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Abstract
Global asymptotic behavior of control systems with

periodic vector nonlinearities and denumerable sets
of equilibria is investigated. Multidimensional sys-
tems described by ordinary differential equations,
distributed systems described by integrodifferential
Volterra equations and discrete systems described
by difference equations are examined. New kinds
of Lyapunov-type functions and Popov-type func-
tionals are offered. New frequency-domain crite-
ria for gradient-like behavior of the systems are ob-
tained. They are applied to stability investigation
of phase-locked loops and to the problem of self-
synchronization of two rotors.
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1 Introduction
Nonlinear systems with non-unique equilibria are

widespread among control systems, mechanical sys-
tems, electrical and radio-engineering systems. The
qualitative analysis of various systems with non-unique
equilibria generated a number of new stability prob-
lems and new Lyapunov-type theorems.
This paper is devoted to systems with denumerable

equilibria set and periodic nonlinear functions. They
are often called phase systems.

The stability of multidimensional phase systems was
for the first time investigated in [Yakubovich,Leonov
and Gelig, 2004], where two types of stability char-
acteristics of phase systems are considered. They are
Lagrange stability and gradient-like behavior, which
means that every solution of the system tends to a cer-
tain equilibrium state as the argument-time goes to in-
finity. In [Yakubovich,Leonov and Gelig, 2004] new
classes of Lyapunov functions specially constructed for
phase systems were introduced. They gave the op-
portunity to establish a number of sufficient condi-
tions for Lagrange stability and gradient-like behavior
of the systems. These conditions have often the form
of frequency-domain inequalities with varying param-
eters.
In particular in [Yakubovich,Leonov and Gelig, 2004]

the method of periodic Lypunov functions which had
been introduced in [Bakaev and Guzh, 1965] for the
systems of third order, was extended for multidimen-
sional systems. The technique for constructing peri-
odic Lyapunov functions ( it is often called Bakaev-
Guzh technique) was then developed and generalized
subsequently in [Leonov, Ponomarenko and Smirnova,
1996] and in [Perkin, Smirnova and Shepeljavyi,
2009]. It gave a set of frequency-algebraic conditions
for gradient-like behavior of phase systems.
By means of special Lyapunov-type sequences all

the stability theorems for autonomous multidimen-
sional systems proved before 1996 were extended
to discrete phase systems [Leonov and Smirnova,
2000], [Karpichev, Koryakin, Leonov and Shepeljavyi,
1990]. With the help of the method of a priori in-
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tegral estimates and the Popov-type functionals they
were extended to infinite- dimensional phase systems
[Leonov, Ponomarenko and Smirnova, 1996]. Periodic
Lyapunov-type sequences and Popov-type functionals
destined for discrete and distributed phase systems are
generated by the same technique as periodic Lyapunov
functions for lumped systems.
In this paper a certain modification of Bakaev-Guzh

technique is offered and as a result a new frequency-
algebraic stability theorem for multidimensional phase
systems is proved. By modified periodic Lyapunov
type sequences the theorem is spread to discrete sys-
tems. By means of appropriate Popov-type function-
als this theorem is extended to a class of infinite-
dimensional phase systems.
In this paper for infinite-dimensional phase systems

an analogue of frequency-algebraic stability criterion
from [Perkin, Smirnova and Shepeljavyi, 2009] is also
proved.
It is applied to concrete radio-engineering and me-

chanical systems. The stability regions obtained by this
criterion are compared with results of other investiga-
tions.

2 Asymptotic Behavior of Multidimensional Phase
Systems

Consider an autonomous phase system

ż = Az +Bf(σ),
σ̇ = C∗z +Rf(σ),

(1)

where A, B, C, R are real (m × m), (m × l),
(m × l) and (l × l) - matrices respectively and
f(σ) is a vector-valued function having the prop-
erty f(σ) = (φ1(σ1), φ2(σ2), . . . , φl(σl)) for σ =
(σ1, σ2, . . . , σl). The symbol ∗ is used for Hermitian
conjugation. We suppose that the pair (A,B) is con-
trollable, the pair (A,C) is observable and matrix A is
a Hurwitz one.
We assume that every component φj(σj) is ∆j-

periodic, belongs to C1 and has two simple zeros on
[0,∆j). Assume also that

∫ ∆j

0

φj(σ)dσ < 0 (i = 1, . . . , l). (2)

Let

α1j ≤
dφj

dσj
≤ α2j (3)

to all σj ∈ R, where α1j < 0 < αj2 (j =
1, . . . , l). Let A1 = diag {α11, . . . , α1l}, A2 =
diag {α21, . . . , α2l}.

