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Abstract
Applying a canonical system with field rotation pa-

rameters and using geometric properties of the spirals
filling the interior and exterior domains of limit cy-
cles, we control all possible limit cycle bifurcations
and solve the limit cycle problem for general Liénard’s
polynomial system with an arbitrary (but finite) number
of singular points.
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1 Introduction
In this paper, we consider Liénard equations

ẍ+ f(x) ẋ+ g(x) = 0 (1.1)

and the corresponding dynamical systems in the form

ẋ = y, ẏ = −g(x) − f(x)y. (1.2)

There are many examples in the natural sciences and
technology in which this and related systems are ap-
plied [Agarwal and Ananthkrishnan, 2000; Bautin and
Leontovich, 1990; Gasull and Torregrosa, 1999 —
Smale, 1998]. Such systems are often used to model
either mechanical or electrical, or biomedical systems,
and in the literature, many systems are transformed into
Liénard type to aid in the investigations. They can be
used, e. g., in certain mechanical systems, where f(x)
represents a coefficient of the damping force and g(x)
represents the restoring force or stiffness, when mod-
eling wind rock phenomena and surge in jet engines
[Agarwal and Ananthkrishnan, 2000; Owens, Capone,
Hall, Brandon and Chambers, 2004]. Such systems
can be also used to model resistor-inductor-capacitor

circuits with non-linear circuit elements. Recently,
e. g., the Liénard system (1.2) has been shown to de-
scribe the operation of an optoelectronics circuit that
uses a resonant tunnelling diode to drive a laser diode
to make an optoelectronic voltage controlled oscilla-
tor [Slight, Romeira, Liquan, Figueiredo, Wasige and
Ironside, 2008]. There are also some examples of us-
ing Liénard type systems in ecology and epidemiology
[Moreira, 1992].
We suppose that system (1.2), where f(x) and g(x)

are arbitrary polynomials of x, has an anti-saddle (a
node or a focus, or a center) at the origin and write it in
the form

ẋ = y,

ẏ = −x (1 + β1 x+ . . .+ β2l x
2l)

+ y (α0 + α1 x+ . . .+ α2k x
2k).

(1.3)

In [Gaiko, 1997, 2001, 2003, 2005, 2008a, 2009a], we
have already presented a solution of Hilbert’s sixteenth
problem in the quadratic case of polynomial systems
proving that for quadratic systems four is really the
maximum number of limit cycles and (3 : 1) is their
only possible distribution. We have also established
some preliminary results on generalizing our ideas and
methods to special cubic, quartic and other polyno-
mial dynamical systems. In [Gaiko and van Horssen,
2004], e. g., we have constructed a canonical cubic dy-
namical system of Kukles type and have carried out
the global qualitative analysis of its special case corre-
sponding to a generalized Liénard equation. In partic-
ular, it has been shown that the foci of such a Liénard
system can be at most of second order and that such
system can have at most three limit cycles in the whole
phase plane. Moreover, unlike all previous works on
the Kukles-type systems, global bifurcations of limit
and separatrix cycles using arbitrary (including as large
as possible) field rotation parameters of the canonical



system have been studied. As a result, a classification
of all possible types of separatrix cycles for the gener-
alized Liénard system has been obtained and all pos-
sible distributions of its limit cycles have been found.
In [Gaiko and van Horssen, 2009a, 2009b], we have
completed the global qualitative analysis of a planar
Liénard-type dynamical system with a piecewise lin-
ear function containing an arbitrary number of drop-
ping sections and approximating an arbitrary polyno-
mial function. In [Botelho and Gaiko, 2006; Broer and
Gaiko, 2010], we have carried out the global qualitative
analysis of a centrally symmetric cubic system which is
used as a learning model of a planar neural network and
a quartic dynamical system which models the dynamics
of the populations of predators and their prey in a given
ecological system, respectively. In [Gaiko, 2011b], we
have also completed the study of multiple limit cycle
bifurcations in the well-known FitzHgh–Nagumo neu-
ronal model. In [Gaiko, 2008b, 2009b, 2011a, 2012],
we have presented a solution of Smale’s Thirteenth
Problem [Smale, 1998] proving that classical Liénard’s
system with a polynomial f(x) of degree 2k + 1 and
g(x) ≡ x can have at most k limit cycles. Gener-
alizing this result, we have also presented a solution
of Hilbert’s Sixteenth Problem [Gaiko, 2003] on the
maximum number of limit cycles surrounding a sin-
gular point for an arbitrary polynomial system [Gaiko,
2011a, 2012].
In Section 2 of this paper, applying a canonical sys-

