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Abstract 
Collective unstable oscillations of rotor blades in 

case of flatter are under study. From a linear theory 
point of view, such unstable oscillations can consist 
of a single structural mode of blades. It has been 
found that flutter of real rotor blades can be two-
modal: both torsion and bending mode excites 
simultaneously. As the collective oscillation 
amplitude increases, the flutter modes become 
nonlinear for all rotor blades simultaneously. 
Nevertheless, as usual, an analysis of respective 
simultaneous time-series is performed by a linear 
transform. In present paper it is the Independent 
component analysis (ICA). The linear ICA 
transform of multi-dimensional time–series under 
study displays that, as the rotation frequency 
increases, the rotor blade flutter evolves through 
four sequential time-phases: linear torsion flutter, 
nonlinear torsion flutter with bending mode 
excitation (torsion-bending flutter), linear bending-
torsion flutter with a dominating role of bending 
mode, and nonlinear bending flutter of an 
unbounded amplitude increase with time. 
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1 Introduction 
Collective unstable oscillations of rotor blades in 

case of flatter are under study. A central problem in 
oscillation record processing is finding a suitable 
representation or transform. As the collective 
oscillation magnitude increases, the flutter 
oscillation modes become nonlinear. Nevertheless, 
as usual, for computational and interpretation 
simplicity, an analysis of multi-dimensional 
oscillation time-series is performed by a linear 
transform. In present paper it is the Independent 
component analysis (ICA) [Hyvarinen, Karhunen 

and Oja, 2001]. ICA is a non-Gaussian version of 
factor analysis. 
 

2 Independent component analysis (ICA) 
Let x = (x1,...,xm)T 

be a zero-mean m-dimensional 
random vector that is observed. The observed 
values of x correspond to a realization of m-
dimensional discrete-time oscillation x(t), t = 
1,...,N. (The fixed time-discretization step ∆t=1 is 
selected for brevity). The ICA problem is to 
estimate the following data model: 
 

x = A·s      (1) 
 
where s = (s1,...,sn)T  

is n-dimensional (hided) 
random vector, whose components are assumed to 
be mutually independent statistically, and A is a 
constant m×n matrix [Hyvarinen, Karhunen and 
Oja, 2001]. For linear transform of observed 
variable 
 

s = W·x      (2) 
 
constant weight matrix W is pseudoinverse of A. As 
known, to identify model (2) independent 
components s must be non-Gaussian. The general 
formulation of ICA is based on the concept of 
mutual information. Differential entropy H of a 
random vector s = (s1,...,sn)

T 
with density f(s) is 

defined as follows [Hyvarinen, Karhunen and Oja, 
2001]: 
 

∫−= ssss dffH )(log)()(    (3) 
 
The differential entropy can be normalized to define 
the negentropy  

J(s) = H(sgauss) – H(s)   (4) 



 
where sgauss is a Gaussian random vector of the same 
covariance matrix as y. Negentropy J is invariant 
for linear transforms. It can be interpreted as a 
probability density measure to be non-Gaussian. 
The mutual information I, which constrains 
variables si, i=1,…,n to be uncorrelated, has the 
form 
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So, ICA of a random vector x is an invertible 
transform, in which weight matrix W is determined 
so that the mutual information of components sl is 
minimized. Since negentropy (4) is invariant for 
invertible linear transforms, it follows from (5) that 
finding weight matrix W, which minimizes the 
mutual information, is equivalent to finding 
directions, in which the negentropy is maximized. 
As shown in [Hyvarinen, Karhunen and Oja, 

2001], some approximations of negentropy are 
more accurate than the approximations like kurtosis 

( )224 }{3}{)(kurt iii sEsEs −= . The simplest 
approximations have the form:  
 

J(si) ≈ c[E{G(si)}−E{G(ν)}] 2   (6) 
 
where G is a non-quadratic function, c is a constant, 
and ν is a Gaussian variable of zero mean and unit 
variance. So, random variable si is assumed to be of 
zero mean and unit variance also. The 
approximation (6) gives an objective function for 
estimating the ICA transform. So, to find one 
independent component si = wTx, we maximize the 
function JG given by  
 

