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Abstract

In [Irtegov and Burlakova, 2017], the algorithms
for the qualitative analysis of conservative systems
have been presented. These are based on the Routh-
Lyapunov method [Lyapunov, 1954] and some its mod-
ifications [Irtegov and Titorenko, 2009] as well as com-
puter algebra methods [Cox, Little, and O’Shea, 1997].
In the paper proposed, the application of the algorithms
is demonstrated by analysing a conservative system,
the study of which is also of interest. We conduct qual-
itative analysis for the differential equations describ-
ing the rotational motion of a rigid body with a fixed
point in two constant force fields. Similar problems
arise, e.g., in space dynamics [Sarychev and Gutnik,
2015], quantum mechanics [Adler, Marikhin, and Sha-
bat, 2012], [Smirnov, 2008]. In the phase space of the
problem, we isolate the invariant manifolds of maximal
dimension and study the equations of motion on them.
For these equations, solutions (and their families) cor-
responding in the original phase space of the problem
to permanent rotations and pendulum-like oscillations
of the body as well as the invariant manifolds of 2nd-
level, which these solutions belong to, have been found
and their Lyapunov’s stability has been investigated.
The possibility of stabilization for the motions of con-
servative systems, whose stability conditions have the
form of some constraints on the constants of first inte-
grals, was discussed.
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1 Introduction
Let us consider the differential equations

2ṗ = q r + bδ3, γ̇3 = γ1q − γ2p,

2q̇ = x0γ3 − p r, δ̇1 = δ2r − δ3q,

ṙ = −b δ1 − x0γ2, δ̇2 = δ3p− δ1r,

γ̇1 = γ2r − γ3q, δ̇3 = δ1q − δ2p
γ̇2 = γ3p− γ1r,

(1)

describing the rotational motion of a rigid body around
a fixed point in two constant force fields. Here
p, q, r are the projections of the angular velocity vector
onto the coordinate axes rigidly attached to the body;
γi, δi (i = 1, 2, 3) are the components of the direction
vectors of the 1st and 2nd force fields, respectively;
x0, b are the components of the radius vectors of the
1st and 2nd force centers. The distribution of mass
in the body corresponds to the Kowalewski integrable
case [Kowalewski, 1889].
Eqs. (1) admit the following first integrals:

2H = 2(p2 + q2) + r2 + 2(x0γ1 − b δ2) = 2h,
V1 = (p2 − q2 − x0γ1 − b δ2)

2 + (2p q − x0γ2
+ b δ1)

2 = c1, V2 = γ2
1 + γ2

2 + γ2
3 = 1,

V3 = δ21 + δ22 + δ23 = 1,
V4 = γ1δ1 + γ2δ2 + γ3δ3 = c2,

V5 = x2
0(pγ1 + qγ2 +

r
2γ3)

2 + b2(pδ1 + qδ2
+ r

2δ3)
2 − x0b r[(γ2δ3 − γ3δ2)p

+(γ3δ1 − γ1δ3)q +
r
2 (γ1δ2 − γ2δ1)]

+x0b
2γ1(δ

2
1 + δ22 + δ23)− x2

0b δ2(γ
2
1 + γ2

2

+ γ2
3)− bx0(bδ1 − γ2x0)(δ1γ1 + δ2γ2

+δ3γ3) = c3,

(2)

where V5 is the additional first integral obtained
in [Reiman and Semenov-Tyan-Shanskii, 1988],
[Bobenko, Reyman, and Semenov-Tian-Shansky,
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1989]. Thus, the system under consideration is com-
pletely integrable.
When b = 0, Eqs. (1) correspond to the Kowalewski

integrable case of motion of the top in gravitational
force field.
There exists a series of works devoted to the topologi-

cal analysis of system (1) (see, e.g., [Ryabov P.E. et al.,
2012], [Kharlamov and Ryabov, 2017] and the bibliog-
raphy therein). The analysis was made on the basis of
the methods and approaches described in [Bolsinov and
Fomenko, 1999]. In the work presented, we used the
Routh-Lyapunov method and some its modifications in
combination with computer algebra methods to anal-
yse Eqs. (1) that enabled us to obtain new results in the
problem under consideration.
As is well-known, the problem of qualitative analy-

sis of differential equations is to find special solutions
(equilibria, periodic motions) of these equations and to
investigate their stability and bifurcations. In the case
of conservative systems, the variety of the special so-
lutions is expanded through stationary sets. By these
sets, we mean sets of any finite dimension on which the
problem’s first integrals (or their combinations) take
a stationary value. Zero-dimensional sets having this
property are traditionally called stationary solutions.
By analogy, we call positive dimensional sets the sta-
tionary invariant manifolds (IMs) [Irtegov, 1986]. In
the phase space of system (1), such sets were studied
in [Irtegov and Titorenko, 2016]. In order to obtain the
complete phase portrait of this system, it is necessary
to construct phase portraits on its special IMs, i.e. to
find the special solutions of the equations of motion on
the IMs and to analyse their qualitative properties. The
present paper solves this problem.
The paper is organized as follows. In section 2, we

find the special IMs of maximal dimension for system
(1) on the basis of the Routh-Lyapunov method. In ad-
dition to previously known IMs, new IM has been ob-
tained. Section 3 is devoted to finding the special solu-
tions on these IMs. In section 4, the Lyapunov stability
of the found solutions is investigated. In section 5, the
possibility of stabilization for the motions of conserva-
tive systems is discussed. Finally, we give a conclusion
in section 6.