The transfer matrix for the linear part of (1) from the
input f to the output (−σ̇) has the form

K(p) = −R+ C∗(A− pEm)−1B (p ∈ C),

where Em is a unit m×m-matrix.
We shall need the designation

ℜeM =
1

2
(M +M∗)

for any l × l-matrix M .
Let us determine the functions

Φj(σ) =
√(

1− α−1
1j φ

′
j(σ)

) (
1− α−1

2j φ
′
j(σ)

)
. (4)

Theorem 1. Suppose there exist such diagonal matrix
æ = diag {æ1, . . . ,æl}, and positive definite diagonal
matrices ε = diag {ε1, . . . , εl}, τ = diag {τ1, . . . , τl},
δ = diag {δ1, . . . , δl} that the following requirements
are fulfilled:
1) for all ω ≥ 0 the inequality

ℜe
{
æK(iω)−K∗(iω)εK(iω)−

(
K(iω) +A−1

1 iω
)∗

τ ·

(
K(iω) +A−1

2 iω
)}

− δ ≥ 0 (i2 = −1)

is valid;
2)

2
√

εjδj > |ν2j |æj (j = 1, . . . , l), (5)

where

ν2j =

∫∆j

0
φj(σ)dσ∫∆j

0
|φj(σ)|

√
1 +

τj
εj

Φ2
j (σ)dσ

(6)

Then

lim
t→∞

z(t) = 0,

lim
t→∞

σ(t) = c,

where f(c) = 0.

Proof. We follow here the general scheme for the proof
of frequency-algebraic stability theorems, expounded
in [Leonov, Ponomarenko and Smirnova, 1996]. First
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of all we use the transformation of system (1) to the
system

dy(t)

dt
= Qy(t) + Lξ(t),

dσ(t)

dt
= D∗y(t)

(7)

where

Q =

∥∥∥∥A B
O O

∥∥∥∥ , L =

∥∥∥∥ O
El

∥∥∥∥ , D =

∥∥∥∥ C
R∗

∥∥∥∥ ,
y(t) =

∥∥∥∥ z(t)
f(σ(t))

∥∥∥∥ , ξ =
d

dt
f(σ(t)),

and by O a zero matrix is designated. Next we borrow
from [Leonov, Ponomarenko and Smirnova, 1996] the
following quadratic form of y ∈ Rm+l, ξ ∈ Rl:

G(y, ξ) = 2y∗H(Qy + Lξ) + y∗DεD∗y + y∗LæD∗y−
(D∗y −A−1

1 ξ)τ(A−1
2 ξ −D∗y) + y∗LδL∗y

with a symmetric (m+ l)×(m+ l)-matrix H and diag-
onal l × l-matrices ε, æ, τ and δ which are introduced
in the text of theorem 1.
It follows from condition 1) of theorem 1 that there ex-

ists a real symmetric matrix H , such that the inequality

G(y, ξ) ≤ 0 (∀y ∈ Rl+m, ∀ξ ∈ Rl) (8)

is true [Leonov, Ponomarenko and Smirnova, 1996].
We are going to use here periodic functions

Pj(σ) =

√
1 +

τj
εj

Φ2
j (σ); (9)

Yj(σ) = φj(σ)− ν2j |φj(σ)|Pj(σ). (10)

Note that the parameters ν2j can be rewritten in the
form

ν2j =

∆j∫
0

φj(σ)dσ

∆j∫
0

|φj(σ)|Pj(σ)dσ

(11)

Note also that

∆j∫
0

Yj(σ)dσ = 0. (12)

With the help of Yi(σ) we construct a new Lyapunov-
type function

v(t) = y∗(t)Hy(t) +
∑l

k=1 æk

∫ σk(t)

σk(0)
Yk(σ)dσ.

Let dv
dt be the derivative of v(t) in virtue of system (7).

We have

dv(t)
dt = 2y∗(t)H(Qy(t) + Lξ(t))+∑l
k=1 ækYk(σk(t))σ̇k(t).

It follows from (8) that

dv(t)

dt
≤

−σ̇∗(t)εσ̇(t)− f∗(σ(t))æσ̇(t)− f∗(σ(t))δf(σ(t))+(
σ̇(t)−A−1

1 ξ(t)
)∗

τ
(
σ̇(t)−A−1

2 ξ(t)
)
+∑l

k=1 ækYk(σk(t))σ̇k(t)

or

dv(t)

dt
≤

l∑
k=1

(
−εkσ̇

2
k(t)− ækφk(σk(t))σ̇k(t)

−δkφ
2
k(σk(t))− τkΦ

2
k(σk(t))σ̇

2
k(t)

+ækYk(σk(t)) σ̇k(t)).

(13)

Using formulas (9) and (10) we conclude from (13) that

dv(t)

dt
≤

l∑
k=1

(
−εkσ̇

2
k(t)− δkφ

2
k(σk(t))

−τkΦ
2
k(σk(t))σ̇

2
k(t)− ækν2kPk(σk(t)) |φk(σk)| σ̇k(t)

)
.

(14)
Every term in the right part of inequality (14)
is a quadratic form with regard to |φk(σk)|,
Pk(σk(t))σ̇k(t). According to condition 3) of theorem
1 every such form is negative definite. So we have

dv(t)

dt
≤ −

l∑
k=1

δ0kφ
2
k(σk(t)) (15)

with δ0k > 0 (k = 1, . . . , l). It follows from (15) that

v(t)− v(0) ≤ −
l∑

k=1

∫ t

0

δ0kφ
2
k(σk(t)) dt, ∀t ≥ 0.