JG(w) = [E{G(wT 
x)}−E{G(ν)}] 2  (7) 

 
where w is an m-dimensional (weight) vector 
constrained so that E{(wTx)2}=1. As it follows from 
(5), the mutual information is minimized, when the 
component negentropy sum is maximized. 
As shown in [Hyvarinen, 1999] the functions G(s) 

in (6), (7) are obtained by analyzing the exponential 
power family of density functions:  
 

fα(s) = k1 exp(k2|s|α)     (8) 
 
where α is a positive parameter, and k1, k2 are 
normalization constants that ensure fα(s) to be a 
probability density of unit variance. For 0<α<2, eqs 
(8) gives a super-Gaussian density (i.e., a density of 
positive kurtosis). For α = 2, eqs (8) gives the 
Gaussian distribution. For α > 2, eqs (8) gives a 
sub-Gaussian density (i.e., a density of negative 
kurtosis). An optimal contrast function for 

estimating an independent component with density 
function fα(s) has the form: 
 

Gopt (s) = a|s|α     (9) 
 
This implies that for super-Gaussian (respectively, 
sub-Gaussian) densities, the optimal contrast 
function grows slower than quadratic (respectively, 
faster than quadratic). Note that in practice most of 
independent components encountered are super-
Gaussian. However, for α≤1 function (9) isn’t 
differentiable at 0. Thus approximating 
differentiable contrast functions having qualitative 
behavior like (9) are in use. To maximize objective 
function (7) the ICA algorithm introduced in 
[Hyvarinen, 1999] is in use. The algorithm requires 
that the correlation matrix of x equals unity: 
E{xxT}= I. For one component, the maxima of 
JG(w) are obtained at certain optima of E{G(wTx)}. 
According to the Kuhn-Tucker conditions, the 
optima of E{G(wTx)} under constraint 
E{(wTx)2}=||w||2=1 are obtained at points, in which 
the condition holds 
 

E{xg(wTx)}− βw = 0    (10) 
 
where g() is derivative of contrast function, β is 
evaluated as β = E{w0

Tw0
Txg(w0

T
 
x)}, w0 is the 

value of w at the optimum. Eqs (10) is solved by 
Newton’s method. To prevent converging to the 
same maxima, outputs w1

Tx,...,wn
Tx are 

uncorrelated after each iteration. Note that the 
algorithm performance has been estimated using 
different artificial mixes of test signals. A question 
is what would be results of the ICA separation for 
multi-dimensional natural piecewise 
linear/nonlinear non-stationary oscillations, for 
which their (time-dependent) spectral 
characteristics can be obtained reliably enough. 
Such example of multi-dimensional non-stationary 
oscillations is given by simultaneous oscillation 
records of rotor blades in case of flutter. 
 

3 Collective unstable oscillations of compressor 
blades (flutter) 
As a compressor rotation frequency increased, 

unstable blade oscillations can relate to two 
different phenomena: rotating stall and blade flutter. 
A whirl-type behavior like the rotating stall 
produces a sub-synchronous forward component of 
oscillations with frequency proportional to the 
rotation frequency [Bently, Goldman and Yuan, 
2000]. But it is more important that, in case of the 
rotation stall, compressor blades oscillate 
independently. In contrast the flutter is a collective 
oscillation of compressor blades. Note that the 
theoretical study of flow-induced collective 



bending-torsion oscillations of compressor blades 
shows: in the limit of uncompressed flow the 
torsion mode becomes unstable at first [Bendiksen, 
Friedmann, 1982]. Nevertheless, it is unknown, 
does the blade flutter is single-modal in real radial 
compressors, and what is a role of blade modes at 
various flutter time-phases. 
The four low-frequency modes of compressor 

blades in case of flutter are well-known: 1st mode – 
1st bending mode, 2nd mode – 1st torsion mode, and 
3rd and 4th mode – modes compounded of 2nd 
bending and 2nd torsion [Gnesin, Bykov and 
Kovalev, 2000]. It gives an opportunity to place 
gauges on blade surfaces in locations of maximum 
magnitude of either 1st bending or 1st torsion mode. 
For compressor under study, simultaneous 
oscillation records xi = xi(t), i=1,2,3 of three blades 
in a location of maximum magnitude of 1st bending 
mode are shown in Fig.1-3. 
 
