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Abstract
Forest plant identification and classification play a

pivotal role in various domains, encompassing biodi-
versity conservation, agricultural advancement, and be-
yond. Conventional plant identification methods of-
ten rely on expert botanists or manual identification ap-
proaches, which can be time-consuming and subjective.
Deep learning models have emerged as a promising ap-
proach to automatically classify plants, offering high ac-
curacy and efficiency. However, these models often rely
on convolutional neural networks (CNNs) and their vari-
ants to extract features, which may fail to capture the
complex relationships among plant characteristics. This
paper proposes a novel feature extraction method us-
ing semi-supervised learning techniques combined with
Masked Autoencoder architecture to enhance the feature
extraction of plant data, applicable to problems with lim-
ited datasets. The proposed model, named MAE SGD,
achieves an accuracy of nearly 94% on the QuangNam-
ForestPlant - a dataset collected by our research team
in Quang Nam province, Central Vietnam, comprising
24,314 images of 710 different forest plant species. Fu-
ture research directions will focus on expanding the for-
est plant dataset and improving the recognition model to
increase the model’s accuracy and overall performance
in identifying forest vegetation.
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1 Introduction
Identification and classification of plants play an im-

mensely crucial role in various fields, including biodiver-
sity conservation, agricultural development, and ecolog-
ical research. However, while the importance of plants in
general has been widely recognized, the significance and
clear challenges surrounding forest plants are often over-
looked. Unlike easily encountered plant species, forest
plants often inhabit remote, inaccessible areas, harbor-
ing many mysteries and complexities. This inherent dif-
ficulty in accessibility creates barriers to comprehensive
data collection and imaging, leading to their relative ne-
glect in scientific research. Accurately determining plant
species is vital for understanding the diversity, distribu-
tion, and ecological interactions of plants, thereby pro-
moting effective management and conservation strate-
gies. Traditional plant recognition methods, which rely
on botanical experts or utilize manually crafted identi-
fication features, are often time-consuming, subjective,
and labor-intensive, hindering efforts in monitoring and
conserving vegetation over large areas. The emergence
of deep learning has revolutionized the field of plant
classification, offering a promising approach to auto-
mate plant identification. Convolutional Neural Network
(CNN) models, especially their deeper variants such as
VGG-19, ResNet 152, have demonstrated outstanding
accuracy in various image classification tasks, includ-
ing plant recognition. However, CNNs often encounter
challenges in capturing the complex and diverse features
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of plant images, especially when dealing with multi-
ple species exhibiting complex morphological variations
due to environmental, temporal factors, or limitations in
the quantity of region-specific characteristic plant data.
To address these challenges, we propose a novel veg-
etation feature extraction method using self-supervised
learning techniques on the Masked Autoencoder archi-
tecture with a core model being the Vision Transformer
(ViT). Self-supervised learning enables models to learn
features from unlabeled data effectively, thereby reduc-
ing the need for large amounts of manually labeled train-
ing data. Furthermore, ViT is a recent advancement
in deep learning architecture that achieves superior per-
formance in capturing contextual features of plant im-
ages, overcoming the limitations of CNNs. This pa-
per presents related research in section 2, followed by
the proposed models in section 3. Experiments with a
dataset collected by the authors in the Central Highlands
region of Vietnam evaluate the accuracy of the proposed
models and compare them with other models detailed in
section 4. In section 5, an application called QuangNam
Plant Id has been developed to help forest plant lovers
and related individuals look up information and identify
forest plants accurately. Finally, conclusions and future
development directions of the research are presented in
section 6.

2 Related work
2.1 Convolutional Neural Networks (CNNs) for

Plant Classification
Previously, automatic plant identification was often ad-

dressed by requiring photographs of specific plant or-
gans, such as leaves [[Kumar et al., 2012], [Fiel et al.,
2011], [Sulc et al., 2014]], flowers [[Mattos et al., 2014],
[Nilsback, 2009], [Angelova et al., 2013]] or tree bark
[[Hieu et al., 2020], [Hieu et al., 2020], [Chen et al.,
2021]]. Moreover, some classification systems imposed
additional constraints on the input images, such as a
white background behind the leaf images. The advent
of Convolutional Neural Networks (CNNs) has been
successful in several computer vision tasks, particularly
those related to recognizing and detecting complex ob-
jects. The ability to extract hierarchical features from
images makes them highly suitable for capturing pat-
terns and complex structures of plant leaves as well as
other morphological characteristics. CNN models tested
on Plant CLEF 2015 [Goëau et al., 2015] have signifi-
cantly outperformed the combination of previous mod-
els.

