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Abstract
The paper deals with mathematical model of move-

ment of a body in a viscous medium. The problem of
optimum control to the viscous medium from initial po-
sition in set is considered by moving of a body. Move-
ment occurs at Reynolds’s greater numbers that gen-
erates effects of failure of the laminar boundary layer,
caused by return difference of a gradient of pressure.
Thus behind a body the vortex path is formed. Fre-
quency of failure of whirlwinds is expressed in the form
of the dimensionless parameter. Asymmetrical forma-
tion of whirlwinds leads to occurrence periodic cross-
section to speed of power influences on a body. Os-
cillatory movements, especially as a result develop if
frequency of formation of whirlwinds comes nearer to
own frequency of fluctuations of a body.
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1 Introduction
Autonomous vehicles and robots intended for work in

atypical environment has proved to form a great body
of knowledge interesting from the viewpoint of chal-
lenging applications and being the source of new theo-
retical research. Particular emphasis is placed on mo-
bile manipulation robots. Just this term is preferred
in [Chernous’ko, Bolotnik and Gradetskii, 1989] in-
tended for work in a viscous medium. It is caused, for
example, by a need in robots to inspect and assimilate
water tanks, and to do various technological works in
those places.
Design of such vehicles is a complicated problem.

The situation when one has to deal with rather limited
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energy supply of vehicles is natural and, sometimes,
inevitable. Then, the following control problem is top-
ical: to find the laws of the control forces and momen-
tums behavior so as to move it from the initial position
to a given one for minimum energy consumption. Such
a problem is close to the ones of dynamic optimization
considered by [Chernous’ko, Bolotnik and Gradetskii,
1989; Beletskii, 1973; Avetisyan, Akulenko and Bolot-
nik, 1987].
The problem has a number of special features. First,

it is irregular (see [Krasovskii, 1968]), because the
Euler–Lagrange equations do not contain controls in an
explicit form, and, hence, the optimal controls cannot
be determined in terms of the state and adjoint vari-
ables. Second, as it was found out, there are impulse
components in the control forces and momentums op-
timum programs. Therefore, the classical variational
techniques cannot be directly applied to find these pro-
grams. The third feature follows from the second one
and consists of calculating the energy consumption.
The point is that one has to define the well-posed proce-
dure of multiplying impulse controls by discontinuous
velocities.
So, the speech goes about a new set of problems be-

ing topical from the viewpoint of the theory of sin-
gular [Bryson and Ho, 1969; Gabasov and Kirillova,
1973; Gurman, 1985] solutions of dynamic optimiza-
tion problems.
The totality of the problems solved in the present pa-

per can be used in both the applied theory of singular
dynamic optimization problems and design of perspec-
tive samples of new machines.

2 Problem Statement

Throughout this paper we regard the term “medium”
as fluid or gas. However, for sake of being intuitive we
use the term “fluid”. Hydrodynamic constraints listed
below, being satisfied, give a possibility to analyze nec-
essary conditions for optimality for the problems men-



tioned in the Introduction. It is assumed that an inertial
system and, inside it, a right Cartesian coordinate sys-
tem Ox1x2x3 are chosen.
Let v(t, x) = v(t, x1, x2, x3) be the velocity vector of

fluid particle at the point M(x1, x2, x3) at the instant t,
and v1, v2, and v3 be its projections in the coordinate
axes. The first two constraints are reduced to the fol-
lowing.

Constraint 1. Fluid is incompressible.

With account of the equation of continuity, this con-
straint is equivalent to zero velocity of the volume
strain

div v = 0. (1)

Constraint 2. The generalized Newton hypothesis
(see [Slezkin, 1955]) is fulfilled

P = −pE + µ
(∂v

∂x
+

(∂v
∂x

)∗)
, (2)

where P is the linear operator defined by the stress ten-
sor, p = p(t, x) denotes the scalar field of pressure, µ is
the dynamic viscosity coefficient, E is the identity map-

ping, ∂v
∂x

is the Frechet derivative, and
(

∂v
∂x

)∗
is the

conjugate operator.

