and rate of the sliding mass are modified in this
framework as codimensions.

To illustrate the all-round evolution of the
knowledge-based control system of Fig. 7, we
propose an excitation d(t) of 2 (m) of span and that
can range within a wide interval of frequencies. The
best way to see transitions of the dynamics is through
an excitation d(t) in form of chirp signal that changes
its frequency linearly with time. In our study this
frequency ω0 increases from 0 up to 0.7 (Hz.) in
1000 (s) (see Fig 10a). The angle of the pendulum
α(t) is represented in four cases according to: the
uncontrolled case (Fig. 8b), the controlled case for
minimal velocity v of m (see Fig. 8c), the controlled
case for maximal velocity v of m (see Fig. 8d), and
finally the proposed switching control (see Fig. 8e).

It is clearly seen that the switching control can
obtained information on ω0 via FFT on small periods
of α(t) and detects the cross of the chirp signal by



the critical frequency ωs = 0.47 (Hz) around 600 (s).
Before this point is achieved, the algorithm detects
lower frequencies and proposes the minimal velocity
rate of the sliding mass. Then, after crossing ωs, it
determines the switching of the controller parameters
automatically to the maximal velocity of m. The result
is a drastic reduction of the energy of the oscillation.
Clearly, the worst case corresponds to the uncontrolled
pendulum.
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VII. CONCLUSIONS

In this paper, a switching control system was de-
signed for a perturbed physical pendulum. It is based on
knowledge of qualitative and quantitative behavior in
frequency domain. The controller criterion is supported
by the synchronism between a sliding mass motion
and the oscillation, like in the form of the parametric-
resonance principle. The knowledge is sustained on
the bifurcation diagrams in frequency domain as main
dimension, and velocity of the sliding mass and its
motion range as codimensions. The control algorithm
identify the frequency of the excitation and detects
a critical point to switch between optimal controllers
according to the frequency. The achieved damping of
this control system is notably larger as those obtained
with other fixed controllers. This is illustrated in a case
study. Future work concerns the completely implemen-
tation of the prototype depicted in Fig. 2.
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