2 On the Special IMs of Equations of Motion
in the Original Phase Space of the Problem

We shall seek the IMs of maximal dimension for Eqs.
(1). Since the problem’s first integrals are IMs of codi-
mension 1, let us begin with IMs of codimension 2.
According to the Routh–Lyapunov method, the sta-

tionary sets of the differential equations under study
can be obtained from the necessary extremum condi-
tions for the elements of the algebra of the problem’s
first integrals. Following this method, we construct
the complete linear combination from the first integrals

(the family of the integrals):

2K = 2λ0H − λ1V1 − λ2V2 − λ3V3 − 2λ4V4

−λ5V5.
(1)

Other combinations of the integrals also are acceptable,
including nonlinear ones. Here λj (j = 0, . . . , 5) are
the parameters of the family of the integrals K.

Then, we write the necessary conditions for the fam-
ily K to have an extremum with respect to the phase
variables:

∂K/∂p = 0, ∂K/∂q = 0, ∂K/∂r = 0,
∂K/∂γi = 0, ∂K/∂δi = 0 (i = 1, 2, 3).

(2)

The solutions of system (2) allow one to define the
IMs (or their families) for differential equations (1)
which correspond to the family of the first integrals K.
So, the problem of finding the IMs of Eqs. (1) by the
Routh-Lyapunov method is reduced to solving the sys-
tem of algebraic equations (2). It is the system of 9
cubic equations with the parameters λj , b, x0. To sim-
plify further computations, it is convenient to use the
variables of the kind [Ryabov P.E. et al., 2012]:

x1 = −(x0γ1 + bδ2)− i(x0γ2 − bδ1),
x2 = −(x0γ1 + bδ2) + i(x0γ2 − bδ1),
y1 = −(x0γ1 − bδ2)− i(x0γ2 + bδ1),
y2 = −(x0γ1 − bδ2) + i(x0γ2 + bδ1),
z1 = −x0γ3 + ib δ3, z2 = −x0γ3 − ib δ3,
w1 = p+ iq, w2 = p− iq, w3 = r,

(3)

where i =
√
−1.

Their use allowed us to avoid cumbersome computa-
tions in the problem under consideration as well as to
represent the obtained results in more compact form
than when the original variables were employed (see
[Irtegov and Titorenko, 2016]).

In variables (3), Eqs. (1) and first integrals (2) can be
written as

2ẇ1 = −i(w1w3 + z1), ẏ1 = i(w1z2 − w3y1),
2ẇ2 = i(w2w3 + z2), ẏ2 = i(w3y2 − w2z1),
2ẇ3 = i(y2 − y1), 2ż1 = i(w2x1 − w1y2),
ẋ1 = i(w1z1 − w3x1), 2ż2 = i(w2y1 − w1x2),
ẋ2 = i(w3x2 − w2z2),

(4)

and
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2H̃ = 2w1w2 + w2
3 − y1 − y2 = h̃,

Ṽ1 = (w2
1 + x1)(w

2
2 + x2) = c̃1,

Ṽ2 = (x1 + y1)(x2 + y2) + (z1 + z2)
2 = 1,

Ṽ3 = (x1 − y1)(x2 − y2)− (z1 − z2)
2 = 1,

Ṽ4 = x1y2 − x2y1 + z21 − z22 = c̃2,

Ṽ5 = x1y1(2w
2
2 + x2) + x2y2(2w

2
1 + x1)

−y1y2(y1 + y2) + 2w1(w2x1x2 + w2y1y2
+2w3x2z1) + 4w2w3x1z2 − 2(y1 + y2)
×z1z2 + 2(x2z

2
1 + x1z

2
2) + w2

3(y1y2
+2z1z2 − x1x2) = c̃3,

(5)

respectively.
The stationary conditions for the integral K in new

variables take the form:

λ0w2 − λ1w1(w
2
2 + x2)− λ5[w2(x1x2 + y1y2)

+2x2(w1y2 + w3z1)] = 0,
λ0w1 − λ1w2(w

2
1 + x1)− λ5[w1(x1x2 + y1y2)

+2x1(w2y1 + w3z2)] = 0,
λ0w3 + λ5[w3(x1x2 − y1y2)− 2w1x2z1

−2z2(w2x1 + w3z1)] = 0,
λ1(w

2
2 + x2) + λ2(x2 + y2)−λ3(y2 − x2)

