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Abstract 
This paper deals with the problem of de-
composition and precise control by complex 
objects.  Decomposition is based on model 
reference adaptive control. Computer simu-
lation demonstrates good results. 
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1. Introduction 
As a complex we assume a mechanical ob-
ject with some interconnected subsystems 
[1, 2]. In the wake of [3], by the Lagrangian 
systems are meant those where the con-
trolled plant obeys a mathematical model 
(MM) of the form of Lagrange equations. A 
MM of such an object is usually multicon-
nected nonlinear with big number of degrees 
of freedom. Synthesis of control algorithms 
for such an object is not a simple problem. 
All the more it is difficult for precise con-
trol.  
 
Qualitatively under precise control we mean 
the situation when the motion of any subsys-
tem and the system in the whole are coin-
cided with prescribed motions with pre-
scribed accuracies.  
 
Usual method for such an object control is 
decomposition [1, 2]. In this paper we as-
sume that an object in the whole could be 
represented as a set of interconnected sub-

systems. For every subsystem a component 
of interconnections is selected and compen-
sated on the base of adaptive control [4-6]. 
For this goal we use two steps of control. 
The first one is based on the programmed 
adaptive control. The second step is based 
on the model reference adaptive control. In 
this case special adaptive control algorithms 
are derived [8]. 
 
In this paper we assume that different sub-
systems have actuators with ideal MM.  
  
 
2. Problem Statement 
We consider controlled plants with the MM 
in the form of Lagrange equation 
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symmetrical positive definite matrix (T de-
notes transposition). 
 
By performing differentiation in (1), we pro-
ceed to the equation [7] 
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where ),1()( niMM i ==  is a vector of 
control actions to the plant from a controller. 
 
We assume ideal actuators. It means the 
equality 
 
                   ( 1, )i iM u i n= = ,                (3) 
 
where iu  are control algorithms to be dis-
covered.  So the equation (2) could be re-
written in the form 
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where 1 2( , ,..., )nU u u uΤ = .  
 
We assume that during the object operating: 
• current matrices 

sA(q),  D (q), S(q) (s=1, )n  
      are known [8]; 
• vectors ( ), ( )q q t q q t= =  are measur-

able; 
• for every ( 1, )iq i n=  there exists a 

function 0 ( )iq t and an equation 
 
         0 ( )i i i i i iq d q k q k q t+ + = ,                   (5)                
 
where the function  0 ( )iq t  and the numbers 

0, 0i ik d> >  are prescribed in advance.  
 
Problems: 

• to discover algorithms for current 
matrices to be known; 

• to discover control algorithms 
( , , )U U t q q=  that guarantees the motion (5) 

for every generalized coordinates. 
 

 
3. Computer Aided Symbolic Modeling of 
Complex Lagrangian Systems  
Under computer aided modeling we mean to 
write formulas that connect   matrices A(q),  

sD (q), S(q)  (s=1, )n  in (4) with construc-
tive parameters of a mechanical system. 
These matrices are symbolic so such formu-
las need to be derived and written in a sym-

bolic computer system. We use the system 
“Maple”. Of course these formulas have to 
be convenient for a computer processing. 
 

As a concrete mechanical system we 
consider the combination of (m+1) rigid 
bodies. As the example of such an object it 
could be a space robotic module (SRM) [3]. 
It consists of a supporting body and one or 
some manipulators. Let our SRM has only 
one manipulator with m links. In an inertial 
space the SRM position in common case is 
determined by N coordinates N =6(m +1), 
but connections which are imposed on rela-
tive positions of (m+1) bodies reduce this 
number to a value Nn ≤ . 

For the SRM object we assume that 
the supporting body position is determined 
by six coordinates )6,1( =jq j  and the posi-
tion of every link is determined by to coor-
dinates 6 2 1iq + −  and 6 2iq +  ),1( mi =  that 
shows the position of a link with respect to 
the preceding link. Let us consider these co-
ordinates as the generalized ones 

( )n
T qqqq ,...,, 21= , where 6 2n m= +  is a 

maximum number of generalized coordi-
nates. In turn the number n can be decreased 
by superposing of additional connections. 

