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Abstract 

The majority of processes met in the industrial 
practice have stochastic characteristics and 
eventually they embody nonlinear behaviour. 
Traditional controllers with fixed parameters are 
often unsuitable for such processes because their 
parameters change. The changes of process 
parameters are caused by changes in the 
manufacturing process, in the nature of the input 
materials, fuel, machinery use (wear) etc. One 
possible alternative for improving the quality of 
control for such processes is the use of adaptive 
control systems. Different approaches were 
proposed and utilized. One successful approach is 
represented by self-tuning controller (STC). The 
standard STC approach based on the Linear 
Quadratic (LQ) method   is verified and compared 
with two STC based on the Model Predictive 
Control (MPC). The verification of both methods 
was implemented by the real-time control of a 
highly nonlinear laboratory model, the Amira 
DR300 Speed Control with Variable Load. 
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1  Introduction 
 Self-tuning controllers (STC) use the combination 
of the recursive process identification on base of a 
selected model process and the controller synthesis 
based on knowledge of parameter estimates of 
controlled process (see [Åström and Wittenmark, 
1995; Isermann et al., 1991; Welstead and Zarrop, 
1991; Landau, 1998 and Bobál et al., 2005]).     

 Like this STCs that use in a synthesis part 
estimates of the process model parameters are 
called explicit. Block diagram of an explicit STC 
(with direct identification) is shown in Fig. 1. 

Figure 1. Block diagram of an explicit self-tuning controller 
 
   Model Predictive Control (MPC) is one of the 
control methods which have developed 
considerably over a few past years. Predictive 
control is essentially based on discrete or sampled 
models  of  processes.  Computation of  appropriate  
control algorithms is then realized especially in the 
discrete domain. The term Model Predictive 
Control designes a class  of  control  methods,  see 
e. g. [Maciejowski, 2002; Rossiter, 2003; Camacho 
and Bordons, 2004;  Mikleš and Fikar, 2008]. The 
basic structure of the MPC is shown in Fig. 2. A 
model is used to predict the future process outputs 
y, based on the past and current values and on the 
proposed optimal future actions (manipulated 
variables) u. These actions are calculated by the 
optimizer taking into account the cost function 
(where the future tracking error is considered) as 

 
y(k) - process output,  u(k) - controller output (manipulated 
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well as the constraints [Camacho and Bordons, 
2004]. 

 
 

Figure. 2. Block diagram of basic structure of MPC  
   

 One of the major advantages of predictive 
control is its ability to do on-line constraints 
handling in a systematic way. Almost all practical 
applications hold constraints of input, output and 
state space variables. This is also the case of the 
laboratory model DR300. 
   All controllers use the algorithm of identification 
based on the Recursive Least Squares Method 
(RLSM) extended to include the technique of 
directional (adaptive) forgetting. Numerical 
stability is improved by means of the LD 
decomposition [Kulhavý, 1987 and Bobál et al., 
2005]. This method is based on the idea of 
changing the influence of input-output data pairs to 
the current estimates. The weights are assigned 
according to amount of information carried by the 
data. 

This paper is organized in the following way. The 
description of DR300 laboratory servo model and 
analysis of its static and dynamic properties are 
introduced in Section 2. Implementation of 
standard STCs and experimental results by real-
time control of the DR300 model are described in 
Section 3. Problems of implementation of self-
tuning predictive control and its application on the 
above mentioned laboratory model are the content 
of Section 4. Section 5 concludes the paper.    
 

2  Description of Laboratory Model DR 300   

The self-tuning algorithms were designed for a 
real-time control of the laboratory model DR300 
(see   Fig. 3). A block scheme of this system is 
shown in Fig. 4.  

The plant is represented by a permanently exited 
DC-motor (M1) of which the input signal (armature 
current) is provided by a current control loop. Its 
servo amplifier allows the 4-quadrant mode. The 

sensors for the output signal (speed) are a 
tachogenerator (T) and an incremental encoder (I). 
The free end of the motor shaft is fixedly coupled 
(K)  to the shaft of a second, identical  motor  
(M2). 
 