  x1 

 t, sec 
 

Fig.1. Oscillation record of 1st blade 
 

  x2 

 t, sec 
 

Fig.2. Oscillation record of 2nd blade  
 

  x3  

 t, sec 
 

Fig.3. Oscillation record of 3rd blade  

A rotation-frequency-time dependency of the 
compressor under study is shown in Fig.4.  
 

 
 

Fig.4. Rotation-frequency-time dependency of compressor  
 

As shown in [Bendiksen, Friedmann, 1982], a 
flow-induced collective unstable oscillation of 
compressor blades (flutter) can be described by a 
liner model. It has been found that the flutter 
instability is related to an instant change of the 
damping factor sign of torsion mode. So, as the 
compressor blade oscillation magnitude increases 
(i.e., the flutter evolves in Fig.1-3), to define hide 
dynamic processes, both time-dependent natural 
frequency spectra and related time-dependent 
damping factor spectra must be obtained, especially 
times of instant changes of natural mode damping 
factors. As in [Kukharenko, 2002], to obtain time-
dependent spectral parameters of oscillation records 
shown in Fig.1-3, the spectral analysis by Prony 
method is in use. A brief outline of the Prony 
method is given below. Let a segment of time-series 
(oscillation record) 
 

 x[k] = x((k-1)∆t), k = [1:N],   (11) 
 
where ∆t – fixed time-discretisation step, represents 
time-dependency x=x(t) of oscillation amplitude for 
t∈[1,tN], tN = N∆t (the time-series index is omitted, 
since each component of multi-dimensional time-
series is processes individually by the Prony 
method). The time-series contains a noise, produced 
by a measurement incorrectness and non-stationary 
pulsations of gas flow. As above, ∆t=1 is selected 
for brevity. The Prony spectral decomposition of 
segment (11) has the form: 

x[k] = )(1)(
1

knk
lz

p

l
lr +−

=
∑ , k = [1:N], (12) 

 
where p – number of poles of segment (11); 
zl=exp(δl+j2πfl),  l=[1:p] – segment poles where δl 
and fl – respectively, damping factor and frequency; 
rl=Alexp(jϕl), l=[1:p] – residues in the poles where 
Al· and ϕl – respectively, amplitude and phase; n(k) 
– additive noise. The method for determining 
number p of principal poles of segment (11) is 
presented in [Kukharenko, 2002]. As poles zl, 



l=[1:p] are determined, residues rl, l=[1:p] in the 
poles are defined from (12) by the least-squares 
method. Note that main advantages of the Prony 
method algorithm in use are the opportunities: to 
select principal spectral components of segment 
(11) and to restore segment (11) theoretically by 
(12) with determined poles and residues. This gives 
an estimation of the Prony method exactness. The 
estimation of time-dependent damping factor and 
frequency spectra, and respective amplitude and 
phase spectra of the whole oscillation record is 
obtained by sequential shifts of a time-window of 
fixed length N. As the signal to noise ratio 
decreases, the Prony method algorithm 
demonstrates a high stability from computations 
point of view, especially for natural oscillation 
records. Note that natural oscillations are 
superposed of spectral components with coherent 
phases in contrast to artificial mixes of signals. 
Main results of spectral analysis of non-stationary 
oscillation records in Fig.1-3 are presented below. 

The segmented spectral analysis of non-stationary 
time-series in Fig.1-3 shows how on basis of torsion 
oscillations of compressor blades (torsion flutter) 
collective unstable bending oscillations of blades 
(bending flutter) evolve. 
 