(16)
Since matrix A is a Hurwitz one, function f(σ) is
bounded, and equalities (12) are true, we can affirm
that function v(t) is bounded from bellow. That is why
it follows from (16) that

∫ ∞

0

φ2
k(σk(t))dt ≤ +∞. (17)
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It is not difficult to see that as matrix A is a Hurwitz
one, functions z(t) and σ̇(t) are bounded on [0,+∞).
Any function φk(σk(t)) is uniformly continuous on
[0,+∞). Then it follows from (17) according to Bar-
balat lemma [Popov, 1973] that

φk(σk(t)) → 0 as t → +∞ (k = 1, . . . , l).

It is proved in [Leonov, Ponomarenko and Smirnova,
1996] (lemma 2.5.1) that for a continuous ∆k - peri-
odic function φk(σk) with a finite number of zeros on
[0,∆k) and a continuous function σk(t) the latter limit
relation implies that

σk(t) → σ̂k as t → +∞,

where φ(σ̂k) = 0 (k = 1, . . . , l). The first equation of
system (1) can be rewritten in the form

z(t) = eAtz(0) +

∫ t

0

eA(t−τ)Bf(σ(τ))dτ.

Every element of matrix eAt belongs to L2[0,+∞).
Then from (17) and the fact that the convolution of
two functions from L2[0,+∞) tends to 0 as t → +∞
[Gelig, 1966] we deduce that

z(t) → 0 as t → +∞.

Theorem 1 is proved.

Let us define the numbers

νj =

∆j∫
0

φj(σ)dσ

∆j∫
0

|φj(σ)| dσ
(j = 1, . . . , l), (18)

ν0j =

∆j∫
0

φj(σ)dσ

∆j∫
0

|φj(σ)|
√
(1−α−1

1j φ′
j(σ))(1−α−1

2j φ′
j(σ))dσ

(j = 1, . . . , l).

(19)

Theorem 2. Suppose there exist such diagonal matrix
æ = diag {æ1, . . . ,æl}, positive definite diagonal ma-
trixes ε = diag {ε1, . . . , εl}, τ = diag {τ1, . . . , τl},
δ = diag {δ1, . . . , δl} and nonnegative numbers ak,
a0k (k = 1, . . . , l) that the following requirements are
fulfilled:

1) for all ω ≥ 0 the inequality

ℜe {æK(iω)−K∗(iω)εK(iω)−

−
(
K(iω) +A−1

1 iω
)∗

τ
(
K(iω) +A−1

2 iω
)}

− δ ≥ 0

(i2 = −1)

is valid;
2) ak + a0k = 1 (k = 1, . . . , l);
3) matrices∥∥∥∥∥∥∥∥∥

εk
ækakνk

2
0

ækakνk
2

δk
æka0kν0k

2
0

æka0kν0k
2

τk

∥∥∥∥∥∥∥∥∥
are positive definite (k = 1, . . . , l).
Then the conclusion of theorem 1 is true.
The proof of theorem 2 is alike that of theorem 1. We

introduce the functions

Fi(σ) = φi(σ)− νi |φi(σ)| , (20)
Ψi(σ) = φi(σ)− ν0iΦi(σ) |φi(σ)| (21)

(i = 1, . . . , l).

with the properties

∆i∫
0

Fi(σ)dσ = 0,
∆i∫
0

Ψi(σ)dσ = 0

(i = 1, . . . , l).

(22)

and use Lyapunov-type function

v(t) = y∗(t)Hy(t) +
∑l

k=1 æk

(
ak
∫ σk(t)

σk(0)
Fk(σ)dσ+

a0k
∫ σk(t)

σk(0)
Ψk(σ)dσ

)
.

Conditions of theorem 2 guarantee that inequality (15)
is true.
The full text of the proof can be found in [Perkin,

Smirnova and Shepeljavyi, 2009].

3 Asymptotic Behavior of Distributed Systems
with Phase Control

Let us consider a control system which is described by
a system of Volterra integrodifferential equations

σ̇(t) = α(t) +Rf(σ(t− h))−
t∫

0

γ(t− τ)f(σ(τ))dτ.

(23)
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Here t ≥ 0, h ≥ 0;σ(t) = ∥σj(t)∥j=1,...,l, α(t) =
∥αj(t)∥j=1,...,l, f(σ) = ∥φj(σj)∥j=1,...,l are vector-
functions, R is a matrix and ∥γkj(t)∥k,j=1,...,l is a ma-
trix function. For the system (23) the initial condition

σ(t)|t∈[−h,0] = σ0(t). (24)

is given.
We suppose that the following requirements are satis-

fied:
1. αj(t) ∈ C[0,+∞)

∩
L1[0,+∞), αj(t) → 0 as

t → +∞ (j = 1, . . . , l);
2. functions γjk are measurable and ectγjk(t) ∈
L2[0,+∞) (k, j = 1, 2, . . . , l) for a certain c > 0;
3. σ0(t) ∈ C1[−h, 0] ;
4. all the properties of f(σ) are just the same as in

section 2;
5.