 

 
 
 
 
 
 

Figure 3. Laboratory model Amira DR300 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Block scheme of   Amira DR300 servomotor. 
 

This motor is used as a generator. Its output 
current is freely adjustable. 
   The rotation speed of the motor M1 is driven by 
voltage u. The motor shaft rotations per minute 
(rpm) are measured by tachogenerator T. The aim 
of the control process is to control the rotation 
speed of the shaft ω with the control voltage u. 
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Figure 5. Static characteristics of Amira DR300 servomotor 

From the control point of view, the Amira DR300 
is a non-linear system. Some characteristics of the 
nonlinearity (gain with dead zone and hysteresis) 
can be observed from the static characteristics 
shown in   Fig. 5. 
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3  Implementation of LQ STC 
Due to nonlinearities of the DR300 system, self-

tuning controllers were used for its control. The 
laboratory model was connected with a PC 
equipped with a control and measurement PC card. 
MATLAB and Real Time Toolbox were used to 
control the system. 

Several controllers from the Self Tuning 
Controlles Simulink Library  (STCSL) [Bobál et 
al., 2005; Bobál and Chalupa, 2008], were applied 
to the control problem and different settings of 
controller parameters were tested. Most of these 
controllers were able to cope with the control of 
DR300 system. 

All controllers from the STCSL use ARX model 
of the controlled system which can be described by 
the following equation  
 ( ) ( ) ( ) ( )Ty k k k n k= +Θ Φ  (1) 
where 
 ( ) 1 2 1 2

T k a a b b⎡ ⎤= ⎣ ⎦Θ  (2) 

is the vector of the current model parameters and 
( ) ( ) ( ) ( ) ( )1 2 1 2T k y k y k u k u k= − − − − − −⎡ ⎤⎣ ⎦Φ (3) 

is the regression vector, ( )u k  and ( )y k  are the 
manipulated variable and process output. The non-
measurable random component n(k) is assumed to 
have zero mean value E[n(k)] = 0 and constant 
covariance (dispersion) ( )2R E n k⎡ ⎤= ⎣ ⎦ .  

is the regression vector. The non-measurable 
random component n(k) is assumed to have zero 
mean value E[n(k)] = 0 and constant covariance 
(dispersion) ( )2R E n k⎡ ⎤= ⎣ ⎦ .    

One of the controllers from the STCSL which 
produced satisfactory and reliable control results 
was LQ controller named pp2lq.  Computation of 
the control sequence of this controller is based on 
minimization of a quadratic criterion in the 
following form   

 ( ) ( ) ( ){ }2 2

0
u

k
J w k y k q u k

∞

=
= − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑  (4) 

where uq  is a coefficient representing weight of 
control signals in the LQ criterion. The controller 
2DOF (two degrees of freedom) was applied in the 
form  

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
0 0 1 2

1 1

1 2

1 1 2

u k r w k q y k q y k q y k

p u k p u k

= − − − − − +

+ − − + −
 (5) 

The expressions for computation of individual 
controller parameters are introduced in [Bobál et 
al., 2005]. 

Control courses of the pp2lq controller are 
presented in Fig. 6. The sampling period of T0=0.05 
s was used and weighting coefficient qu=1 was 

applied. Initial parameter estimates were calculated 
to match working point of y=0.7 (i.e. different from 
the initial phase of the control course).  

The same controller was also applied for the 
constrained case – the control signal was restricted 
to the range of u[V] <-2, 2>. Resulting control 
courses are presented in Fig. 7. 

 

 
Figure 6. Control of DR300 using LQ STC (unconstrained case). 

 

 

 
Figure 7. Control of DR300 using LQ STC (constrained case). 