tem with field rotation parameters and using geomet-
ric properties of the spirals filling the interior and ex-
terior domains of limit cycles, we show how to con-
trol all possible limit cycle bifurcations of the general
Liénard polynomial system (1.3) and present a solution
of Hilbert’s Sixteenth Problem for system (1.3) with an
arbitrary (but finite) number of singular points.

2 Limit cycles of Liénard’s polynomial system
By means of our bifurcationally geometric approach

[Gaiko, 2008b, 2009b, 2011a, 2012], we will study the
Liénard polynomial system (1.3). Its finite singularities
are determined by the algebraic system

x (1 + β1 x+ . . .+ β2l x
2l) = 0, y = 0. (2.1)

It always has an anti-saddle at the origin and, in gen-
eral, can have at most 2l + 1 finite singularities which
lie on the x-axis and are distributed so that a saddle
(or saddle-node) is followed by a node or a focus, or
a center and vice versa [Bautin and Leontovich, 1990].
At infinity, system (1.3) has two singular points: a node
at the “ends” of the x-axis and a saddle at the “ends”
of the y-axis. For studying the infinite singularities, the
methods applied in [Bautin and Leontovich, 1990] for
Rayleigh’s and van der Pol’s equations and also Eru-
gin’s two-isocline method developed in [Gaiko, 2003]
can be used; see also [Gaiko, 2008b, 2009b, 2011a,
2012].

Following [Gaiko, 2003], we will study limit cycle bi-
furcations of (1.3) by means of a canonical system con-
taining field rotation parameters of (1.3) [Bautin and
Leontovich, 1990; Gaiko, 2003].

Theorem 2.1. The Liénard polynomial system (1.3)
with limit cycles can be reduced to the canonical form

ẋ = y ≡ P (x, y),

ẏ = −x (1 + β1x± x2 + . . .

+β2l−1x
2l−1 ± x2l) + y (α0 + x+ α2x

2

+ . . .+ x2k−1 + α2kx
2k) ≡ Q(x, y),

(2.2)

where β1, β3, . . . , β2l−1 are fixed and α0, α2, . . . , α2k

are field rotation parameters of (2.2).

Proof. Let all the parameters αi, i = 0, 1, . . . , 2k, van-
ish in system (2.2),

ẋ = y,

ẏ = −x (1 + β1 x+ β2 x
2 + . . .+ β2l x

2l),
(2.3)

and consider the corresponding equation

dy

dx
=

−x (1 + β1 x+ β2 x
2 + . . .+ β2l x

2l)

y

≡ F (x, y).

(2.4)

Since F (x,−y) = −F (x, y), the direction field of
(2.4) (and the vector field of (2.3) as well) is symmet-
ric with respect to the x-axis. It follows that for arbi-
trary values of the parameters βj , j = 1, 2, . . . , 2l, sys-
tem (2.3) has centers as anti-saddles and cannot have
limit cycles surrounding these points. Therefore, with-
out loss of generality, all the even parameters βj of
system (1.3) can be supposed to be equal, e. g., to ±1:
β2 = β4 = β6 = . . . = ±1.
Let now all the parameters αi with even indexes and
βj with odd indexes vanish in system (2.2),

ẋ = y,

ẏ = −x (1 ± x2 ± . . .± x2l)

+ y (α1 x+ α3 x
3 + . . .+ α2k−1 x

2k−1),

(2.5)

and consider the corresponding equation

dy

dx
=

−x (1 ± x2 ± . . .± x2l)

y

+α1 x+ α3 x
3 + . . .+ α2k−1 x

2k−1

≡ G(x, y).