∞∫
0

γ(t)dσ ̸= R. (25)

System (23) is a phase system. It has a denumerable
set of equilibria. The basic characteristic of the linear
part of system (23) is the transfer matrix

K(p) = −Re−ph+

∞∫
0

γ(t)e−ptdt (p ∈ C). (26)

Theorem 3. Suppose there exist such positive
definite diagonal matrices æ = diag{æ1, . . . ,æl},
δ = diag{δ1, . . . , δl}, ε = diag{ε1, . . . , εl}, τ =
diag {τ1, . . . , τl} and such numbers ak ∈ [0, 1] (k =
1, . . . , l), that the following conditions are satisfied:
1) for all ω ∈ R the inequality

ℜe
{
æK(iω)−K∗(iω)εK(iω)−

(
K(iω) +A−1

1 iω
)∗

τ ·(
K(iω) +A−1

2 iω
)}

− δ > 0 (i2 = −1)
(27)

is true;
2) matrices

∥∥∥∥∥∥∥∥∥
εk

ækakνk
2

0
ækakνk

2
δk

æka0kν0k
2

0
æka0kνk

2
τk

∥∥∥∥∥∥∥∥∥
where a0k = 1− ak, are positive definite.
Then

σ̇k → 0, σk → ck as t → +∞, (28)

where φk(ck) = 0 (k = 1, . . . , l).

Proof. Let σ(t) be an arbitrary solution of (23) and T
be a positive number. Let us introduce the following
functions

µ(t) =

0 for t < 0
t for t ∈ [0, 1]
1 for t > 1

 , (29)

η(t) = f(σ(t)), (30)

ξT (t) =

{
η(t) t ≤ T
η(T )eλ(T−t) t > T > 1 (λ > 0)

}
, (31)

ηT (t) = µ(t)ξT (t), (32)

σT (t) = RηT (t− h)−
t∫

0

γ(t− τ)ηT (τ)dτ, (33)

σ0(t) = α(t) + (1− µ(t− h))RξT (t− h)

−
t∫
0

(1− µ(τ))γ(t− τ)ξT (τ)dτ.
(34)

For t ∈ [0, T ] we have

σ̇(t) = σ0(t) + σT (t) (35)

Let ηT (t) = ∥ηTj∥j=1,...,l, η(t) = ∥ηj∥j=1,...,l

σT (t) = ∥σTj∥j=1,...,l. It follows from the properties
of ηT (t), γij(t) that

σTj , ηTj , η̇Tj ∈ L2[0,+∞) (j = 1, . . . , l) (36)

for each T > 0.
Let us consider a one-parameter set of functionals

ρT =
∞∫
0

{σ∗
T (t)æηT (t) + η∗T (t)δηT (t) + σ∗

T (t)εσT (t)+

+
(
σT (t)−A−1

1 η̇T (t)
)∗

τ
(
σT (t)−A−1

2 η̇T (t)
)}

dt.

(37)



CYBERNETICS AND PHYSICS, VOL. 1, NO. 3, 2012 193

By Parseval equation we have

ρT =
1

2π

+∞∫
−∞

{σ̃∗
T (iω)æη̃T (iω) + η̃∗T (iω)δη̃T (iω)+

σ̃∗
T (iω)εσ̃T (iω) +

(
σ̃T (iω)−A−1

1
˜̇ηT (iω)

)∗
τ
(
σ̃T (iω)−A−1

2
˜̇ηT (iω)

)
} dω,

(38)
where by σ̃T (iω), η̃T (iω), ˜̇ηT (iω) the Fourier trans-
forms of σT (t), ηT (t), η̇T (t) respectively are denoted.
By means of equalities

σ̃T (iω) = −K(iω)η̃T (iω), (39)
˜̇ηT (iω) = iωη̃T (iω)

we obtain that

ρT = − 1

2π

+∞∫
−∞

η̃∗(iω)ℜe {æK(iω)− δ −K∗(iω)·

·εK(iω)− (K(iω) + iωA−1
1 )∗τ(K(iω) + iωA−1

2 )
}
·

·|η̃(iω)|2dω
(40)

From the condition 1) of the theorem it follows that

ρT < 0. (41)

Let us represent the functional ρT as follows:

ρT = IT + ρ1 + ρ2T + ρ3T + ρ4T , (42)

where

IT =

T∫
0

{σ̇∗æη + η∗δη + σ̇∗εσ̇∗+ (43)

+
(
σ̇ −A−1

1 η̇
)∗

τ
(
σ̇ −A−1

2 η̇
)}

dt,

ρ1 =

1∫
0

{
(1− t)σ̇∗æη + (1− t2)η∗δη+ (44)