   In principle the derivation of a me-
chanical system equations of motion in La-
grange’s form is not a difficult problem but 
if the number of degrees of freedom is big 
( 256÷=n  and more) the task becomes too 
much unwieldy. For operative modeling it is 
necessary to choose the most constructive 
method among the different approaches [4], 
[5]. On the authors opinion such a construc-
tability there is in Kulakov’s method [5]. 
The main idea of this method is to receive a 
sequence of recursive relations that could be 
easy realized on computer. 

Not to examine Kulakov’s method in 
detail we will fix some nodal points that are 
necessary for our tasks solution. For every 
body of the mechanical system the kinetic 
energy is defined by equality 
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where ( , )T T T
i i ix vω= , ωi is a vector of an-

gular quasirates, vi  is a vector of linear qua-
sirates for pole, Bi is a matrix for concrete 
mass-inertia parameters of the body [5]. 

 
Vectors xi in (3) are connected with 

the vector q by equalities 
                                 

( ), 0, ,i i i iW q v V q i mω = = =               (4)  

where matrices ,i iW V  have the forms 
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In (5) , 1i iα −  are matrices of direction 

cosines; matrices a
iOx  g

iOx , ,W V
i iI I  are de-

termined by construction parameters of i-th 
body and its generalized coordinates 6 2 1iq + − , 

6 2iq +  ( 0, )i m= . An index ( 1)i −  for i = 0 is 
relating to an inertial coordinate system. 

From (3) – (5) we receive the equality       
x Cq= ,  where 
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With taking into account that the me-

chanical system possesses by scleronomous 
connections we can write the equality   

1 ( )
2

TT q A q q=    where    ( )( ) ( )ijA q a q=  

( , 1, )i j n=  has the form 
 
   ( ) TA q C BC= ,                              (7) 
 

and ( )0 1, ,..., mB diag B B B= . 
After differentiation in (1) we receive 

the equality 
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where se is the vector of ( 1n× )-dimension 
with all zero components except s-th to be 
equal to 1; matrices       ( )( ) ( )s

s itD q d q=  

( , , 1, )i t s n=  are determined by their ele-
ments in the form 
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Let us assume that control actions in 

every body are acted along the axis’s of the 
coordinate system connected with the body 
and with respect to these axis’s. Then such a 
virtual vector could be written in the form 

( )VNVV
T

V MMMM ,...,, 21=  with N compo-
nents. 

Let G be a vector 
     
( )0 0 1 1, , , ,..., ,T T T T T T T

m mG G F G F G F= ,  

where  ,i iG F   ( )0,i m= are the main mo-

mentum and the main force vectors respec-
tively for every body presented in projec-
tions to the connected coordinate system of 
the body. 

In this case it is possible to write the 
equality 

 
      TQ C G= .   (10) 
 
To derive a formula for matrix ( )S q  in 

the MM (4) it is necessary to use equality 
 
             ( )S q U C GΤ=               (11) 

 
and to determine the equality 
 
                                G ZLU= .           (12) 
 
Matrices Z and L , that in (??) was named as 
the informational-force and informational 
matrices respectively, are determined by 
concrete active axes of an object. 

From (10) – (12) we obtain the for-
mula 

                   ZLCqS T=)( .        (13) 
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So the problem 1 is solved: matrices 

sA(q),  D (q), S(q)   (s=1, )n  in the MM (4) 
are derived in the formulas (7), (9) and (10) 
that are convenient for computer calculation. 

 
                  

 
4. Decomposition on the Base of Adaptive   
Programmed Control  
Let us rewrite the MM (4) in the form 
 
            1( ) ( ) ( )q A q S q U f t−= + ,          (14) 
where  

  1

1
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s s
s

f t q q A q q D q q e−
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 = −  ∑ .(15) 

During the real mechanical system process-
ing vectors q and q  are functions of time, 
so the vector-function ( , , )f t q q  could be 
denote as ( )f t . Now from the equation (14) 
it is evident a programmed computer aided 
adaptive control. Really, an adaptive control  
algorithm could be taken in the form 

 
  1 0[ ( )] ( )[ ( ) ]U S q A q K q q Dq L−= − − + .      (16) 

 
Really, in the control algorithm (16) every 
term is known besides matrices ,K D  and a 
vector L  which we may take to realize the 
motion (5). 
 