(2.6)

Since G(−x, y) = −G(x, y), the direction field
of (2.6) (and the vector field of (2.5) as well) is sym-
metric with respect to the y-axis. It follows that for ar-
bitrary values of the parameters α1, α3, . . . , α2k−1 sys-
tem (2.3) has centers as anti-saddles and cannot have
limit cycles surrounding these points. Therefore, with-
out loss of generality, all the odd parameters αi of



system (1.3) can be supposed to be equal, e. g., to 1:
α1 = α3 = . . . = α2k−1 = 1.
Inputting the odd parameters β1, β3, . . . , β2l−1 into

system (2.5),

ẋ = y ≡ R(x, y),

ẏ = −x (1 + β1x± x2 + β3x
3 ± x4 + . . .

+β2l−1x
2l−1 ± x2l) + y (x+ x3 + . . .

+x2k−1) ≡ S(x, y),

(2.7)

and calculating the determinants

∆β1
= RS′β1

− SR ′β1
= −x2y,

∆β3 = RS′β3
− SR ′β3

= −x4y,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∆β2l−1
= RS′β2l−1

− SR ′β2l−1
= −x2ly,

we can see that the vector field of (2.7) is rotated sym-
metrically (in opposite directions) with respect to the
x-axis and that the finite singularities (centers and sad-
dles) of (2.7) moving along the x-axis (except the cen-
ter at the origin) do not change their type or join in
saddle-nodes. Therefore, we can fix the odd parameters
β1, β3, . . . , β2l−1 in system (2.2), fixing the position of
its finite singularities on the x-axis.
To prove that the even parameters α0, α2, . . . , α2k

rotate the vector field of (2.2), let us calculate the fol-
lowing determinants:

∆α0
= P Q′α0

−QP ′α0
= y2 ≥ 0,

∆α2 = P Q′α2
−QP ′α2

= x2y2 ≥ 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∆α2k
= P Q′α2k

−QP ′α2k
= x2ky2 ≥ 0.

By definition of a field rotation parameter [Bautin and
Leontovich, 1990; Gaiko, 2003], for increasing each of
the parameters α0, α2, . . . , α2k, under the fixed others,
the vector field of system (2.2) is rotated in the positive
direction (counterclockwise) in the whole phase plane;
and, conversely, for decreasing each of these parame-
ters, the vector field of (2.2) is rotated in the negative
direction (clockwise).
Thus, for studying limit cycle bifurcations of (1.3), it

is sufficient to consider the canonical system (2.2) con-
taining only its even parameters α0, α2, . . . , α2k which
rotate the vector field of (2.2) under the fixed others.
The theorem is proved. �

By means of the canonical system (2.2), let us study
global limit cycle bifurcations of (1.3) and prove the
following theorem.

Theorem 2.2. The general Liénard polynomial system
(1.3) can have at most k + l limit cycles, k surround-
ing the origin and l surrounding one by one the other
singularities of (1.3).

Proof. According to Theorem 2.1, for the study of limit
cycle bifurcations of system (1.3), it is sufficient to con-
sider the canonical system (2.2) containing the field ro-
tation parameters α0, α2, . . . , α2k of (1.3) under the
fixed its parameters β1, β3, . . . , β2l−1.
Let all these parameters vanish:

ẋ = y,

ẏ = −x (1 ± x2 ± . . .± x2l)

+ y (x+ x3 + . . .+ x2k−1).

(2.8)

System (2.8) is symmetric with respect to the y-axis
and has centers as anti-saddles. Its center domains are
bounded by either separatrix loops or digons of the sad-
dles of (2.8) lying on the x-axis. If to input the pa-
rameters β1, β3, . . . , β2l−1 into (2.8) successively, we
will get again system (2.7) the vector field of which is
rotated symmetrically (in opposite directions) with re-
spect to the x-axis. The finite singularities (centers and
saddles) of (2.7) moving along the x-axis (except the
center at the origin) do not change their type or join in
saddle-nodes and the center domains will be bounded
by separatrix loops of the saddles (or saddle-nodes)
of (2.7) [Bautin and Leontovich, 1990; Gaiko, 2003].
Let us input successively the field rotation parame-

ters α0, α2, . . . , α2k into system (2.7) beginning with
the parameters at the highest degrees of x and alternat-
ing with their signs; see [Gaiko, 2008b, 2009b, 2011a,
2012]. So, begin with the parameter α2k and let, for
definiteness, α2k > 0:

ẋ = y,

ẏ = −x (1 + β1x± x2

+β3x
3 ± x4 + . . .+ β2l−1x

2l−1 ± x2l)

+ y (x+ x3 + . . .+ x2k−1 + α2kx
2k).