+2λ4y2 − λ5[w
2
3x2 − 2w2(w1x2 + w2y1)

−x2(y1 + y2)− 2z2(2w2w3 + z2)] = 0,
λ1(w

2
1 + x1) + λ2(x1 + y1)− λ3(y1 − x1)

−2λ4y1 − λ5[w
2
3x1 − 2w1(w2x1 + w1y2)

(6)

−x1(y1 + y2)− 2z1(2w1w3 + z1)] = 0,
λ0 − 2λ4x2 + λ2(x2 + y2)− λ3(x2 − y2)

+λ5[x1(2w
2
2 + x2) + y2 (2(w1w2 − y1)

+w2
3 − y2)− 2z1z2] = 0,

λ0 + 2λ4x1 + λ2(x1 + y1)− λ3(x1 − y1)
+λ5[x2(2w

2
1 + x1) + y1 (2(w1w2 − y2)

+w2
3 − y1) + 2z1z2] = 0,

2λ4z1 + λ2(z1 + z2)−λ3(z1 − z2) + λ5[2w1

×w3x2 + 2x2z1 + (w2
3 − y1 − y2)z2] = 0,

2λ4z2 − λ2(z1 + z2)− λ3(z1 − z2)− λ5[2w2

×w3x1 + 2x1z2 + (w2
3 − y1 − y2)z1] = 0.

We shall seek the IMs of codimension 2 for differ-
ential equations (4) as solutions of system (6). For
this purpose, the Gröbner basis method [Cox, Little,
and O’Shea, 1997] will be applied. Software codes of
this method are included in many widespread computer
algebra systems, e.g. Mathematica [Wolfram, 2003],
Maple [Char, Geddes et al., 1992]. We shall employ
the Mathematica program GroebnerBasis based on the
Buchberger algorithm [Buchberger, 1976]. In order to
compute a Gröbner basis for a polynomial system the
program uses the system and its variables as input data.
A resulting system is equivalent to the initial one, but
has other form.

In our work, to obtain the desired IMs, we construct
a lexicographical Gröbner basis for the polynomials of
system (6) with respect to part of the phase variables
and parameters λi. In this case, a resulting system is
not, generally speaking, equivalent to the initial one. It
has the special structure: one part of its equations de-
fine the sought IM, and the other part enables to obtain
the first integrals for the equations of motion on this
IM.
Let us take, e.g., λ0, λ1, λ2, λ3, λ5, y1, y2 as un-

knowns. Here the number of the phase variables de-
termines the codimension of the desired IM. Next, we
compute a lexicographical basis for system (6) with re-
spect to the above variables. A resulting system can be
split up into two subsystems.
The first subsystem has the form:

λ0 = λ1 = λ5 = 0,
(λ4 − λ3) z1 + (λ3 + λ4) z2 = 0,
(λ4 − λ2) z2 − (λ2 + λ4) z1 = 0,

(7)

x2z1 − y2z2 = 0, x1z2 − y1z1 = 0. (8)

It is easy to verify by IM definition that Eqs. (8) de-
termine the IM of codimension 2 of differential equa-
tions (4): the derivative of expressions (8) calculated
by virtue of Eqs. (4) vanishes on the given expressions.
The motions on IM (8) are described by the equations:

2̇w1 = −i(w1w3 + z1), 2̇w2 = i(w2w3 + z2),

2̇w3 = −i(
x1z2
z1

− x2z1
z2

), (9)

ẋ1 = i(w1z1 − w3x1), ẋ2 = i(w3x2 − w2z2),

2̇z1 = i(w2x1 −
w1x2z1

z2
),

2̇z2 = −i(w1x2 −
w2x1z2

z1
).

They are derived by elimination of the variables y1, y2
from Eqs. (4) with the use of (8).
Each of the latter two Eqs. (7) defines the family of

IMs of codimension 1 for differential equations (9). It
is easy verify by IM definition. Let us resolve these
equations with respect to λ2, λ3:

λ2 = λ4 −
2λ4z1
z1 + z2

, λ3 =
λ4(z1 + z2)

z1 − z2
. (10)

Having computed the derivatives of the right-hand
sides of relations (10) in virtue of Eqs. (9), we find that
they are identically equal to zero. So, one can conclude
that these expressions are the first integrals of differen-
tial equations (9).
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The 2nd subsystem has the analogous structure:

fi(w1, w2, w3, x1, x2, z1, z2, λ0, λ1, λ2, λ3,
λ4, λ5) = 0 (i = 1, . . . , 5)

(11)

w1w2w3y1 + w1x2(w1w3 + z1) + [w2x1

+w3(w1w3 + z1)] z2 = 0,
−w1w2w3y2 − w2

2w3x1 − (w1x2 + w3z2) z1
−w2(w

2
3z1 + x1z2) = 0.