+η̇∗A−1
1 τA−1

2 η̇ − ( ˙̂tη)∗A−1
1 τA−1

2
˙̂tη

+σ̇∗ (A−1
1 +A−1

2

)
τ(η̇T − ˙̂tη)

}
dt,

ρ2T =

T∫
0

(−σ∗
0æηT − 2σ̇∗(ε+ τ)σ0+ (45)

σ∗
0(ε+ τ)σ0 −σ∗

0

(
A−1

1 +A−1
2

)
τ η̇T

)
dt,

ρ3T =

∞∫
T

σ∗
T (t)(ε+ τ)σT (t)dt, (46)

ρ4T =

∞∫
T

(
−η̇∗TA

−1
1 τσT + σ∗

TæηT + η∗T δηT− (47)

−σ∗
T τA

−1
2 η̇T + η̇∗TA

−1
1 τA−1

2 η̇T
)
dt.

It follows from the properties of aj(t), γkj(t), ηTj(t)
(k, j = 1, . . . , l) that

ρkT < Ck (k = 2, 4), (48)

where Ck does not depend on T . From (41), (42), (48)
with regard to the positiveness of ρ3T it arises that

IT < C5, (49)

where C5 does not depend on T .
The functional IT can be represented in the following

way

IT =
l∑

j=1

T∫
0

{
æjφj(σj(t))σ̇j(t) + δjφ

2
j (σj(t))+

+εσ̇2
j (t) + τjΦ

2
j (σj(t))σ̇

2
j (t)

}
dt.

(50)
Let us use the functions Fi and Ψi defined in theorem

2. From the definition of Fi and Ψi it follows that

IT =
l∑

j=1

T∫
0

{æjajνj |φj(σ)|σ̇j(t) + æja0jν0j |φj(σ)|·

·Φj(σj)σ̇j(t) + εσ̇2
j (t) + δjφ

2
j (σj(t)) + τjΦ

2
j (σj(t))·

·σ̇2
j (t)

}
dt+

l∑
j=1

[
T∫
0

æjajFj(σj(t))σ̇j(t)dt+

T∫
0

æja0jν0jΨ0j(σj(t))σ̇j(t)dt

]
.

(51)
It follows from (22) that all integrals
T∫
0

Fj(σj(t))σ̇j(t)dt and
T∫
0

Ψj(σj(t))σ̇j(t)dt are

bounded by constants which do not depend on T .
This assumption together with (49) implies that

l∑
j=1

T∫
0

{æjajνj |φj(σ)|σ̇j(t) + æja0jν0j |φj(σj)|·

·Φj(σj)σ̇j(t) + εσ̇2
j (t) + δjφ

2
j (σj(t))+ (52)

+τjΦ
2
j (σj(t))σ̇

2
j (t)

}
dt < C6,

where C6 does not depend on T . By virtue of the con-
dition 2 of the theorem every sum which stands under
the integral sign in the left part of (52) is a positive def-
inite quadratic form of σ̇j , |φj(σj)|, Φj(σj)σ̇j . Then it
follows from (52) that

+∞∫
0

φ2
j (σj(t))dt < +∞, (53)

+∞∫
0

σ̇2
j (t)dt < +∞. (54)
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Let us now repeat the argument of [Leonov, Pono-
marenko and Smirnova, 1996]. Any φj(σj) is uni-
formly continuous. It is easy to see that σj(t) is uni-
formly continuous as well. Then it follows from (53)
and (54) according to Barbalat lemma [Popov, 1973]
that φj(σj(t)) and σ̇j(t) tend to zero as t tends to +∞.
This property of φj(σj(t)) implies that σj(t) tends to a
zero of φj(σj) as t tends to +∞. Theorem 3 is proved.

Theorem 4. Suppose there exist such positive
diagonal matrices æ = diag{æ1, . . . ,æl}, δ =
diag{δ1, . . . , δl}, ε = diag{ε1, . . . , εl}, τ =
diag{τ1, . . . , τl}, that for all ω ≥ 0 the frequency-
domain inequality (27) is fulfilled. Suppose also that
for varying parameters εj , δj , æj the inequalities

2
√
εjδj > |ν2j |æj (j = 1, . . . , l), (55)

where ν2j is defined in theorem 1, are valid. Then the
conclusion of theorem 1 is true.

Proof. Let us repeat the first part of the proof of theo-
rem 3 and prove that the inequality (49), where C5 does
not depend on T , is true.
Let us then consider the function which stands under

the integral sign in the functional IT and transform it.
We shall use the functions Pj and Yj , introduced in text
of the proof of theorem 1. Note that

æj σ̇jηj + δjη
2
j + τj(σ̇j − α−1

1j η̇j)(σ̇j − α−1
2j η̇j)+

+εj σ̇
2
j = æj σ̇j(Yj(σj) + ν2j |ηj |Pj(σj))+

+δjη
2
j + τjΦ

2
j (σj)σ̇

2
j + εj σ̇

2
j = æj σ̇jYj(σj)+

+
(
δjη

2
j +æjν2j |ηj |σ̇jPj(σj) + εj σ̇

2
jP

2
j (σj)

)
.
(56)

So

IT =
l∑

j=1

(æj

T∫
0

σ̇j(t)Yj(σj(t))dt+

+
T∫
0

(
δjη

2
j (t) + ν2jæj |ηj(t)|σ̇j(t)Pj(σj(t))+

+εj σ̇
2
jP

2
j (σ(t))

)
dt).