(2.9)

In this case, the vector field of (2.9) is rotated in the
positive direction (counterclockwise) turning the center
at the origin into a nonrough (weak) unstable focus. All
the other centers become rough unstable foci [Bautin
and Leontovich, 1990; Gaiko, 2003].
Fix α2k and input the parameter α2k−2 < 0 into (2.9):

ẋ = y,

ẏ = −x (1 + β1x± x2 + β3x
3 ± x4 + . . .

+β2l−1x
2l−1 ± x2l) + y (x+ x3 + . . .

+α2k−2x
2k−2 + x2k−1 + α2kx

2k).

(2.10)

Then the vector field of (2.10) is rotated in the opposite
direction (clockwise) and the focus at the origin im-
mediately changes the character of its stability (since
its degree of nonroughness decreases and the sign of
the field rotation parameter at the lower degree of x
changes) generating a stable limit cycle. All the other
foci will also generate stable limit cycles for some val-
ues of α2k−2 after changing the character of their sta-
bility. Under further decreasing α2k−2, all the limit



cycles will expand disappearing on separatrix cycles
of (2.10) [Bautin and Leontovich, 1990; Gaiko, 2003].
Denote the limit cycle surrounding the origin by Γ1,

the domain outside the cycle by D1, the domain inside
the cycle by D2 and consider logical possibilities of
the appearance of other (semi-stable) limit cycles from
a “trajectory concentration” surrounding this singular
point. It is clear that, under decreasing the parameter
α2k−2, a semi-stable limit cycle cannot appear in the
domain D2, since the focus spirals filling this domain
will untwist and the distance between their coils will
increase because of the vector field rotation [Gaiko,
2008b, 2009b, 2011a, 2012].
By contradiction, we can also prove that a semi-stable

limit cycle cannot appear in the domain D1. Suppose it
appears in this domain for some values of the parame-
ters α∗2k > 0 and α∗2k−2 < 0. Return to system (2.7)
and change the inputting order for the field rotation pa-
rameters. Input first the parameter α2k−2 < 0:

ẋ = y,

ẏ = −x (1 + β1x± x2 + β3x
3 ± x4 + . . .

+β2l−1x
2l−1 ± x2l) + y (x+ x3 + . . .

+α2k−2x
2k−2 + x2k−1).

(2.11)

Fix it under α2k−2 = α∗2k−2. The vector field of (2.11)
is rotated clockwise and the origin turns into a non-
rough stable focus. Inputting the parameter α2k > 0
into (2.11), we get again system (2.10) the vector field
of which is rotated counterclockwise. Under this rota-
tion, a stable limit cycle Γ1 will appear from a separa-
trix cycle for some value of α2k. This cycle will con-
tract, the outside spirals winding onto the cycle will un-
twist and the distance between their coils will increase
under increasing α2k to the value α∗2k. It follows that
there are no values of α∗2k−2 < 0 and α∗2k > 0 for
which a semi-stable limit cycle could appear in the do-
main D1.
This contradiction proves the uniqueness of a limit cy-

cle surrounding the origin in system (2.10) for any val-
ues of the parameters α2k−2 and α2k of different signs.
Obviously, if these parameters have the same sign, sys-
tem (2.10) has no limit cycles surrounding the origin
at all. On the same reason, this system cannot have
more than l limit cycles surrounding the other singular-
ities (foci or nodes) of (2.10) one by one.
Let system (2.10) have the unique limit cycle Γ1 sur-

rounding the origin and l limit cycles surrounding the
other antisaddles of (2.10). Fix the parameters α2k>0,
α2k−2 < 0 and input the third parameter, α2k−4 > 0,
into this system:

ẋ = y,

ẏ = −x (1 + β1x± x2 + . . .+ β2l−1x
2l−1

±x2l) + y (x+ x3 + . . .+ α2k−4x
2k−4

+α2k−2x
2k−2 + x2k−1 + α2k x

2k).