 

4  Implementation of MPC STC 

The aim of this Section is implementation of the 
self – tuning predictive controller handling 
constraints of the manipulated variable for control 
of the objective laboratory equipment. As a model 
describing the controlled process was chosen an 
input-output CARIMA (Controlled Auto-
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Regressive Integrated Moving Average) model. A 
quadratic cost function was used in the 
optimization part of the algorithm. The Generalized 
Predictive Control (GPC) method [Clarke et al., 
1987] was applied. A recursive algorithm which 
enables computation of predictions for arbitrary 
horizons was designed.  
 
4.1 MPC  based on   minimization of quadratic 

criterion 
The standard cost function used in GPC contains 

quadratic terms of control error and control 
increments on a finite horizon into the future 

 ( ) ( ) ( ) ( )
uNN

i N i

ˆJ y k i w k i i u k iλ Δ
= =

= ⎡ + − + ⎤ + ⎡ + − ⎤⎣ ⎦ ⎣ ⎦∑ ∑
2

1

2 2

1
1  (6) 

where ( )ŷ k i+  is the process output of i steps in 
the future predicted on the base of information 
available upon the time k, ( )1w k +  is the sequence 

of the reference signal and ( )1u k iΔ + −  is the 
sequence of the future control increments that have 
to be calculated. 1 2, and uN N N are called 
minimum, maximum and control horizon. The 
parameter ( )iλ  is a sequence which affects future 
behaviour of the controlled process, generally, it is 
chosen in the form of constants or exponential 
weights. The output of the model (predictor) is 
computed as the sum of the forced response ny  and  
the free response 0y    
 0ˆ n= +y y y  (7) 

It is possible to compute the forced response as 
the multiplication of the matrix G (Jacobian Matrix 
of the model) and the vector of future control 
increments Δu , which is generally a priori 
unknown  
 n Δ=y G u  (8) 
where G is matrix containing step responses. 

It follows from equations (7) and (8) that the 
predictor in a vector form is given by  
 0ˆ Δ= +y G u y  (9) 

Minimization of the cost function (6) now 
becomes a direct problem of linear algebra. The 
solution in an unconstrained case can be found by 
setting partial derivative of J with respect to Δu  to 
zero and yields   

 ( ) ( )
1 1

0
T TΔ λ

− −= − + − = −u G G I G y w H g  (10) 

where H and g are the Hesse-Matrix and the 
gradient.  

Detailed derivation of the predictive controller 
and its application for the control of the laboratory 
model DR300 is introduced in [Bobál et al., 2009]. 

In case of the Amira DR300 laboratory model, 

the actuator has a limited range of action. The 
voltage applied to the motor can vary between 
fixed limits. As it was mentioned in the Section 1, 
MPC can consider constrained input and output 
signals in the process of the controller design. 
General formulation of predictive control with 
constraints is then as follows: 
 min 2 T T

Δ
Δ Δ Δ+

u
g u u H u  (11) 

owing to 
 Δ ≤A u b  (12) 

The inequality (12) expresses the constraints in a 
compact form. In our case of the constrained input 
signals particular matrices can be expressed as 

 
( )
( )

1
;

1
min

max

k
k

⎡− + − ⎤−⎡ ⎤
= = ⎢ ⎥⎢ ⎥ − −⎣ ⎦ ⎣ ⎦

1u 1uT
A b

1u 1uT
 (13) 

where T is a lower triangular matrix whose non - 
zero elements are ones and 1 is unit vector. 

Forms of the matrices for an arbitrary control 
horizon were computed and can be expressed as 
follows: 
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u u k
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u k

u k N
u u k

Δ
Δ

Δ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎡ ⎤ ⎢ ⎥ ⎢ ⎥− + −⎡ ⎤⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ +− − − ⎣ ⎦ ⎣ ⎦⎢ ⎥ ≤⎢ ⎥ ⎢ ⎥ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ + −⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎢ ⎥ − −⎡ ⎤⎣ ⎦⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

                                                                            (14) 
The control sequence is computed from 

expression (11), equations (13) and inequations 
(12) and (14).  

The optimization problem is solved numerically 
by quadratic programming in each sampling period. 
The first element of the resulting vector Δu is then 
applied as the increment of the manipulated 
variable. 