The equation (14) together with the algo-
rithm (16) could be represented in the form 
 
    0 ( ) [ ( ) ]q Dq Kq Kq t f t L+ + = + + .    (17) 

 
Let us take matrices ,K D  as diagonal ones 
that is 
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1 2
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n
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=
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where , ( 1, )i ik d i n=  are coincided with 
desired numbers in (5). 
 
 Then the system (17) is decomposed to 
n interconnected equations 
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From the equation (19) we see that if it is 
valid the equality 
  
             [ ( ) ] 0 ( 1, )i if t S i n+ ≡ =      (20) 
 
then the problem for generalized coordinates 

( 1, )iq i n=  is solved. 
 
5. Model Reference Adaptive Control  
Let us set up the problem to compensate the 
action of the term ( ) ( 1, )if t i n= in the 
equation (19) on the desired movement 

( )i iq q t= with the help of a purposeful varia-
tion of the vector L  in the control algorithm 
(16). For this goal we use the well known 
principle of model reference adaptive con-
trol [5].   
 
Let us take a reference model in the form 
 
             0 ( )mi i mi i mi i iq d q k q k q t+ + = .       (21) 
 
From (19) and (21) we receive an equation 
with respect to the error i i miq qε = −   in the 
form 
 
             [ ( ) ]i i i i i i id k f t Lε ε ε+ + = + .       (22) 

 
The equation (22) can be rewritten in a ma-
trix form  
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Now we can choose an algorithm for iL  
purposeful variation from the condition of 
an asymptotical convergence of the system 
(23) with respect to the movement 
 

0, 0.i ix y≡ ≡                          (24) 
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For this goal we take Lyapunov’s function 
in the form 

 
             2( , ) T

i i i i i i i iV x y x Px yκ= +             (25)    
 
where iP  is a positive definite matrix, 

0i constκ = > . The derivative of  ( , )i i iV x y  
with respect to the time on the strength of 
the system (23) is determined by the equal-
ity 
 

        
( , )
2 [ ( ) ]

T
i i i i i i i

i i i i

V x y x Q x
y t

κ
σ µ ψ

= +
+ + +

                    (26) 

 
where iQ  is the prescribed negative definite 
matrix, 21 1 22 2( ),i i i

i i i jkp x p x pσ = +  are ele-
ments of the matrix ( ) ( , 1,2)i

i jkP p j k= = . 
 
In this paper we suppose that the sign of the 
coordinate iy  is known. Then we choose the 
desired algorithm in the form 

 
          ( )ii i ik sign yψ σ= − −                    (27) 
 
where 0ik >  and 
                                   
                       ( )i ik tµ>  .                     (28) 
 
Then we have inequalities 
      
     ( , ) 0,i i iV x y >   ( , ) 0mi mi miV x y <      (29) 
 
which ensure the solution of the problem. 
 
 
6. Simulation Results 
In simulation results we demonstrate the 
model reference adaptive control. We as-
sume that the decomposition problem is 
solved and now it is necessary to show that 
algorithms (27) really provide precise con-
trol of  ( )iq t  with respect to 0( )iq t  in (23).  
 

Let 1ik =  and 1.4id =  in (14),  
2 0
0 2iQ
− 

=  − 
 in (20). Then 

2.83 1
1 1.43miP  

=  
 

 in (19) and  

(1.43 )mi mi miσ ε ε= +  in (21). 
 
In fig.1 we see ( )miq t , ( )iq t  with the distur-
bance ( )if t but without adaptation that is 

0.iL ≡  The difference between ( )miq t and 
( )iq t  is essential.  

 
In fig.2 we see the same coordinates but 
with adaptation that is 0.iL ≠  The differ-
ence between ( )miq t and ( )iq t  is practically 
null. 
 
 
 
 

 
 

Fig. 1. 
 

   
 

Fig. 2. 
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