  
 

Fig.5. Damping-factor-time dependency for:  
1 – 1st torsion mode; 2 – 1st bending mode 

 
It has been found that the collective blade 
oscillation reflects in the similarity and 
simultaneous instant changes of damping-factor-
time dependencies of bending and torsion mode 
(Fig.5) for 1st, 2nd, and 3rd blade of compressor. 
Thus, the time-dependent spectral parameters 
defined by the Prony method provide an 
opportunity to define simultaneous time-changes of 
blade modes for the radial compressor under study. 
Each time-series shown in Fig.1-3 consists of four 
successive time-segments, which differ in a shape 
of amplitude-time dependency. So, the time-series 
are representations of a single collective oscillation 
(flutter) of compressor blades. 
 

 

4 ICA transform of collective unstable 
oscillations of compressor blades 
The qualitative pattern of evolving collective 

oscillations of blades in Fig.5 is defined 
sequentially as result of a spectral analysis of each 
blade oscillation record. The segmented spectral 
analysis of each oscillation record is performed by 
sequential shifts of a time-window of fixed length. 
An advantage of the Independent component 
analysis is that all these records-representations of 
the collective blade oscillations are processed 
simultaneously and as whole. Processing non-
stationary oscillation time-series xi(t), i=1,2,3 
(Fig.1-3) shows opportunities provided by the 
Independent component analysis. It demonstrates 
also what kind of hide dynamic processes 
containing in these 3-dimensional time-series can 
be represented by components si(t), i=1,2,3 (which 
are determined as mutually most independent). Note 
that respective independent components si(t), 
i=1,2,3 wouldn’t be blade natural modes, i.e. 
spectral components defined by the segmented 
Prony method. As noted the natural spectral 
components can be coherent in phase in time-
superposition like natural oscillations. Independent 
components s1(t), s2(t), s3(t) separated by the ICA 
transform of oscillation time-series x1(t), x2(t), x3(t) 
are shown in Fig.6-8. 
 
  s1 

t, sec 
 

Fig.6. Time dependency of 1st component 
 

  s2 

 t, sec 
 

Fig.7. Time dependency of 2nd component 
 



  s3 

 t, sec 
 

Fig.8. Time dependency of 3rd component 
 

Mixing matrix A (1) and weight matrix W (2) has 
the value: 
 
A = 
-2.1830  0.2956  0.3378 
-0.0132 -1.7616 -0.0983 
 1.2661  2.6323  0.6190 
 
W = 
-0.3297  0.2799  0.2243 
-0.0461 -0.7051 -0.0868 
 0.8703  2.4260  1.5258 
 
As it follows from matrix A and W, oscillation 
records x1(t), x2(t) play a role of signal-references, 
which provide an opportunity to separate 
independent component s3(t) in record x3(t) (so as in 
records x1(t), x2(t)). Spectral analysis of components 
s1(t), s2(t), s3(t) by the segmented Prony method 
shows that their frequency spectra is similar to 
frequency spectra of observed oscillation records 
x1(t), x2(t), x3(t). However components s1(t), s2(t), 
s3(t) have different amplitude-frequency 
dependencies. By comparing with damping-factor-
time dependencies of modes in Fig.5 it has been 
found that component s3(t) relates to the magnitude-
time dependency of torsion mode. As result, the 
separation of independent components s1(t), s2(t), 
s3(t) of collective oscillation (its representations are 
shown in Fig.1-3) provides a qualitative pattern of 
flutter evolution. Oscillation records in Fig.1-3 
evolve through four time-phases. In accordance 
with [Bendiksen, Friedmann, 1982], in 1st phase 
(t=[0;15]sec) the torsion flutter excites (δT>0 in 
Fig.5). For the compressor under study, the torsion 
flutter magnitude is bounded as a small difference 
exists between torsion frequencies of neighboring 
blades. In 2nd phase (t=[15;20]sec), the bending 
mode excites (δB>0 in Fig.5). The component s3(t) 
in Fig.8 has a maximum amplitude in time-interval 
t∈[17,4;20,3]sec, its frequency spectrum contains 
harmonics of the torsion frequency and the torsion 
mode is nonlinear. In 3rd phase (t=[20;25]sec), the 
torsion mode magnitude decreases (δT>0 in Fig.5) 
and the bending mode becomes dominant. Its 
amplitude increases with large positive damping 