(57)

By virtue of (12) we affirm that

T∫
0

σ̇j(t)Yj(σj(t))dt =

σj(T )∫
σj(0)

Yj(σj)dσj < C10, (58)

where C10 does not depend on T . On the other hand by
virtue of (55) the quadratic forms

δjη
2
j (t)+ν2jæj |ηj(t)|σ̇j(t)Pj(σj(t))+εj σ̇

2
jP

2
j (σj(t)))

(59)
are positive definite.
So it follows from (49) and (58) that

T∫
0

η2j (t)dt < C12,

T∫
0

σ̇2
j (t)dt < C11, (60)

where C12 and C11 do not depend on T . Now we can
use the concluding part of the proof of theorem 1.

4 Gradient-Like Behavior of Radio-Engineering
and Mechanical Systems

1) Theorem 3 was applied to stability investigation of
a second order phase-locked loop with proportional-
integrating filter and time delay in the loop. In this case
m = l = 1 and the transfer function has the form

K(p) = T
1 + βTp

1 + Tp
e−phT , (T > 0, h > 0, β ∈ (0, 1)).

(61)
For φ(σ) = sinσ − γ (γ ∈ (0, 1)); β = 0, 2; h =
0, 01; 0, 1; 1 the estimates for the boundaries of lock-
in ranges on the plane

{
T 2, γ

}
were obtained. These

estimates were compared with the lock-in ranges ob-
tained in [Belyustina, Kinyapina and Fishman, 1990]
by qualitative-numerical methods. It turned out that the
ranges received by means of theorem 1 have the same
structure as those in [Belyustina, Kinyapina and Fish-
man, 1990]. For T 2 < h−1 the ranges obtained by
theorem 1 are 15-25% smaller than the ranges received
in [Belyustina, Kinyapina and Fishman, 1990].
2) Theorem 3 was also applied to one of problems

of vibrational mechanics [Blekhman, 2000; Blekhman,
2012; Pena-Ramirez, Fey and Nijmeijer, 2012]. It is
the problem of self-synchronization of two rotors on a
vibrator with one degree of freedom [Blekhman, 1988].
The equations describing the change of the slowly vari-
able components Θs(t) (s = 1, 2) of the phase of the
rotor motion are

{
I1Θ̈1 +K1Θ̇1 +A sin(Θ1 −Θ2)− β = 0,

I2Θ̈2 +K2Θ̇2 −A sin(Θ1 −Θ2) + β = 0

}
(62)

where I1, I2, K1, K2, β are positive parameters
[Sperling, Merten and Duckstein, 1997]. The self-
synchronization of the rotors means that the difference
σ = Θ1 − Θ2 tends to a zero of φ(σ) = sinσ − β/A
as t → +∞. The system (62) can be reduced to (23)
with l = 1, R = 0 and the transfer function

K(p) = A

(
1

I1p+K1
+

1

I2p+K2

)
. (63)

In monograph [Leonov and Smirnova, 2000] various
requirements on the coefficients of (62) are given which
guarantee that the relations (28) are true. These re-
quirements are such that the conditions of theorem 1



CYBERNETICS AND PHYSICS, VOL. 1, NO. 3, 2012 195

are satisfied in case a1 = 1(a01 = 0). Varying the pa-
rameter a1 in theorem 3 we can weaken these require-
ments. Let us introduce the parameter

y =
K1K2(K1I2 +K2I1)

AI1I2(K1 +K2)
.

Suppose that

A >

√
K1K2 (K2

1I
2
2 +K2

2I
2
1 )

2 (K1 +K2) (K1I22 +K2I21 )
· I1K2 + I2K1

I1 · I2
.

(64)
In this case for A = 2β theorem 3 guarantees (28)

if y > 0, 97 and theorems of [Leonov and Smirnova,
2000] give y > 1.13

5 Discrete Systems
Consider a discrete phase system

z(n+ 1) = Az(n) +Bf(σ(n)),
σ(n+ 1) = σ(n) + C∗z(n) +Rf(σ(n))
(n = 0, 1, 2, . . .),

(65)

where A, B, C, R are described in section 2. We sup-
pose that the pair (A,B) is controllable, the pair (A,C)
is observable and all eigenvalues of matrix A are situ-
ated inside the open unit circle. All the properties of
f(σ) are just the same as in section 2. The transfer
matrix K(p) for the linear part of system (65) has the
form

K(p) = −R+ C∗(A− pEm)−1B (p ∈ C). (66)