(12)

Eqs. (12) define the IM of codimension 2 for differen-
tial equations (4), and each of the relations fi = 0 (i =
1, . . . , 5) determines the IM of codimension 1 for the
equations of motion on this IM. Besides, they allow
one to obtain the first integrals of the given equations.
In the original variables, Eqs. (8) can be written as:

F + iG = 0, F − iG = 0, where
F = δ3γ2 − δ2γ3, G = δ3γ1 − δ1γ3.

It is easy to verify by IM definition that the equations

F = 0, G = 0 (13)

define the IM of codimension 2 of system (1).
After analogous transformations, Eqs. (12) become

(2pγ1 + 2qγ2 + rγ3)(p r − x0γ3) + 2bp (γ2δ3
−γ3δ2) = 0,

(2pδ1 + 2qδ2 + rδ3)(q r + bδ3) + 2x0q (γ1δ3
−γ3δ1) = 0

(14)

and determine the IM of codimension 2 of differential
equations (1).
Having constructed a lexicographical basis for the

polynomials of system (6) with respect to, e.g., λ0, λ1,
λ2, λ3, λ4, x1, x2, we have found two IMs of codimen-
sion 2 of differential equations (4). One of them coin-
cides with IM (12). The 2nd differs from the above IMs
and is given by the equations

x2 [w3(w
2
1y2 + z21) + w1z1(w

2
3 − y1 + y2)]

−w2z2(w
2
1y2 + z21)− w1z1[w2(w2y1 + w3z2)

+z2(w2w3 + z2)] = 0,
x1 [w3(w

2
2y1 + z22) + w2z2(w

2
3 + y1 − y2)]

−w2z2(w
2
1y2 + z21)− w1z1[w2(w2y1 + w3z2)

+z2(w2w3 + z2)] = 0.

(15)

In the original variables, Eqs. (15) can be written as

b3δ3 [2δ1 (δ2p− δ1q) + δ3(δ2r − 2δ3q)]
+ b2 [δ3 (δ1p+ δ2q) r

2 + (4δ1δ2p q + δ21 (p
2−q2)

−δ22 (p
2 − q2)− 2δ23 (p

2 + q2)) r
−2δ3 (δ1p+ δ2q) (p

2 + q2)]
+x3

0γ3 [2γ2(γ2p− γ1q) + γ3(2γ3p− γ1r)]
+x2

0 [γ3 (γ1p+ γ2q) r
2 + (4γ1γ2p q+γ2

1 (p
2−q2)

−γ2
2 (p

2 − q2)− 2γ2
3 (p

2 + q2)) r
−2γ3 (γ1p+ γ2q) (p

2 + q2)]
−bx0 (2(p

2 + q2) + r2) [p (δ3γ2 − δ2γ3)
−q (δ3γ1q − δ1γ3)]

+ b2x0 [δ3F1 − 2δ1 (γ3 (δ1p+ δ2q)
−δ3 (γ1p− γ3r))]

−bx2
0 [γ3Φ1 − 2δ3 (γ2(γ1p+ γ2q)

−γ3 (γ3q − γ2r))] = 0,

b3F2δ1δ3 − b2F2 (δ2p− δ1q) r
+x3

0Φ2γ2γ3 − x2
0Φ2 (γ2p− γ1q)r

+ bx0 [γ3 (δ1p+ δ2q)− δ3 (γ1p+ γ2q)] r
2

+ b2x0 [δ3 (2δ2 (γ2q + γ3r)− δ3γ2r)
+2δ1(γ3(δ2p− δ1q) + δ3γ1q)]

+ bx2
0 [γ3 (2p (δ1γ1 + δ2γ2)− δ1γ3r)

−2δ3 (γ2 (γ2p− γ1q)− γ1γ3r)] = 0.

(16)

and determine the IM of codimension 2 for the equa-
tions of motion (1). Here F1 = 2p (δ2γ2 + δ3γ3) +
δ3γ1r, Φ1 = 2q (δ1γ1 + δ2γ2) + δ2γ3r F2 = 2(δ1p+
δ2q) + δ3r, Φ2 = 2(γ1p+ γ2q) + γ3r.

For the polynomials of system (6) there were con-
structed lexicographical bases with respect to other
similar combinations of the parameters λi and phase
variables, but they did not give new results.

IMs (14), (16) have been obtained earlier in [Irte-
gov and Titorenko, 2016]. When x0 = ±1, b = ∓1,
Eqs. (14), (16) are equivalent to Eqs. (3.3) and (3.5)
[Ryabov P.E. et al., 2012], respectively. IM (13) is new.

Another IM of codimension 2 in this problem has been
found in [Bogoyavlenskii, 1984]. When the constant c1
of integral V1 (2) is zero, the equations

p2 − q2 − x0γ1 − b δ2 = 0,
2p q − x0γ2 + b δ1 = 0

(17)

define the IM of codimension 2 of system (1).