factor until t≈25sec. At time t≈25sec (the deflection 
point of amplitude-time dependency of 1st 

component s1(t) in Fig.6) the torsion mode 
amplitude equals approximately its value at t=5sec, 
and damping factor δB of bending mode decreases 
instantly to ≈ 0.02 in Fig.5. At t≈25sec 4th final 
flutter phase starts. The amplitude of component 
s1(t) (Fig.6) is large enough, its frequency spectrum 
contains harmonics of the bending frequency, and 
the mode becomes non-linear. As shown in Fig.4, 
for time-interval t∈[0;25]sec, the compressor 
rotation frequency increases from 56.7 through 
59.9Hz. Next, for time-interval t∈[25;54]sec the 
rotation frequency is constant approximately and 
equals ≈60Hz. At t=54sec, the rotation frequency 
decreases instantly to 55.5Hz. So, the flutter 
phenomenon exists in a narrow range of rotation 
frequency. Fig.9-10 show oscillation records 
x4=x4(t) and x5=x5(t) of two other blades of 
compressor under study in locations of the 
maximum magnitude of 1st torsion mode. The 
records in Fig.9-10 is similar to time-dependency of 
component s3(t)  (Fig.8). Thus, the ICA transform 
of oscillation records x1(t), x2(t), x3(t) is equivalent 
to a separation (in each time-event) of space-
superposition of the two 3D-forms of blade 
oscillation – bending and torsion (which exist 
mutually in maxima of each other). As result, time-
dependency s3(t) is separated to be amplitude-time 
dependencies in another location, in which the 
torsion mode dominates. 
 
  x4 

 t, sec 
 

Fig.9. Oscillation record of 4th blade  
  x5 

 t, sec 
 

Fig.10. Oscillation record of 5th blade  
 



The results of ICA transform of oscillation records 
x4(t) and x5(t) in Fig.9-10 shows, what hide dynamic 
processes are represented by their most independent 
components s4(t) and s5(t). 
 
  s4 

 t, sec 
 

Fig.11. Time dependency of 4th component 
 
  s5 

 t, sec 
Fig.12. Time dependency of 5th component 

 
Mixing matrix A (1) and weight matrix W (2) has 
the value: 
 
A = 
-0.1917 -0.0780 
-0.0895  0.2054 
 
W = 
-4.4320 -1.6818 
-1.9311  4.1353 
 
As shown in Fig.11, independent component s4(t) 
represents the amplitude-time dependency in a 
location of the maximum magnitude of torsion 
mode. Other independent component s5(t) (Fig.12) 
represents the amplitude-time dependency in a 
location of the maximum magnitude of bending 
mode. This is similar to records shown in Fig.1-2. 
As noted, in case of flutter all blades oscillate 
similarly. So, different representations (Fig.1-3, 

Fig.9-10) of the blade collective oscillation are 
related to amplitude-time dependencies in 
respective locations on a single blade. In case of 
linear response of blade, the most independent 
components with respect to their amplitude-
frequency dependencies are respectively, in 
locations of the maximum magnitude of 1st bending 
and 1st torsion mode [Dym, 1974]. In case of flutter 
these components are most independent also, as 
determined by the ICA transform (2). 
 

5 Conclusions 
The qualitative pattern of evolving rotor blade 

flutter can be obtained as result of the ICA 
transform of blade collective oscillation. 
The linear ICA transform in time-domain can’t 

replace a spectral decomposition in frequency 
domain. 
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