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Abstract 
A flexible rod with constant cross section which 

buckles under gravity in static state is considered. 
Nonlinear lateral parametric oscillations of this rod 
when its base vibrates vertically and periodically are 
described. Possibility and conditions of stabilization 
of rod’s axis rectilinear form are determined.   Decay 
of lateral oscillations of the rod by freely sliding rigid 
body (disc) are investigated. It is shown that for 
certain parameters of the system under consideration 
the disc can have stable position on the rod that 
minimizes amplitudes of its lateral oscillations. 
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1 Introduction 
Dynamics of different mechanical structures 

(antennas, pylons, columns, blades, cable systems, 
hoses) is described as an elastic rod with the 
rectilinear axis mounted on a vibrating base. 
Lateral parametric oscillations occur if the direction 

of the base vibration coincides with the vertical 
rectilinear axis of the rod. 
The main subject of this paper represents some 

means of amplitude oscillation decay caused by 
additional sliding mass.  
Equations of parametric oscillations of the system 

under consideration depend on applicable 
assumptions: type of possible nonlinearities, 
displacement values, flexural stiffness of the rod, 
types of friction and so on.   
It is assumed, the rod has constant continuous circle 

cross section along length, the axis of the rod is 
inextensible but rectilinear and vertical in an 
unstrained state, material of the rod is linear elastic, 
and its internal friction is described by Voigt model. 
Whereas amplitudes of lateral oscillations of this rod 
can be extremely significant under real condition, we 

take into account finite rotations of the rod’s axis. 
That results to geometrical nonlinearity. 

U= b cos ω t 

v  

Fig. 1. Scheme of the flexible rod (a) and the second  
form of its vibration under parametric excitation (b). 
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2 Supercritical rod 
First of all we consider the case of the flexible rod 

for which 27.839m g L EI L>  ( m  - linear density,  - 
length of the rod,  - bending stiffness of the cross 
section, 

L
E I

g -   acceleration of gravity); this rod we call    
“supercritical”, otherwise - “subcritical”. The 
supercritical rod buckles and its axis becomes bent in 
the absence of the base vibration, only under gravity 
(Fig. 1, а). 
Natural oscillations of the rod distinguish themselves 

by large amplitudes, and they can be both near to the 
static state of the deflected axis and near to the 
vertical axis. If the rod base is subjected to the 
periodic vibration, whose direction coincides with 
unstrained axis of the rod, parametric oscillations 
occur. At that, the rod vibrates near vertical axis as 



shown at Fig. 1, b [Hamdan, Al-Qaisia and Al-
Bedoor, 2001; Blekhman, 1994]. 
Differential equation, which describes oscillations of 

the flexible rod in a dimensionless form, is given by 
(with neglect of fourth infinitesimal order sums) 
[Gouskov and Panovko, 2006]:
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(1)

where ( ) 2 cos 2 sinpΣ τ =γ−βΩ Ωτ− ψβΩ Ωτ . Points 
denote dimensionless time differentiation , strokes – 
dimensionless natural coordinate differentiation . 

τ
ζ

The next dimensionless parameters and complexes 
are used here:  

2

t EI
mL

τ= - dimensionless time;  

S
L

ζ= - dimensionless natural coordinate;  

h
νξ=  - dimensionless lateral displacement; 

2 ,mL
E I

Ω=ω  ,b
L

β=
2
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( )2 2 1,d L m E Iψ= <  22
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where  - time, - natural coordinate of rod section 
taken from base (Fig. 1, b), 

t S
ω - circular frequency of 

excitation, - amplitude of excitation , - lateral 
displacement of the rod’s axis, - diameter of the 
cross-section, - coefficient of external linear 
friction, proportionate to absolute velocity, 

b v
h

d
Id - 

coefficient of internal friction. 
Eq. (1) differs from one obtained in [Hamdan, Al-

Qaisia and Al-Bedoor, 2001] that it has sum with 
damping coefficient  and sum ψ

( ) ( ) 31pΣ
′⎡ ′τ −ζ ξ⎢⎣ 2⎤⎥⎦ , which reflects the nonlinear 

parametric excitation. Taking the last item into 
account has influence on the behavior of the rod 
vibration. Moreover, difference in sums, which have 
effect of rod axial inertia on lateral oscillation, is 
presented in Eq. 1. 
 Solution of Eq. (1) was derived numerically on the 

base of Galerkin’s technique in [Gouskov and 
Panovko, 2006].  
According to the linear theory of parametric 

stabilization, the axis of the supercritical rod tends to 
take up the vertical position if excitation parameters 
satisfy to the next inequality (the critical value of 
excitation parameters follows from one-rate 

approximation when equality is complied) [Gouskov, 
Myalo, Panovko and Tretyakova, 2007]: 

( )
3

2
CritJ

βΩ> γ−γ  (2)

Modeling shows that stabilization does not occur, 
and rod vibrates close to the static deflected 
equilibrium position, if an excitation level smaller 
than critical value and in the presence of friction. If 
the excitation level is high enough (over critical), the 
rod becomes stabilize near to the vertical position. 
Numeric calculation results of oscillation process of 

the supercritical rod ( ) 
for different friction types are shown at Fig. 2. In the 
absence of friction (curve 1), lateral oscillations of the 
rod occur near to the vertical axis. Taking friction into 
account leads to the decay of the lateral oscillation 
amplitude almost to the null, and internal friction 
exerts greater influence on stabilization than external 
one (curves 2 and 4). 