Qualitative analysis of the equations of motion on IM
(17) was made in [Irtegov and Titorenko, 2015], [Irte-
gov and Burlakova, 2017]. In the present work, the
equations of motion on IMs (13), (14), (16) are stud-
ied.
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3 Finding the Special Solutions of the Equations
of Motion on the IMs

3.1 On IM (13)
The equations of motion on IM (13) can be written as:

2ṗ = q r + bδ3, γ̇1 = γ3

(rδ2
δ3

− q
)
,

2q̇ = x0γ3 − p r, γ̇3 = qγ1 −
p δ2γ3
δ3

,

ṙ = −
(x0δ2γ3

δ3
+

bδ3γ1
γ3

)
, (18)

δ̇2 = δ3

(
p− rγ1

γ3

)
, δ̇3 =

qδ3γ1
γ3

− p δ2,

They have the following first integrals:

2H = 2(p2 + q2) + r2 + 2(x0γ1 − b δ2) = 2h,

V̂1 = (p2 − q2 − x0γ1 − b δ2)
2

+
(
2p q − x0γ3δ2

δ3
+

bγ1δ3
γ3

)2

= ĉ1,

V̂2 = γ2
1 + γ2

3

(δ22
δ23

+ 1
)
= 1,

V̂3 = δ22 + δ23

(γ2
1

γ2
3

+ 1
)
= 1, (19)

V̂4 =
δ3
γ3

(γ2
1 + γ2

3) +
γ3 δ

2
2

δ3
= ĉ2,

V̂5 =
(x2

0γ
2
3 + b2 δ23)

γ2
3δ

2
3

(
2pγ1δ3 + 2qγ3δ2 + rγ3δ3

)2

= ĉ3.

Eqs. (18) and integrals (19) are derived by the elim-
ination of the variables δ1, γ2 from Eqs. (1) and inte-
grals (2), respectively, with the use of (13).

Finding the IMs of 2nd-level

Consider the problem of finding the special IMs for
Eqs. (18). Such IMs we call the IMs of 2nd-level. In
order to obtain them, the technique of section 2 is ap-
plied.
First, we solve the stated problem for differential

equations (9) on IM (8). The first integrals of these
equations are derived by the elimination of the vari-
ables y1, y2 from expressions (5) with the use of (8):

2H̄ = 2w1w2 + w2
3 −

x2z1
z2

− x1z2
z1

= h̄,

Ṽ1 = (w2
1 + x1)(w

2
2 + x2) = c̄1,

V̄2 = (z1 + z2)
2 + (x2 +

x2z1
z2

)(x1 +
x1z2
z1

) = 1,

V̄3 = (x2 −
x2z1
z2

)(x1 −
x1z2
z1

)− (z1 − z2)
2 = 1,

V̄4 =
(z21 − z22)(x1x2 + z1z2)

z1z2
= c̄2, (20)

V̄5 =
(w1x2z1 + w2x1z2 + w3z1z2)

2

z1z2
= c̄3.

We take independent integrals from the above ones
(e.g., H̄, Ṽ1, V̄2, V̄4, V̄5), and construct the linear com-
bination

2K̄ = 2µ0H − µ1Ṽ1 − µ2V̄2 − µ4V̄4 − µ5V̄5 (21)

from them and write the stationary conditions
for the integral K̄ with respect to the variables
w1, w2, w3, x1, x2, z1, z2:

∂K̄/∂w1 = 0, ∂K̄/∂w2 = 0, ∂K̄/∂w3 = 0,
∂K̄/∂xi = 0, ∂K̄/∂zi = 0 (i = 1, 2).

(22)

Here µi (i = 0, . . . , 5) are the parameters of the family
of the integrals K̄.
Then, we compute a lexicographical basis for the

left-handed part of system (22) with respect to
µ0, µ1, µ2, µ4, x1, x2 and, as a result, obtain the IM of
codimension 2 of differential equations (9). Its equa-
tions are given by

w3x2(w1w3 + z1)− w2z2(2w1w3 + z1)− w1z
2
2 = 0,

w2w
2
3x1 − 2w1w2w3z1 − w2z

2
1 + w3x1z2

−w1z1z2 = 0.

In the original variables, these equations take the form

rδ2 [(p
2 + q2)r2 − 2x0p rγ3 + x2

0γ
2
3 + b2δ23

+2bq rδ3]− 2δ3(q r + bδ3)[(p
2 + q2)r

−x0pγ3 + bqδ3] = 0,

2γ3(p r − x0γ3) [(p
2 + q2)r − x0pγ3 + bqδ3]

−rγ1 [(p
2 + q2)r2 − 2x0p rγ3 + x2

0γ
2
3 + b2δ23

+2bq rδ3] = 0

(23)

and define the IM of codimension 2 of differential
equations (18).

Finding the stationary solutions.
Now, we shall seek the stationary solutions of Eqs.