We shall present in this section certain analogues of
theorems 1 and 2. We shall need numbers k1j =
2α1j − α2j and k2j = 2α2j − α1j and diago-
nal matrices K1 = diag(k11, . . . , k1l) and K2 =
diag(k21, . . . , k2l).
Theorem 5. Suppose there exist such positive def-

inite diagonal matrices ε = diag {ε1, . . . , εl}, τ =
diag {τ1, . . . , τl}, δ = diag {δ1, . . . , δl}, a diagonal
matrix æ = diag {æ1, . . . ,æl} that the following re-
quirements are fulfilled:
1) for all p ∈ C, |p| = 1 the inequality

ℜe
{
æK(p)−

(
K(p) + (p− 1)K−1

1

)∗
τ
(
K(p) + (p− 1)K−1

2

)}
−K∗(p)εK(p)− δ ≥ 0

(67)
is valid;
2) the inequalities

(1− α1kα2k

k1kk2k
)εk >

>
ækα0k

2
(1− ν2k

√
1 +

τk
εk

(α2k − α1k)2

|α1k|α2k
), (68)

where α0k = α2k if æk > 0, and α0k = α1k if æk < 0,
and

2

√
εkδk

α2kα1k

k1kk2k
> |ν2kæk|(k = 1, 2, . . . , l) (69)

are true.
Then

lim
n→∞

f(σ(n)) = 0,

lim
n→∞

z(n) = 0,

lim
n→∞

(σ(n+ 1)− σ(n)) = 0,

lim
n→∞

(σ(n)) = c,

where f(c) = 0.

Proof. The proof is based on the proof of theorem 5.4.1
from [Leonov and Smirnova, 2000]. Its first step is
the extension of the state space of the system. For the
purpose we introduce the notations

y =

∥∥∥∥ z
f(σ)

∥∥∥∥ , P =

∥∥∥∥A B
O El

∥∥∥∥ ,
L =

∥∥∥∥ O
El

∥∥∥∥ , D∗ =
∥∥C∗, R

∥∥ ,
ξ1(n) = f(σ(n+ 1))− f(σ(n)).

Then system (65) can be represented as

y(n+ 1) = Py(n) + Lξ1(n),
σ(n+ 1) = σ(n) +D∗y(n),
(n = 0, 1, 2, . . .).

(70)

The second step is to determine the quadratic form of
y ∈ Rm+l and ξ1 ∈ Rl

M(y, ξ1) = (Py + Lξ1)
∗H(Py + Lξ1)−

y∗Hy + y∗LæDy + y∗DεD∗y + y∗LδL∗y−
(D∗y −K−1

1 ξ1)
∗τ(K−1

2 ξ1 −D∗y),
(71)

where H is a symmetric (m+l)×(m+l) matrix and ε,
æ, δ, τ are diagonal matrices from the text of theorem
5.
It follows from [Leonov and Smirnova, 2000] that if

the condition 1) of theorem 5 is true then there exists
matrix H = H∗ such that for all y ∈ Rm+l and ξ1 ∈
Rl

M(y, ξ1) ≤ 0. (72)
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Since all the eigenvalues of matrix A are situated inside
the unit circle and function f(σ) is bounded we can af-
firm that sequence W (n) = y∗(n)Hy(n), where y(n)
satisfies (70) is bounded as well.
Let us use functions Pj(σ) and Yj(σ) which were

introduced in the proof of theorem 1 and define a
Lyapunov-type sequence

V (n) = W (n) +
l∑

k=1

æk

σk(n)∫
σk(0)

Yk(σ)dσ. (73)

Let us consider the difference

V (n+ 1)− V (n) = W (n+ 1)−W (n)+
l∑

k=1

æk

σk(n+1)∫
σk(n)

Yk(σ)dσ.
(74)

It follows from (72) that

W (n+ 1)−W (n) ≤
l∑

k=1

{−ækφk(σk(n))(σk(n+ 1)− σk(n))−

εk(σk(n+ 1)− σk(n))
2 − δkφ

2
k(σk(n))−

τk[k
−1
1k (φk(σk(n+ 1))− φk(σk(n)))−

(σk(n+ 1)− σk(n))][k
−1
2k (φk(σk(n+ 1))−

φk(σk(n)))− (σk(n+ 1)− σk(n))].