10; 0,02; 8, 2 CritΩ= ε= γ= >γ
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Fig. 2. Oscillation process of the supercritical rod for 
different types of friction:  
1 - friction is absent;  
2 - external friction( )0,05; 0 ;Iψ= ψ =  

3 - external and internal friction  ( )0,025; 0,025Iψ= ψ = ; 

4 - internal friction   ( )0, 0,05Iψ= ψ = . 

 Thus, stabilization of the vertical position for the 
supercritical rod is reached due to vertical vibrations 
of the base, and the amplitude of the lateral oscillation 
can be decayed significantly by suitable selection of 
the excitation and damping parameters (for example, 
additional damping coating). Danger to get the main 
parametric resonance zone is remains for subcritical 
rod, and this oscillation can be stabilized by additional 
devices. 
 

3 Subcritical rod 
For the parametric oscillation decay the dynamical 

damper can be used. It represents a rigid body freely 
sliding with friction along rod.  
The disc with hole stringed on the rod without 

tightness can perform function of this body (Fig. 3). 
Also, in case of hollow rod, it can be an entire disc or 
a ball put into the rod without tightness. It is known, 
that under certain conditions the disc moves up along 
the rod [Chelomei, 1983], and if the rod have flexural 



oscillations the disc tends to the antinode [Blekhman, 
1994; Thomsen and Tcherniak, 2001].  Carried out 
experiments show, that mass of the disc and friction 
conditions influence on lateral oscillation amplitude. 
Let’s consider consistent equations of the rod 

oscillations and disc movement along the rod. 
Equation for the rod now have additional sum and it is 
given by: 
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(3)

where h
L

ε= , dimensionless forces acting on the rod 

from the disc: 
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 is nonlinear viscous friction acting on 

the disc). 
 Dimensionless equations, which describe disc 

behavior, are given by: 
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Fig. 3. Scheme of rod parametric  
oscillations with the disc 
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ψ =  - dimensionless external friction 

acting on the disc with mass M , dimensionless 

parameter mL
M

μ= . 

Thus, we have system of two nonlinear differential 
Eq. (3), (4) of third infinitesimal order with regards to 
lateral displacement of the rod with unknown 
parameters: ( ),ξ τ ζ  - rod lateral displacement, 

 - disc position on the rod. Forces of 

interaction 
( )mζ τ

( ,n mF τ ζ )  and ( ,t mF τ ζ )

)

 are connection 
for Eq. (3) and (4).  
System integration is made numerically with use of 

Galerkin’s technique. Solution for the rod is given by 
single mode approximation: 

( ) ( ) (2 2, qξ τ ζ ≈ τ ϕ ζ , 

,

;

m

m

where ( )2q τ - amplitude function,  - 
coordinate function corresponding to second form  of 
the rod natural oscillations, normalized as  

( )2ϕ ζ

( )
1

2
2

0

1dϕ ζ ζ=∫ . 

Integration of this system has certain difficult 
concerned with it is impossible to resolve system 



relative to higher derivatives and obtain it in Cauchy 
form, in particular due to taking dry friction forces 
into account. Therefore, the method of successive 
approximations is applicable here.  
Graphs of the amplitude function  and disc 

position on the rod 
q

mζ  in time are shown at the Fig. 5 
for dimensionless parameters 0.12,=γ  0.0022,=β  

 43.5,Ω = 0.00084,I =ψ  1,=ε  0,=ψ  0,v =ψ  
 0,c = 0.1,f = 0.012=μ . Initial value of the 

amplitude function for the rod and its derivative 
correspond to onset of periodic solution with the 
period 4π Ω  without disc (Fig. 4), initial disc 

position and velocity , .  ( )0 0.1m =ζ ( )0 0m =ζ
From the graph analysis it is follows that disc on the 

vibrating rod rise up with monotonically varying 
average velocity over a period of time and become 
stabilize on the rod close to antinode while rod 
oscillations are decay approximately in to times    
(Fig. 5). Disc oscillates near dynamical equilibrium 
position with the frequency of excitation, which two 
times more than parametric oscillations of the rod. 
This effect describes the function of the disc as a 
dynamical damper of the rod oscillations.  

 
Fig.4. The amplitude function for the rod q   

without disc in time 

 
Fig.5. The amplitude function for the rod  and  q

disc position mζ  in time 
 

Behavior of the disc on the rod depends on initial 
conditions, excitation and mass of the disc. It is 
possible that disc can fly out of the rod or decline. 
 

8 Conclusion 
Two possible variants of the dynamical damping of 

rod parametric oscillations were represented. System 
of equations, which describes interaction of the rod 
and the disc by means not only inertia forces but dry 
friction, and fact that disc can rise up, take stationary 

position on the rod and decay amplitude of rod 
oscillations were achieved. 
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