Courses of the reference signal contain step 
changes in both directions. This is one of the most 
unfavourable situations which can occur in a closed 
loop control system. Within the steps also changes 
the operational range. This is one of the reasons for 
application of self – tuning controllers.  

An approximate sampling period was found 
based on measured step responses so that ten 
samples cover important part of the step response. 
The best sampling period T0=0.05 s was then tuned 
according to experiments. 

The tuning parameters that are the prediction and 
control horizons and the weighting coefficient λ 
were tuned experimentally. There is a lack of clear 
theory relating to the closed loop behaviour to 
design parameters. The prediction horizon, which 
should cover the important part of the step 
response, was set to N2 = 15. The control horizon 



was also set to Nu = 15. The coefficient λ was taken 
as equal to 50. 

 

 
 

 
Figure 8. Control of DR300 using MPC STC 

(unconstrained case). 

 

 

 
Figure 9. Control of DR300 using MPC STC 

 (constrained case). 
 

Both constrained and unconstrained cases were 
considered. Control results when constraints of the 
manipulated variable were not considered are 
presented in Fig. 8. In the subsequent experiment 
the manipulated variable was constrained within 
lower and upper limits and the algorithm 
considering the constraints was applied. The results 
are shown in Fig. 9. 
 

4.2   MPC based on minimization of linear 
criterion 

Not only the quadratic criterion was used in the 
model predictive control, the absolute value based 
criterion of MPC was also applied to the control 
problem. 

 ( ) ( ) ( ) ( )
uNN

i N i

ˆJ y k i w k i i u k iλ Δ
= =

= + − + + + −∑ ∑
2

1 1
1 (15) 

Solution of the criterion (15) leads to the linear 
programming which can cope with constraints in 
the same way as the quadratic programming 
described in section 4.1. 

Control course for the settings of N1 = 1, N2 = 15 
and Nu = 5 are presented in Fig. 10. The coefficient 
λ was equal to 0.2 in this case.  

Utilization of linear criterion leads to faster 
response of the controller to the step changes of 
reference signal. On the other hand, small changes 
of the control error caused by noise have greater 
influence to the control signal when comparing 
control courses with the the control courses 
obtained by MPC based on quadratic criterion. 

 

 
Figure 10. Control of DR300 using MPC STC 

 (linear ceiterion). 

 

5  Conclusion 

Criteria of the quality of control are summarized 
in Table I. The criteria are sum of powers of 
tracking errors and sum of increments of the 
manipulated variable. 

It is obvious that selection of an appropriate 
model for control in particular operational ranges is 
a difficult task in case of nonlinear or stochastic 
processes. One of the possible approaches to the 
solution of this problem is utilization of adaptive 
control.  This paper deals with the proposal and 
application of two adaptive approaches to control 



of the nonlinear time varying system – the 
laboratory model DR300. The first approach is 
based on the standard LQ self – tuning controller. 
In the second case the predictive self – tuning 
controller was proposed. Control with both 
unconstrained and constrained input signal was 
tested. The control tests gave satisfactory results for 
both controllers. According to comparison of 
results in Table I it is evident that better quality of 
control was achieved with the predictive self – 
tuning controller.  
   

Table I. Control quality criteria 
 

controller 2e∑  2uΔ∑  e∑  uΔ∑
LQ STC - 
unconstrained 
case 

13.0058 3.6929 19.3884 11.3535

LQ STC - 
constrained 
case 

29.3412 0.4975 52.5267 5.6708

MPC quadratic 
- unconstrained 
case 

8.0985 0.0561 26.4681 2.8453

MPC quadratic 
- constrained 
case 

11.9377 0.0302 36.8594 1.8496

MPC absolute 
values - 
unconstrained 
case 

7.0411 0.7683 27.3585 14.0666

 
  The objective laboratory model simulates a 
process, which frequently occur in industry. It was 
proved that the examined method could be 
implemented and used successfully to control such 
processes. 
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