(18). As mentioned before, stationary solutions are
usually found by the Routh–Lyapunov method from
the necessary conditions of stationarity for a family of
problem’s first integrals. In the problem under consid-
eration, this approach leads to solving a system of 7
polynomial equations of 5-8 degrees. To simplify com-
putations, we apply the technique described in [Irtegov
and Titorenko, 2015]. First, we find solutions of differ-
ential equations (18) under zero derivatives, and then,
obtain the families of the integrals which take station-
ary values on these solutions.
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Equate the right-hand sides of differential equations
(18) to zero and add relations V̂2 = 1, V̂3 = 1 (19) to
them:

q r + bδ3 = 0,
γ3
δ3

(
rδ2 − qδ3

)
= 0,

x0γ3 − p r = 0,
1

δ3

(
qγ1δ3 − p γ3δ2

)
= 0,

δ3
γ3

(
pγ3 − rγ1

)
= 0,

1

γ3

(
qδ3γ1 − p γ3δ2

)
= 0,

− 1

γ3 δ3

(
x0 γ

2
3δ2 + b γ1δ

2
3

)
= 0, (24)

1

δ23
[ γ2

3 (δ
2
2 + δ23) + δ23(γ

2
1 − 1)

]
= 0,

1

γ2
3

[ δ23 (γ
2
1 + γ2

3) + γ2
3(δ

2
2 − 1)

]
= 0.

For the subsystem

q r + bδ3 = 0, rδ2 − qδ3 = 0,
x0γ3 − p r = 0, qγ1δ3 − p γ3δ2 = 0,
pγ3 − rγ1 = 0, qδ3γ1 − p γ3δ2 = 0,
x0 γ

2
3δ2 + b γ1δ

2
3 = 0,

γ2
3 (δ

2
2 + δ23) + δ23(γ

2
1 − 1) = 0,

δ23 (γ
2
1 + γ2

3) + γ2
3(δ

2
2 − 1) = 0,

of system (24), construct a lexicographical basis with
respect to part of the phase variables, e.g., q, r, γ1,
γ3, δ2, δ3. A resulting system is split up into several
subsystems. Let us consider two of them.
The 1st subsystem:

bp− x0q = 0, (b2 + x2
0) p

4 + x2
0(p

2r2 − x2
0) = 0,

p r + x0δ3 = 0, x0γ3 − p r = 0,

bp2 + x2
0δ2 = 0, p2 − x0γ1 = 0.

(25)

The 2nd subsystem:

bp+ x0q = 0, (b2 + x2
0) p

4 + x2
0(p

2r2 − x2
0) = 0,

x0δ3 − p r = 0, x0γ3 − p r = 0,

bp2 + x2
0δ2 = 0, p2 − x0γ1 = 0.

(26)

It is easy to verify by IM definition that Eqs. (25), (26)
define two one-dimensional IMs of differential equa-
tions (18). The vector field on each of the IMs is de-
scribed by the equation ṗ = 0 which has the following
family of solutions:

p = p0 = const. (27)

Eqs. (25), (26) together with (27) determine 4 families

of solutions of differential equations (18):

p = p0, q =
bp0
x0

, r = ± α

p0x0
, γ1 =

p20
x0

,

γ3 = ± α

x0
, δ2 = −bp20

x0
, δ3 = ∓ α

x0
; (28)

p = p0, q = −bp0
x0

, r = ± α

p0x0
, γ1 =

p20
x0

,

γ3 = ± α

x0
, δ2 = −bp20

x0
, δ3 = ± α

x0
. (29)

Here p0 is the parameter of the family, α =
(x4

0 − (b2 + x2
0) p

4
0)

1/2. On substituting the above ex-
pressions into Eqs. (18) they are satisfied.
We are interest of the real solutions which correspond

in the original phase space of the problem to motions
of the top. Solutions (28), (29) are real when p0 ̸=
0, (p20 + x0 < 0 or x0 > p20) and (−σ ≤ b < 0 or 0 <

b ≤ σ), where σ = x0

√
x2
0p

−4
0 − 1.

All the above solutions can be “lifted up” into the
phase space of system (1). To this end, it is sufficient to
add the equations of IM (13) to that of IMs (23), (25),
(26). In the case of the families of solutions, the values
of the variables γ2, δ1, obtained from Eqs. (13) under
the corresponding values of the rest of the variables, it
is necessary to add to relations (28), (29).
In order to find out the direction of the force fields

corresponding to solutions (28), (29), we substitute the
solutions into integral V̂4 (19). It becomes identically
“ − 1′′ and “ + 1′′, respectively. So, with mechanical
viewpoint, the elements of the families of solutions un-
der study in the original phase space correspond to the
permanent rotations of the top in the opposite in direc-
tion (or parallel) force fields.
Resolve Eqs. (25) and (26) with respect to q, r, γ1,
γ3, δ2, δ3 and, then, substitute the resulting expressions
into (23). The latter equations turn into identities.
Whence, one can conclude that the IMs defined by Eqs.
(25), (26) are submanifolds of IM (23).
Now, let us obtain the integrals taking stationary val-

ues on solutions (28), (29). For this purpose, we con-
struct the linear combination from integrals (19)