Let a body of bounded size with sufficiently smooth
boundary S move in fluid. One of the fluid mechanics
axioms is the sticking condition: at the body surface
points the velocity vector of fluid particle is equal to the
velocity vector of the corresponding body point. This
condition and the constraint 1 imply that in the case of
translational motion of the body the following equality
is fulfilled at its surface (see [Slezkin, 1955])

(∂v
∂x

)∗
n = 0, (3)

where n is the unit vector of the outward normal to the
surface S at the point x.
The stress on an element dS of the body surface is

calculated by the formula pn = Pn, where n is the
unit vector of the outward normal to dS. This equality
and (2) yield the formula for the principal vector of the
forces acting from fluid upon the body surface (hydro-
dynamic forces)

R =
∫

S

∫ (
−pE + µ

(∂v
∂x

+
(∂v

∂x

)∗)
n dS. (4)

The formula for the principal momentum of hydro-
dynamic forces can be obtained similarly. According

to (3), if the body moves translationally, then the for-
mula (4) is reduced to

R =
∫

S

∫ (
−pE + µ

∂v
∂x

)
n dS. (5)

We need further the so-called moving coordinate sys-
tem Ocy1y2y3 with the body inertia center as the origin
and the axes rigidly connected with the body.
To find the principal vector and momentum, one has

to calculate on the body surface the pressure and the
Frechet derivative of the fluid velocity vector. To do
this, one has to solve a certain boundary-value prob-
lem for the vector-valued Navier–Stokes equation. This
equation is written out below in the moving system
Ocy1y2y3 with axes parallel to the corresponding axes
of the system Ox1x2x3 (the body is assumed to move
translationally). Let V be the velocity vector of the
body, and xc(t) be the radius vector of its inertia cen-
ter. In the moving coordinate system, denote the abso-
lute velocity vector of fluid and the pressure as follows:

v̂(t, y) = v(t, xc(t) + y), p̂(t, y) = p(t, xc(t) + y).

Then the Navier–Stokes equation is of the form

∂v̂
∂t

= −∂v̂
∂y

(v̂−V)− 1
ρ

(∂p̂

∂y

)∗
+ν div

∂v̂
∂y

+F, (6)

where F is the strength of the gravity field, ρ is the fluid
density, ν = µ/ρ is the kinematic viscosity coefficient.
Now, the above-mentioned boundary-value problem

is reduced to finding the solution of a system of par-
tial differential equations, namely, equation (6) plus the
equation of continuity div v̂ = 0. This solution must
satisfy the sticking condition v̂(t, y)

∣∣∣
S

= V and the

natural condition lim
y→∞

v̂(t, y) = 0.

A flow is accepted to call established or stationary if
the field of its absolute velocity vectors in the moving
coordinate system does not change in time. Obviously,
if the body moves translationally, the necessary condi-
tion for the flow to be stationary is V = V0 = const .
The formulae for the power of the drag force acting

upon a homogeneous solid sphere, in stationary cases
considered by Stokes and Oseen, are presented below.
The Stokes procedure ignores in (6) the strength of the

gravity field and the term ∂v̂
∂y

(v̂ −V). As a result, the
expression for the drag force becomes D = 6πµaV0,
where V0 is the magnitude of the velocity vector V0,
and a is the radius of the solid sphere. For the pur-
pose of forthcoming generalizations, it is convenient to
rewrite this expression as follows:

D = CSt
D ρSV 2

0 /2, CSt
D = 24/Re. (7)



Here S = πa2, CSt
D is the drag coefficient, and Re =

2aV0/ν is the Reynolds number.
The Oseen approach also ignores the gravitational

forces action and the quadratic inertial terms, however,
takes completely into account the velocity of the solid
sphere in the Navier–Stokes equation. The following
approximate result comes out:

D = COs
D ρSV 2

0 /2,

COs
D = 24(16− Re2)(16Re− 3Re2)−1.