(75)

On the other hand we can establish the estimate
[Leonov and Smirnova, 2000]

æk

σk(n+1)∫
σk(n)

Yk(σ)dσ ≤ æk(φk(σk(n))+

Θk|φk(σk(n))|)(σk(n+ 1)−
σk(n)) + æk

α0k

2
(1 + Θk)(σk(n+ 1)− σk(n))

2

(76)
where

Θk = |ν2kPk(σ
′
kn)| (77)

and

σk(n)
<

>
σ′
kn

<

>
σk(n+ 1). (78)

Note that

Φk(σ) <
α2k − α1k√
|α1k|α2k

. (79)

Hence

Pk(σ
′
kn) <

√
1 +

τj(α2k − α1k)2

εjα2k|α1k|
(80)

It is established in [Smirnova and Shepeljavyi, 2007]
that

[
k−1
2k (φk(σk(n+ 1))− φk(σk(n)))−

−(σk(n+ 1)− σk(n))][
k−1
1k (φk(σk(n+ 1))− φk(σk(n)))−

−(σk(n+ 1)− σk(n))]

≥ α2kα1k

k1kk2k
Φ2

k(σ
′
kn)(σk(n+ 1)− σk(n))

2 =

= α2kα1k

k1kk2k
(P 2(σ′

kn)− 1) εkτk (σk(n+ 1)− σk(n))
2.
(81)

Formulae (74)-(81) imply that

V (n+ 1)− V (n) ≤
l∑

k=1

Zk(n), (82)

where

Zk(n) = −
(
εk − ækα0k

2
(1+

|ν2k|

√
1 +

(α2k − α1k)
2τk

|α1k|α2kεk

)
−

εkα1kα2k

k1kk2k

)
(σk(n+ 1)− σk(n))

2 − δkφ
2
k(σk(n))−

−εk
α1kα2k

k1kk2k
P 2
k (σ

′
kn)(σk(n+ 1)− σk(n))

2

+æk|ν2kφk(σk(n))Pk(σ
′
kn)|(σk(n+ 1)− σk(n)).

(83)
By virtue of condition 2) of the theorem we have that

V (n+1)−V (n) ≤ −δ0 |f(σ(n))|2 (δ0 > 0), (84)

where by |f | the Euclidian norm of vector f is des-
ignated. Since sequence W (n) (n = 0, 1, 2, . . .) is
bounded and functions Yk(σ) (k = 1, 2, . . . , l) sat-
isfy (12) we can affirm that sequence V (n) (n =
0, 1, 2, . . .) is bounded as well. Then is follows from

(84) that the series
+∞∑
n=1

|f(σ(n))|2converges. Hence

lim
n→+∞

|f(σ(n))| = 0 (85)

and consequently as soon as all eigenvalues of A
are situated inside the unit circle we can affirm that
lim

n→+∞
z(n) = 0.

Then from (70) it follows that σ(n + 1) − σ(n) →
0 as n → +∞.From this fact and (85) it follows
that σ(n) → σ̂ as n → +∞,with f(σ̂) = 0. The-
orem 5 is proved.

Theorem 6. Suppose there exist such positive def-
inite diagonal matrices ε = diag {ε1, . . . , εl}, τ =
diag {τ1, . . . , τl}, δ = diag {δ1, . . . , δl}, a diagonal
matrix æ = diag {æ1, . . . ,æl} and numbers ak ∈
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[0, 1] (k = 1, . . . , l) that the requirement 1) from The-
orem 5 is fulfilled and matrices∥∥∥∥∥∥∥∥∥∥∥∥

εk − ækα0k

2 (ak(1 + |νk|)+

a0k

(
1− α2k−α1k√

|α1k|α2k

)) ækνkak
2

0

ækνkak
2

δk
æka0kν0k

2
0

æka0kν0k
2

τk
α1kα2k

k1kk2k

∥∥∥∥∥∥∥∥∥∥∥∥
,

(86)
where a0k = 1 − ak and α0k are defined in the text of
theorem 5, are positive definite. Then the conclusion of
Theorem 5 is true.
The proof of Theorem 6 is alike the proof of Theorem

5. It is based on the Lyapunov-type sequence

V (n) = W (n) +
l∑

k=1

æk

(
ak

σk(n)∫
σk(0)

Fk(σ)dσ+

a0k
σk(n)∫
σk(0)

Ψk(σ)dσ

)
,

(87)

where the sequence W (n) is defined in the text of the-
orem 5 and functions Fk and Ψk (k = 1, . . . , l) are
borrowed from the text of theorem 2. The estimates

for ak
σk(n)∫
σk(0)

Fk(σ)dσ and a0k
σk(n)∫
σk(0)

Ψk(σ)dσ are taken

from [Leonov and Smirnova, 2000] and [Smirnova and
Shepeljavyi, 2007] respectively. The full text of this
proof can be found in [Perkin, Smirnova and Shepel-
javyi, 2009].

6 Conclusion
The paper is devoted to the problem of gradient-like

behavior for lumped, distributed and discrete phase
systems. The problem is investigated by two methods
traditionally used in absolute stability theory. They are
Lyapunov direct method for multidimensional systems
and the method of a priori integral estimates for dis-
tributed systems. In the paper new types of periodic
Lyapunov-type functions and Popov-type functionals
are exploited. As a result new frequency-algebraic sta-
bility criteria are obtained. The new criteria give the
opportunity to improve the estimates for the regions of
gradient-like behavior in the space of parameters of the
systems. They are applied to stability investigation of
second order phase-locked loops with time delay and
to the problem of self-synchronization of two rotors on
a vibrator with one degree of freedom.
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