Not stopping there, scientists have further developed
deeper CNN models with the concept of ”residual
blocks” to address common issues encountered with
traditional CNN models such as vanishing gradients
[Hochreiter, 1998] when backpropagating a loss function
through a specific model. A prime example is the ResNet
model, introduced to the public in 2015 in the publica-
tion by Kaiming He and colleagues [He et al., 2016],

which secured the first place position in the ILSVRC
2015 competition [Russakovsky et al., 2015] with a top-
5 error rate of only 3.57%. Since its initial introduc-
tion in 2015, a plethora of variations of this architecture
have emerged, such as ResNet 50, ResNet 101, ResNet
152 - with a depth of up to 152 layers, over 8 times
deeper than VGG yet still maintaining lower complexity.
ResNet quickly became the most popular architecture
in computer vision, especially in object classification
tasks such as identifying plants. For instance, Bodhwa-
nia and colleagues [Bodhwania et al., 2019] employed a
deep learning model based on ResNet-50 to classify 185
plant species collected at Columbia University, Univer-
sity of Maryland, and the Smithsonian Institution with
an accuracy of 93.09%. Similarly, Zhou and colleagues
[Zhou et al., 2017] employed a deep residual network
model with 152 layers pre-trained on ImageNet. They
replaced the original fully connected layers with two
randomly initialized fully connected layers and achieved
third place in the PlantClef2016 [Goëau et al., 2016] veg-
etation classification competition. Despite its success,
CNN and its variants still encounter certain limitations in
plant classification. Firstly, their ability to grasp contex-
tual information may be restricted, which could hinder
their performance in identifying plant species with un-
usual characteristics or complex morphological changes.
Moreover, CNNs often require a large amount of labeled
training data, which can be difficult to obtain for cer-
tain species or specific regions of vegetation. Finally,
CNNs acknowledge positional biases, such as translation
invariance [Kornblith et al., 2019], where the models do
not produce different results if the input is shifted, for ex-
ample, by slightly moving the camera to the left or right.
Due to positional biases, the capability of CNN-based
models in predicting species of plants within the same
family or species (with very similar features) is limited.
In this context, the Vision Transformer (ViT) model de-
veloped by Google research groups has shown remark-
able results in the field of computer vision in general and
plant classification in particular.

2.2 Vision Transformer
The Vision Transformer (ViT) model has been

experimented and evaluated by Google research
teams[Dosovitskiy et al., 2020], demonstrating up to a
four-fold improvement in computational efficiency and
image classification accuracy compared to CNN archi-
tectures. What distinguishes this model is its capability
to utilize self-attention layers to aggregate information
from the entire image (Refer to Figure 1). Additionally,
the model can learn the relative positions of image
patches based on training data, thereby efficiently
reconstructing the image structure. The operation of
the Vision Transformer model involves partitioning
the image into fixed-size patches and then flattening
them to generate lower-dimensional embedding features
from the flattened image arrays. In addition to patch
partitioning, the model also sequences the arrays to
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Figure 1. Illustration of the attention mechanism on images of the
ViT model[Chen et al., 2021]

Figure 2. Illustration of the fundamental structure of the Vision
Transformer model[Dosovitskiy et al., 2020]

ensure the model retains the positional information of
the patches in the original image (Refer to Figure 2).
These embedding features are used as inputs for the
transformer encoder network. This encoding scheme
consists of three main components. The first layer is
Multi-Head Self-Attention(MSP) [Huy et al., 2023],
which linearly connects all the outputs of the attention
mechanism to generate outputs of the same size. Next
is the Multi-Layer Perceptrons (MLP) layer, comprising
two layers with Gaussian Error Linear Unit functions
[Goëau et al., 2022]. The final layer is the Feedforward
transition layer added before each block, as it does not
have any local dependencies between images in the
training process. This feature helps improve training
time and overall performance. The best-performing
Vision Transformers model achieved an accuracy of
88.55% on the ImageNet dataset.