(8)

Suppose that the body has a symmetry axis. If the
body moves in such a manner that this axis remains in
a given plane (for example, in the plane Oxy), then, ac-
cording to the statics theorems for an absolutely solid
body, the totality of forces acting from fluid upon the
body can be reduced to the resultant one called the hy-
drodynamic force. As usual (see, for instance, [Appa-
zov, Lavrov and Mishin, 1966]), the point of intersec-
tion of the symmetry axis and the line of the hydrody-
namic force action is referred to as center of pressure.
The hydrodynamic force is resolved into components
parallel to the velocity vector V of the body inertia
center and perpendicular to V. The first component D
is known as the drag force, and the second one Dl is
called the lift force.
Let i, j be the unit vectors in the directions Ox and

Oy respectively. We need further a mapping that puts
a vector a = a1i + a2j into correspondence to a⊥ =
−a2i + a1j. Let V be the magnitude of V, D be that
of the drag force, and Dl be that of the lift force. For
needs of forthcoming references, it is convenient to for-
mulate the following assertion as lemma.

Lemma 1. The drag and lift forces are calculated by
the formulae

D = sgn(V,D)D 1
V V,

D⊥ = sgn(V,D)sD⊥ 1
V V⊥,

s = sgn((V, e)(V, e⊥)),

(9)

where e is the directing vector of the body symmetry
axis.

The magnitude of the drag force acting upon the solid
sphere is presented as (7) (or (8)) just to make the co-
efficient CD a dimensionless quantity. In the consid-
ered case, such a presentation can be maintained for
the magnitude of the stationary drag force, i.e.,

D = CDρSV 2/2. (10)

Analogously, the magnitude of the stationary lift force
can be presented as

D⊥ = C⊥DρSV 2/2. (11)

Here S is the area of the body projection onto the plane
perpendicular to the velocity vector of the body inertia
center.
According to the theory of dynamic similitude, the

coefficients CD and C⊥D depend on the body shape,
Reynolds and Frud numbers only.
Further we deal with mechanical systems of axially

symmetric bodies (referred to as links). Let us intro-
duce the following constraint.

Constraint 3. Systems move in a volume of fluid which
is either very extended or is enclosed within rigid
boundaries.

In the framework of the listed constraints, the co-
efficient CD is, following to [Sedov, 1973], a func-
tion of the body shape, Reynolds number and, prob-
ably, the angle of attack between the velocity vector
of the body inertia center and the symmetry axis, i.e.,
CD = CD(shape,Re, α). To determine the angle of at-
tack, one can use the formula

α = −s arccos |(e,V/V )|. (12)

As the case of nonstationary flow is concerned, it
should be noted that Bussinesk has generalized the
Stokes approach to the case of nonuniform transla-
tional motion of a solid sphere and has received the
formula for the drag force (see [Oseen, 1927]), which
in terms of the distributional derivative Dt and distri-
butional convolution [Schwatz, 1950] (denoted below
by the symbol “∗”) is of the form

D = −k1DtV − k00V − k01

( 1√
t
∗DtV

)
. (13)

Here we use the notation

k1 =
2
3
πa3ρ, k00 = 6πµa, k01 = 6

√
πνρa2.

The first term of the formula (13), which corresponds
to the so-called apparent additional mass, is the inertial
component of the drag, and the second one presents the
stationary Stokes formula.
If the drag and lift forces can be described quite accu-

rately by the formulae (9)–(11), then the flow is called
quasistationary (see [Sedov, 1973]).
The work of the hydrodynamic forces is considered

further as performance index. In [Zavalishchin, 2002]
we show that solving the problem of optimal displace-
ments of a solid sphere, if the flow is quasistationary,
leads to the relative mistake in the optimal energy con-
sumption about 3% only (Reynolds numbers are as-
sumed to obey the restriction Re < 1). The nonsta-
tionarity of the flow can be partially taken into account
by means of introducing the apparent additional mass
(see [Sedov, 1973; Daily and Harleman, 1966]).
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Figure 1. Forces and moments acting on a body

Hypothesis 1. The optimal displacement of the system
produces quasistationary flow of the system links.

Lemma 2. Let the constraints 1-3 be fulfilled, Hy-
pothesis 1 hold, and the drag coefficient of each link
be a homogeneous function of power mc in Reynolds
numbers corresponding to the optimal motion of the
system. Then the magnitude of the drag force of each
link is a homogeneous function of power m = mc + 2
in the magnitude of its inertia center velocity. The same
holds relative to the lift forces.