(2.12)

The vector field of (2.12) is rotated counterclockwise,

the focus at the origin changes the character of its sta-
bility and the second (unstable) limit cycle, Γ2, im-
mediately appears from this point. The limit cycles
surrounding the other singularities of (2.12) can only
disappear in the corresponding foci (because of their
roughness) under increasing the parameter α2k−4. Un-
der further increasing α2k−4, the limit cycle Γ2 will
join with Γ1 forming a semi-stable limit cycle, Γ12,
which will disappear in a “trajectory concentration”
surrounding the origin. Can another semi-stable limit
cycle appear around the origin in addition to Γ12? It
is clear that such a limit cycle cannot appear either in
the domain D1 bounded on the inside by the cycle Γ1
or in the domain D3 bounded by the origin and Γ2

because of the increasing distance between the spiral
coils filling these domains under increasing the param-
eter α2k−4 [Gaiko, 2008b, 2009b, 2011a, 2012].
To prove the impossibility of the appearance of a

semi-stable limit cycle in the domain D2 bounded by
the cycles Γ1 and Γ2 (before their joining), suppose the
contrary, i. e., that for some set of values of the param-
eters, α∗2k > 0, α∗2k−2 < 0, and α∗2k−4 > 0, such a
semi-stable cycle exists. Return to system (2.7) again
and input first the parameters α2k−4 > 0 and α2k > 0:

ẋ = y,

ẏ = −x (1 + β1x± x2 + β3x
3 ± x4 + . . .

+β2l−1x
2l−1 ± x2l) + y (x+ x3 + . . .

+α2k−4x
2k−4 + x2k−3 + α2kx

2k).

(2.13)

Both parameters act in a similar way: they rotate the
vector field of (2.13) counterclockwise turning the ori-
gin into a nonrough unstable focus.
Fix these parameters under α2k−4 = α∗2k−4, α2k =
α∗2k and input the parameter α2k−2 < 0 into (2.13)
getting again system (2.12). Since, by our assumption,
this system has two limit cycles surrounding the origin
for α2k−2 > α∗2k−2, there exists some value of the pa-
rameter, α12

2k−2 (α∗2k−2 < α12
2k−2 < 0), for which a

semi-stable limit cycle, Γ12, appears in system (2.12)
and then splits into a stable cycle, Γ1, and an unstable
cycle, Γ2, under further decreasing α2k−2. The formed
domain D2 bounded by the limit cycles Γ1, Γ2 and
filled by the spirals will enlarge since, on the properties
of a field rotation parameter, the interior unstable limit
cycle Γ2 will contract and the exterior stable limit cycle
Γ1 will expand under decreasing α2k−2. The distance
between the spirals of the domain D2 will naturally in-
crease, which will prevent the appearance of a semi-
stable limit cycle in this domain for α2k−2 < α12

2k−2
[Gaiko, 2008b, 2009b, 2011a, 2012].
Thus, there are no such values of the parameters,
α∗2k > 0, α∗2k−2 < 0, and α∗2k−4 > 0, for which sys-
tem (2.12) would have an additional semi-stable limit
cycle surrounding the origin. Obviously, there are no
other values of the parameters α2k, α2k−2, and α2k−4
for which system (2.12) would have more than two
limit cycles surrounding this singular point. On the



same reason, additional semi-stable limit cycles can-
not appear around the other singularities (foci or nodes)
of (2.12). Therefore, 2 + l is the maximum number of
limit cycles in system (2.12).
Suppose that system (2.12) has two limit cycles, Γ1

and Γ2, surrounding the origin and l limit cycles sur-
rounding the other antisaddles of (2.12) (this is always
possible if α2k � −α2k−2 � α2k−4 > 0). Fix the pa-
rameters α2k, α2k−2, α2k−4 and consider a more gen-
eral system inputting the fourth parameter, α2k−6 < 0,
into (2.12):

ẋ = y,

ẏ = −x (1 + β1x± x2 + β3x
3 ± x4 + . . .