2.3 Self-supervised learning for plant classification
problem

Identifying different species is one of the prerequisites
for maintaining biological diversity; however, the pro-
cess of collecting and labeling images of plants requires
substantial resources, involving field research, classifi-
cation expertise, and meticulous data annotation. These
requirements demand significant time, expertise, and fi-
nancial investment [[Goëau et al., 2022], [Joly et al.,
2022]]. Simultaneously, a vast amount of unlabeled and

unstructured botanical data containing valuable infor-
mation remains untapped. Self-supervised learning has
emerged as a promising approach to overcome the limi-
tations of supervised learning in plant classification, es-
pecially the scarcity of labeled training data. By leverag-
ing unlabeled plant images, self-supervised learning en-
ables models to understand meaningful features without
the need for extensive manual labeling. This approach
offers several advantages for plant classification, such
as significantly reducing the time and effort required for
data preparation by eliminating the need for manual la-
beling of large datasets. Furthermore, self-supervised
learning allows models to learn prominent and more gen-
eralized feature representations of the botanical world,
which can enhance the model’s ability to identify plants
across different environments and conditions. This is
particularly useful when dealing with plant data from
specific regions, as models can adapt to local plant
species and morphological variations.

The masked language model and its autoregressive
counterparts, for instance, BERT [Devlin et al., 2018]
and Large Language Models [Minaee et al., 2024], are
highly successful for pre-training in Natural Language
Processing. These methods retain a portion of the input
sequence and train models to predict missing content.
The field of computer vision inherits that idea; one of
the self-supervised learning tasks receiving community
attention is masked image modeling (depicted in Fig-
ure 3). The basic idea of masked image modeling is
to conceal a portion of image data and task the model
with learning to predict the masked portion using infor-
mation from the unmasked portion. This method is com-
monly used to learn a general representation of image
data. Kaming He et al.’s research introduced a promis-
ing model architecture called the Masked Autoencoder,
with the vanilla ViT-Huge model achieving the highest
accuracy (87.8%) among methods using only ImageNet-
1K data. Masked image modeling finds applications in
various domains, including image inpainting, generating
high-quality images from low-quality ones, and learning
automatic representations of image data for tasks such as
image classification, object detection, or entity localiza-
tion within images.

Figure 3. Illustration of the masked image modeling problem

Kaiming He - the progenitor of the residual block-
based neural network model ResNet and his colleagues
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at the Facebook AI Research group, on the premise of the
self-supervised task concept of masked image modeling,
have proposed an MAE (Masked Autoencoder) masking
encoder [He et al., 2022]. The MAE approach is straight-
forward, involving the masking of random patches of the
input image and then reconstructing the missing pixels.
The authors developed an asymmetric encoder-decoder
architecture: an encoder that transforms observed sig-
nals into a latent representation and a decoder tasked
with reconstructing the original signal from this latent
representation. As a result, the model achieved the high-
est accuracy (87.8%) compared to other traditional su-
pervised learning methods on ImageNet-1K data. The
transfer performance in target tasks surpassed that of su-
pervised training methods, demonstrating promising ex-
pansion potential.

In this study, we identify a key objective of developing
a pre-task auxiliary task by incorporating self-supervised
learning methods into the traditional VIT model. We be-
lieve this model can learn the underlying features of the
general botanical world by training on a large dataset,
thereby significantly improving the performance of final
plant classification tasks.

3 Materials and Methods
3.1 Feature Extraction using Masked Autoencoder-

Based Self-Supervised Learning
Our model is a masked image modeling architecture,

designed to predict occluded patches in the encoded
representation space. We train a Masked Autoencoder
model on a large dataset of plant images (without using
their labels) to learn a vast array of plant features.

Figure 4. The architecture of masked image modeling in plant clas-
sification

More specifically, with the VIT-based core model, we
partition images into non-overlapping patches. Then,
we randomly sample and mask subsets of these patches
(Figure 4). Similar to standard autoencoder architec-
tures, our architecture comprises two main components:

(1) Encoder: This component maps the observed
signals into latent representations. In our case, we

employ the Vision Transformer (ViT) architecture
[Dosovitskiy et al., 2020]. However, unlike tradi-
tional autoencoders, our encoder operates only on
unobscured signal patches, significantly reducing
computational costs.
(2) Decoder: This component utilizes latent repre-
sentations and mask tokens (vectors learned to rep-
resent missing patch positions) to reconstruct the
original signal. We employ a lightweight decoder,
distinct from the computationally complex encoder,
to efficiently handle the entire token stream.

Figure 5. The architecture of MAE concealing vegetation imagery
through patch arrays

Our Mean Absolute Error (MAE) reconstructs the in-
put by predicting pixel values for each occluded patch.
We employ Mean Squared Error (MSE) between the re-
constructed image and the original one as the loss func-
tion, computed solely over the occluded arrays.

L =
1

M

M∑
i=1

∥xi − x̂i∥2

In which: M is the number of obscured patches in the
image, xi is the original pixel value of the ith obscured
patch, x̂i is the predicted pixel value by the decoding
algorithm for the ith obscured patch.