2K̂ = 2µ0H − µ1V̂1 − µ2V̂2 − µ3V̂3 − µ4V̂4

−µ5V̂5 (µi = const)
(30)

and write the necessary conditions for the integral K̂
to have an extremum with respect to the variables
p, q, r, γ1, γ3, δ2, δ3:

∂K̂/∂p = 0, ∂K̂/∂q = 0, ∂K̂/∂r = 0,

∂K̂/∂γi = 0 (i = 1, 3), ∂K̂/∂δj = 0 (j = 2, 3).
(31)
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From Eqs. (31), we find the constraints on µi under
which solutions (28) satisfy these equations:

µ2 =
1

2
(µ4 −

µ0x
4
0

Dp20
), µ3 =

1

2
(µ4 −

µ0b
2x2

0

Dp20
),

µ5 =
2µ0x

4
0

D D̃
.

From now and further, we use the following denota-
tions: D = b2 + x2

0, D̃ = Dp40 + x4
0, D̄ = b2 − x2

0.
On substituting the latter expressions into (30), one

obtains:

2K̂1 = K̂0 − µ4 (V̂2 + V̂3 + 2V̂4), where (32)

K̂0 = µ0

[
H +

x2
0 (b

2V̂3 + x2
0 V̂2)

2Dp20
− 2x4

0V̂5

D D̃

]
− µ1V̂1.

As one can see from (32), the family of the integrals
K̂1 is divided into 3 subfamilies corresponding to the
coefficients of µ0, µ1, µ4. Both the family itself and
each of its subfamilies takes a stationary value on the
elements of the family of solutions (28). It is easy to
verify by direct computations.
Similarly, we have the family of integrals 2K̂2 =
K̂0 + µ4 (V̂2 + V̂3 − 2V̂4). Both this family and its
subfamilies (the coefficients of µ0, µ1, µ4) takes a sta-
tionary value on the elements of families (29).
With the above technique, we establish that the inte-

grals V̂1, V̂2 + V̂3 ± 2V̂4 take stationary values on IMs
(25), (26), i.e. these IMs are stationary.

3.2 On IM (14)
The equations of motion on IM (14) have the form:

2ṗ = qr + b δ3, 2q̇ = x0γ3 − p r,

2ṙ =
1

ρ
[b ((2qδ2 + rδ3)(q r + b δ3) + 2x0(qγ1δ3

−pγ3δ2)) + x0(2pγ1 + rγ3)(p r − x0γ3)],

γ̇1=−qγ3+
r

2ρ
[(2pγ1+rγ3)(x0γ3−p r)+2b p γ3δ2],

γ̇3=qγ1+
p

2ρ
[(2pγ1+rγ3)(p r−x0γ3)−2b pγ3δ2], (33)

δ̇2=pδ3+
r

2ρ
[(2qδ2+rδ3)(q r+b δ3)+2x0q γ1δ3],

δ̇3=−pδ2−
q

2ρ
[(2qδ2+rδ3)(q r+b δ3)+2x0qγ1δ3].

They are derived by the elimination of the variables
δ1, γ2 from Eqs. (1) with the use of (14).
Analogously, the first integrals of Eqs. (33) are de-

rived by the elimination of the variables δ1, γ2 from

expressions (2) with the use of (14):

2H = 2(p2 + q2) + r2 + 2(x0γ1 − b δ2) = 2h,

V̌1 = (p2 − q2 − x0γ1 − b δ2)
2 + (2p q − x0γ̌2

+ b δ̌1)
2 = č1,

V̌2 = γ2
1 + γ̌2

2 + γ2
3 = 1, V̌3 = δ̌21 + δ22 + δ23 = 1,

V̌4 = γ1δ̌1 + γ̌2δ2 + γ3δ3 = č2,

V̌5 = x2
0(pγ1 + qγ̌2 +

r
2γ3)

2 + b2(pδ̌1 + qδ2
+ r

2δ3)
2 − x0b r[(γ̌2δ3 − γ3δ2)p

+(γ3δ̌1 − γ1δ3)q +
r
2 (γ1δ2 − γ̌2δ̌1)] + x0b

2γ1
×(δ̌21 + δ22 + δ23)− x2

0b δ2(γ
2
1 + γ̌2

2 + γ2
3)

−bx0(bδ̌1 − x0γ̌2)(δ̌1γ1 + δ2γ̌2 + δ3γ3) = č3.

(34)

Here ρ = bpδ3 + q(p r − x0γ3),
γ̌2 = −[(2pγ1+rγ3)(pr−x0γ3)−2bpγ3δ2]/(2ρ),
δ̌1 = −[(2qδ2+rδ3)(qr+bδ3)+2x0qγ1δ3]/(2ρ).