+β2l−1x
2l−1 ± x2l) + y (x+ x3 + . . .

+α2k−6x
2k−6 + x2k−5 + . . .+ α2kx

2k).

(2.14)

For decreasing α2k−6, the vector field of (2.14) will be
rotated clockwise and the focus at the origin will imme-
diately change the character of its stability generating
a third (stable) limit cycle, Γ3. With further decreas-
ing α2k−6, Γ3 will join with Γ2 forming a semi-stable
limit cycle, Γ23, which will disappear in a “trajectory
concentration” surrounding the origin; the cycle Γ1 will
expand disappearing on a separatrix cycle of (2.14).
Let system (2.14) have three limit cycles surrounding

the origin: Γ1, Γ2, Γ3. Could an additional semi-stable
limit cycle appear with decreasing α2k−6 after splitting
of which system (2.14) would have five limit cycles
around the origin? It is clear that such a limit cycle can-
not appear either in the domain D2 bounded by the cy-
cles Γ1 and Γ2 or in the domain D4 bounded by the ori-
gin and Γ3 because of the increasing distance between
the spiral coils filling these domains after decreasing
α2k−6. Consider two other domains: D1 bounded on
the inside by the cycle Γ1 andD3 bounded by the cycles
Γ2 and Γ3. As before, we will prove the impossibility
of the appearance of a semi-stable limit cycle in these
domains by contradiction.
Suppose that for some set of values of the parameters
α∗2k > 0, α∗2k−2 < 0, α∗2k−4 > 0, and α∗2k−6 < 0 such
a semi-stable cycle exists. Return to system (2.7) again,
input first the parameters α2k−6 < 0, α2k−2 < 0 and
then the parameter α2k > 0:

ẋ = y,

ẏ = −x (1 + β1x± x2 + . . .+ β2l−1x
2l−1

±x2l) + y (x+ x3 + . . .+ α2k−6x
2k−6

+ . . .+ α2k−2x
2k−2 + x2k−3 + α2kx

2k).

(2.15)

Fix the parameters α2k−6, α2k−2 under the values
α∗2k−6, α

∗
2k−2, respectively. With increasing α2k, a

separatrix cycle formed around the origin will gener-
ate a stable limit cycle, Γ1. Fix α2k under the value α∗2k
and input the parameter α2k−4 > 0 into (2.15) getting
system (2.14).
Since, by our assumption, (2.14) has three limit cy-

cles for α2k−4 < α∗2k−4, there exists some value of the

parameter α23
2k−4 (0 < α23

2k−4 < α∗2k−4) for which a
semi-stable limit cycle, Γ23, appears in this system and
then splits into an unstable cycle, Γ2, and a stable cy-
cle, Γ3, with further increasing α2k−4. The formed do-
main D3 bounded by the limit cycles Γ2, Γ3 and also
the domain D1 bounded on the inside by the limit cy-
cle Γ1 will enlarge and the spirals filling these domains
will untwist excluding a possibility of the appearance
of a semi-stable limit cycle there [Gaiko, 2008b, 2009b,
2011a, 2012].
All other combinations of the parameters α2k, α2k−2,
α2k−4, and α2k−6 are considered in a similar way. It
follows that system (2.14) can have at most 3 + l limit
cycles.
If we continue the procedure of successive inputting

the even parameters, α2k, . . . , α2, α0, into system
(2.7), it is possible first to obtain k limit cycles sur-
rounding the origin (α2k � −α2k−2 � α2k−4 �
−α2k−6 � α2k−8 � . . .) and then to conclude that
the canonical system (2.2) (i. e., the Liénard polyno-
mial system (1.3) as well) can have at most k + l limit
cycles, k surrounding the origin and l surrounding one
by one the antisaddles (foci or nodes) of (2.2) (and (1.3)
as well). The theorem is proved. �
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