3.2 Plant Classification
After the pretext task, we utilize only the encoder part

of the MAE model with weights updated for our final
task, which is to extract features from the plant clas-
sification image dataset. We embed the entire image
set of our QuangNamPlant dataset, yielding a 1024-
dimensional feature vector for each image, summarizing
the learned information from the dataset. These compact
feature vectors represent various plant species and serve
as inputs for subsequent classification tasks. After ex-
tracting features of the plant dataset, we use three algo-
rithms for the final classification stage: the Multi-SVM
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Figure 7. Percentage of images collected from 5 different sources

Figure 6. The encoding scheme of the model retained the post-pretext
task for the primary task of plant classification.

algorithm [Chamasemani et al., 2011], the multi-layer
perceptron (MLP) neural network, and the SGDClassi-
fier - a linear classifier optimized for learning through
small batches, is highly effective for large-scale prob-
lems due to its ability to learn incrementally.

4 Experiments and Results
As outlined in section 3, our experiment consists of

two main phases: self-supervised training for MAE
models to extract feature vectors, followed by employ-
ing models for plant classification tasks.

4.1 Data collection
We utilized the training and testing datasets from the

PlantClef 2022 competition for the self-supervised learn-
ing task for the MAE model. This dataset encompasses
80,000 plant species, a total of over 2.9 million im-
ages collected and labeled by reliable experts. Due to
hardware constraints, only about one-third of the data
above (approximately 1 million plant images) was uti-
lized. Each class comprises an average of 33 images,
and to alleviate the imbalance issue, no class contains
more than 40 images (Table 1).

Table 1. Statistics of the PlantClef 2022 dataset for MAE model
training

Number of Classes Total amount Average Max

30.000 1,000,048 33,3 40

For the main task of plant classification, we utilized
a self-collected dataset from Quang Nam region, Viet-
nam, comprising 24,314 images representing 710 dis-
tinct plant species manually gathered from the area. The
manually collected data was insufficient for us to con-
duct model training. Hence, we supplemented it by man-
ually collecting data for each plant species from abun-
dant online resources. The plant image dataset was aug-
mented through collection from various sources such
as Google Images, PlantClef 2022, PlantNet, and the
Danang Plant Project [Hien et al., 2020]. Figure 7 illus-
trates the proportion of images gathered from different
datasets within our dataset. After collecting data from
manual and online sources, images of plants and infor-
mation about individuals will be aggregated and catego-
rized into a database. The collected data consists of raw
data stored in Excel files, folders containing detailed im-
ages, and information for each individual (see Table 1,
Figures 8, 9).

Figure 8. Collecting detailed data information about individual spec-
imens of plant species

4.2 Data preprocessing
After obtaining raw data, we only applied preprocess-

ing to our self-collected dataset. The preprocessing steps
include:

- Cropping the botanical images, focusing on the cen-
tral portion of the image to extract characteristics
more effectively;

- Adjusting the image to a fixed size (224, 224).
The selection of a fixed image size is based on pre-
vious studies on plant classification [Goëau et al.,
2015];
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Figure 9. Example of gathering detailed data on the plant species
”Abutilon indicum (L.) Sweet”

Figure 10. CSV file storing the names and quantities of plant species

- Enriching the dataset: Generate additional plant im-
ages by rotating and flipping images horizontally
and vertically;

- Data normalization is performed to ensure that they
fall within a specific range of values (0, 1);

- Label encoding: converting labels of plant species
into numerical representations. For instance, the la-
bel ”Abelmoschatus moschatus Medicus” could be
encoded as ”1”, ”Abutilon indicum (L.) Sweet” as

”2”.

We also removed some plant classes with too little data,
keeping those with eight or more images. The prepro-
cessed dataset had an average of around 33 images per
class and approximately 710 species with eight or more
images (refer to Figure 10 and Table 2).

Figure 11. Distribution of the total number of images per species af-
ter preprocessing

Table 2. Statistical summary of training data

Total of spices Total amount Average Max Min

710 24314 33 233 8

4.3 Training and testing data
The vegetation data of Quang Nam is allocated for

plant classification tasks with a 60 − 20 − 20% split,
where 60% is for the training set, 20% is for the vali-
dation set and 20% is for the test set. All three sets for
training, validation and testing sets have the same distri-
bution in terms of species quantity (Figure 12, 13 ). Im-
age data is stored in directories named after the species.
The division of training and validation data is recorded
in a CSV file. Species names are encoded into integers
for ease of training and will be reverse-inferred back to
species names after prediction.