For spherical or cylindrical bodies, the drag co-
efficient is an approximately homogeneous function
of Reynolds numbers small enough, when it is ap-
proximately inversely proportional to them, and large
enough, when it depends on them negligibly (in par-
ticular, such an interval is a fairly long left-hand half-
neighborhood of the number Re = 5 · 105). In the first
case m = 1, and in the second one m = 2.

Hypothesis 2. The optimal displacements of the con-
sidered systems possess the following property:
Reynolds numbers of each link provide that the drag
and lift coefficients of the link are homogeneous func-
tions of these numbers.

In this article the model of moving in the viscous
medium of solid body for Reynolds’s greater numbers
is investigated. The increase in speed generates a sepa-
ration of a boundary layer and occurrence of turbulent
effects. In turn the last is the reason of occurrence of
cross-section fluctuations operating on the body. Fur-
ther attempt of modelling of movement of a body in
such conditions is undertaken.

3 Mathematical Model
In this section, we deal with a model of moving in

a viscous medium of solid body (see Fig. 1) in plane
Oxy. The state of the body is described by the gen-
eralized coordinates x, y and ϕ. Let V be the vector
of centroid velocity V = (ẋ; ẏ)T , F be the force act-
ing along a body axis F = (F cosϕ; F sin ϕ)T , E be

the unit vector E = (cos ϕ; sin ϕ)T , D and D⊥ are the
drag force and lift force respectively

D = (−D cos(ϕ− α);−D sin(ϕ− α))T ,

D⊥ = (−D⊥ sin(ϕ− α); D⊥ cos(ϕ− α))T ,

U be the angular moment. On a body mass force also
actiones Fm = (0;−mg)T .
Kinetic energy is equal to

T =
1
2
m(ẋ2 + ẏ2) +

1
2

ml2

3
ϕ̇2. (14)

Using the Lagrange equations

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
= Qi (15)

one can obtain body moving equations

mẍ = Qx

mÿ = Qy

1
3ml2ϕ̈ = Qϕ

(16)

The generalized forces corresponding to the general-
ized coordinates will be the following

Qx = −D cos(ϕ− α)−D⊥ sin(ϕ− α)+

+ F cos(ϕ)

Qy = −D sin(ϕ− α) + D⊥ cos(ϕ− α)+

+ F sin(ϕ)−mg

Qϕ = U + M

(17)

The system of equations (16) and (17) describes body
movement.

Figure 2. The phase trajectory y(x)



Figure 3. Control U , velocities x and y

Figure 4. Angles ϕ and α

4 The case of Reynolds’s greater numbers
The phase trajectory y(x) of body movement is ob-

tained by numerical integration of system (15) and (16)
is represent on Fig. 2. It is visible that a body having
overcome 60 metres deviates on a vertical axis on 3 me-
tres. Control U– continuous line, velocities x– dot line,
and y– dashed line, is represent on Fig. 3. At last an-
gle ϕ– continuous line, and angle of attack α– dot line,
(within 0,5 radians) is represent on Fig. 4. It should
be noted that data for numerical experiment undertook
from the book [Daily and Harleman, 1966].

5 Conclusion
One of the classical open-flow problems in fluid me-

chanics concerns the flow around a circular cylinder,
or more generally, a bluff body. At very low Reynolds
numbers the streamlines of the resulting flow is per-
fectly symmetric as expected from potential theory.
However as the Reynolds number is increased the flow
becomes asymmetric and the so called Strouhal num-
ber relates the frequency of shedding to the velocity of
the flow and a characteristic dimension of the body. It
is defined as St = fstS/V . In the equation fst is the
vortex shedding frequency (or the Strouhal frequency)

of a body at rest. The Strouhal number for a cylinder
is 0.2 over a wide range of flow velocities. The phe-
nomenon of lock-in happens when the vortex shedding
frequency becomes close to a natural frequency of vi-
bration of the structure. When this happens large and
damaging vibrations can vortex street occurs.
Analyzing results of numerical experiment it is pos-

sible to draw following conclusions. Adaptive control
allows to smooth influence of the Kármán trail. Thus
the border of its occurrence is probably removed. It
would be the small contribution to struggle against tur-
bulence.
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