Figure 12. Data distribution of the training set



38 CYBERNETICS AND PHYSICS, VOL. 13, NO. 1, 2024

Figure 13. Data distribution of the testing set

4.4 Fine-tuning the model
Pretext task - Self-supervised MAE: We employ a

pre-trained ViT-large MAE model on the ImageNet 1k
dataset. Random cropping and random horizontal flip-
ping techniques are utilized for data augmentation. The
masking rate is set to 75%, following the study by Kaim-
ing He et [He et al., 2022]. High masking rates prevent
simple extrapolation from neighboring patches, enhanc-
ing the learning process. The model is trained with a
batch size 512 for 100 epochs, with a learning rate of
0.005.

Plant classification task: We fine-tuned the last layer
of the MAE encoding with a classification layer of 710
plant species. Our models were all trained on a machine
with a CPU—Intel Xeon Processor and GPU—Tesla
K80 configuration. The initial learning rate was set to
0.001 in the experiments and adjusted and monitored
during training to reach optimal values. When per-
formed with 100 epochs, the early-stopping mechanism
was also utilized to halt the training process when the
model’s accuracy measured on the validation set did not
improve for three consecutive epochs. The loss function
employed for supervised fine-tuning was a standard cat-
egorical cross-entropy.

4.5 Evaluating metrics
For the plant classification task, we compared our

model with previous plant recognition models using F1
score, Precision, top @1 accuracy (accurate prediction of
plant species), and top @5 accuracy (providing five pre-
dictions with at least one accurately predicting the plant
species).

4.6 Evaluation of results
We compared our three models with popular mod-

els such as ResNet and ConvNeXt, as well as a model
of our previous research called PlantKViT [Hieu et al.,
2023]. Table 3 demonstrates that our proposed model
architecture significantly outperforms Resnet and Con-
vNeXt models in plant classification when using the
same dataset. Specifically, the lowest F1 score of our
proposed model is significantly higher at 0.81 compared
to 0.77 and 0.56 of ConvNeXt and Resnet models, re-
spectively. Similar results are also achieved from our

proposed model with accuracy (Top @1 and Top @5 ac-
curacy) being better by 3 to 5%. Moreover, the SGD
classifier model shows the highest efficiency with a top
@1 accuracy of 87% and top @5 accuracy of approxi-
mately 94%, surpassing the application of classifiers of
the same level. The results also indicate that our mod-
els outperform the previously studied KNN-based model
(by approximately 3% in metrics).

The MAE SGD model loses its advantage only in the
prediction index when its index is slightly lower by about
3% compared to the MAE MLP model. The explana-
tion is that the dataset has underlying non-linear struc-
tures, and MAE MLP with multiple hidden layers al-
lows the model to learn complex, non-linear relation-
ships between the features and the plant classes. Mean-
while, MAE SGD is a linear classifier that might strug-
gle to capture the intricate relationships between fea-
tures extracted from plant images and their correspond-
ing classes.

Table 3. Comparison of the accuracy and speed of plant classification
models

Model F1
score

Precision Top
@1

Top
@5

Inference
time(s)

Resnet
152

0.56 0.56 59.02 76.11 0.567

ConvNeXt 0.77 0.79 77.12 89.01 0.0209

PlantKViT 0.81 0.83 81.73 92.2 0.0881

MAE SVM 0.82 0.84 86.11 92.45 0.134

MAE MLP 0.82 0.85 86.76 93.74 0.129

MAE SGD 0.86 0.82 0.89 93.89 0.131

4.7 Data Imbalance in the Plant Classification
Problem

Data imbalance is a prevalent issue in plant classifica-
tion problems, where the number of samples for different
plant species varies significantly. In our project, there is
a small number of species (majority classes) are well-
represented with numerous samples, each with more
than 200 images, whereas a large number of species (mi-
nority classes) have significantly fewer images (Figure
11). This imbalance poses a significant challenge for
our models, which tend to be biased towards the ma-
jority classes, leading to poor performance in the mi-
nority classes. To overcome this address, in evaluating
our plant classification models, we used the F1 score
and Precision metrics alongside the traditional Accu-
racy metric to ensure a fair and comprehensive assess-
ment. While Accuracy alone can be misleading, espe-
cially in the context of imbalanced datasets, F1 score
and Precision provide a more nuanced evaluation. This
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Figure 14. The image of the ”Abutilon indicum (L.) Sweet” species
taken from the internet and the prediction generated by the QuangNam
Plant Id application

is particularly evident in the performance of the Con-
vNeXt model, which achieved a high Accuracy of 89%.
However, this model’s effectiveness is questionable as its
F1 score and Precision were relatively low, at 0.77 and
0.79, respectively. These metrics indicate that the Con-
vNeXt model struggles with correctly identifying minor-
ity classes despite its overall high Accuracy. In contrast,
our final model, MAE SGD, demonstrated robust perfor-
mance across all three metrics, achieving an Accuracy
of 94%, an F1 score of 0.86, and a Precision of 0.82.
This balanced performance underscores the importance
of using the F1 score and Precision to evaluate models
on imbalanced datasets, ensuring that the model not only

performs well in majority classes but also maintains high
performance in minority classes, leading to a more reli-
able and fair assessment.

We also tried some loss function tuning experiments
to address the data imbalance problem. Specifically,
we did explore incorporating a weighted loss function
[Fernando et al., 2022]. However, our experimentation
revealed that this adjustment provides a negligible im-
provement of about 0.5% to 1% in the accuracy of the
models.

5 Application
With the impressive results presented above, we em-

ployed the MAE SGD model in the Quang Nam Plant
ID application, an application designed for classifying
plant species in Quang Nam province, Vietnam. It en-
compasses various functions such as plant image lookup,
habitat distribution lookup, and marking plant locations
on maps. Currently, the application is available on the
Google Play and App Store [Ha, 2023]. Our plant classi-
fication model is utilized in the ”plant image recognition
via images” feature.

The application helps users identify plant images by
requiring them to provide input images of plants. There
are two ways to do this: Users can either directly cap-
ture images of the plant species they want to identify or
upload their images. Once the image is uploaded, the
MAE SGD model is used to classify the plant and pro-
vide the confidence level of the prediction.

In Figure 14, with plant species that have abundant and
well-trained data, the model provides predictions with
100% confidence for a single output. However, when
dealing with plant species with highly similar leaf details
or other features, the model may still exhibit errors (Fig-
ure 15). Nevertheless, the correct results remain within
the model’s output prediction list. These errors present
challenges but also opportunities for me to develop mod-
els with even higher accuracy in the future. To effec-
tively utilize the Quang Nam Plant ID application, users
should take note of the following guidelines:

- Focused imaging: Ensure that the image of the plant
species is centrally positioned within the frame of
the picture you intend to classify. The plant species
should be of sufficient size, and their main portion
should be within the frame, which aids in accu-
rately identifying the plant species by the recogni-
tion model.

- Limit capturing multiple types of plants in the
same photo: In a photograph, users should avoid
capturing multiple different plant species, which
helps avoid confusing classification models between
species and ensures accurate results.

- Removing noise factors: When taking photos, pho-
tographers attempt to eliminate noise factors such
as background clutter, strong lighting, or unrelated
objects from the frame to improve the accuracy of
plant recognition.
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Figure 15. The image of the ”Adenanthera microsperma Teysm. &
Binn” species taken from the internet and the prediction generated by
the Quang Nam Plant Id application

6 Conclusion
Our MAE architecture, trained via self-supervision on

a large dataset and then utilized in the primary classifica-
tion task, demonstrates superior effectiveness over pop-
ular deep learning models such as ResNet, ConvNext,
or our previous study. This research represents a poten-
tial development direction for achieving highly accurate
plant identification on a dataset of small or medium size.
Moreover, we have manually collected a unique dataset
on forest vegetation in Quang Nam province, Vietnam.
Unlike the typical plant species gathered in the PlantClef
dataset, species in our dataset are often found in hard-to-
reach locations and showcase the unique biodiversity of
the region.

Plant classification using deep learning models is a
promising and innovative approach to automating the
identification and classification of different plant species.
However, this method still faces significant challenges,
such as the influence of other factors in the images, nat-
ural variations, and the diversity of plants in terms of
shape and color. These complexities pose a significant
challenge in developing increasingly robust deep learn-
ing models for accurately classifying these species. In
the future, we plan to develop plant classification models
in several key directions. The first is to enhance and im-
prove the quality of the dataset. The plant retrieval and
identification model needs a dataset with a larger num-
ber of classes, more balanced sample sizes to accurately
assess the model’s capabilities. Additionally, integrating
data sources in various forms, such as leaf structures and
spectral information, may allow the model to character-
ize plant features more comprehensively. Furthermore,
the model’s scalability across different plant regions is
also a noteworthy consideration.
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