Finding the stationary solutions
For Eqs. (33), by the technique of section 3.1, we

have found 2 one-dimensional IMs and 4 families of
solutions, which belong to them.
The equations of the 1st IM are given by

bp− x0q = 0, Dp4 + x2
0(p

2r2 − x2
0) = 0,

p r + x0δ3 = 0, x0γ3 − p r = 0,

bp2 + x2
0δ2 = 0, p2 − x0γ1 = 0.

(35)

The family of solutions belonging to IM (35):

p = p0, q =
bp0
x0

, r = ± α

p0x0
, γ1 =

p20
x0

,

γ3 = ± α

x0
, δ2 = −bp20

x0
, δ3 = ∓ α

x0
. (36)

The equations of the 2nd IM are written as:

bp+ x0q = 0, Dp4 + x2
0(p

2r2 − x2
0) = 0,

x0δ3 − p r = 0, x0γ3 − p r = 0,

bp2 + x2
0δ2 = 0, p2 − x0γ1 = 0.

(37)

The family of solutions belonging to IM (37):

p = p0, q = −bp0
x0

, r = ± α

p0x0
, γ1 =

p20
x0

,

γ3 = ± α

x0
, δ2 = −bp20

x0
, δ3 = ± α

x0
. (38)

Here p0 is the parameter of the families, α =
(x4

0 − (b2 + x2
0) p

4
0)

1/2.
With the use of the technique of section 3.1, the above

solutions can be “lifted up” into the phase space of sys-
tem (1).
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On substituting solutions (36), (38) into integral V̌4

(34) it becomes identically “ − 1” and “ + 1”, respec-
tively. So, with mechanical viewpoint, the elements
of the given families of solutions in the original phase
space correspond to the permanent rotations of the top
in the opposite in direction (or parallel) force fields.
As one can see from (35)-(38), the solutions formally

coincide with solutions (25), (26), (28), (29) of section
3.1. It is not difficult to show that in the original phase
space of the problem the same IM corresponds to, e.g.,
IM (25) and IM (35).
In order to obtain in the phase space of system (1) the

equations of the IM corresponding to IM (25) on IM
(13), it is sufficient to add Eqs. (13) to Eqs. (25):

bp− x0q = 0, Dp4 + x2
0(p

2r2 − x2
0) = 0,

−(p r + x0δ3) = 0, x0γ3 − p r = 0,

bp2 + x2
0δ2 = 0, p2 − x0γ1 = 0,

δ3γ2 − δ2γ3 = 0, δ3γ1 − δ1γ3 = 0.

Analogously, in the original phase space we find the
equations of the IM corresponding to IM (35) on IM
(14):

bp− x0q = 0, Dp4 + x2
0(p

2r2 − x2
0) = 0,

p r + x0δ3 = 0, x0γ3 − p r = 0, bp2 + x2
0δ2 = 0,

p2 − x0γ1 = 0, 2b p (γ3δ2 − γ2δ3)− (2pγ1 + 2qγ2
+ rγ3)(p r − x0γ3) = 0, (2pδ1 + 2qδ2 + rδ3)
×(q r + bδ3) + 2x0q (γ1δ3 − γ3δ1) = 0.

Next, construct a lexicographical basis with respect
to the variables q, r, γ1, γ2, γ3, δ1, δ2, δ3 for each of the
above systems. As a result, we have the same equa-
tions:

bp− x0q = 0, Dp4 + x2
0(p

2r2 − x2
0) = 0,

p r + x0δ3 = 0, x0γ3 − p r = 0,

bp2 + x2
0δ2 = 0, p2 − x0γ1 = 0,

p2 + x0δ1 = 0, bp2 − x2
0γ2 = 0.

(39)

They determine the one-dimensional IM of differential
equations (1).
Similarly, one can establish that in the original phase

space the following families of solutions correspond to
the families of solutions (28) on IM (13) and (36) on
IM (14):

p = p0, q =
bp0
x0

, r = ± α

p0x0
, γ1 =

p20
x0

, γ2 =
bp20
x2
0

,

γ3 = ± α

x0
, δ1 = − p20

x0
, δ2 = −bp20

x0
, δ3 = ∓ α

x0
.

They belong to IM (39).
Resolve Eqs. (39) with respect to q, r, γi, δi (i =
1, 2, 3) and, then, substitute the resulting expressions

into Eqs. (13), (14). They become identities. Whence,
one can conclude that IM (39) belongs to both IM (13)
and IM (14), i.e. it lies at their intersection.
Analogously, we find that in the phase space of system

(1) the same IM corresponds to IM (26) on IM (13)
and IM (37) on IM (14) as well as the same families of
solutions correspond to the families of solutions (29)
on IM (13) and (38) on IM (14).
Using the technique of section 3.1, we have obtained

the families of integrals the elements of which take
stationary values on the elements of families (36) and
(38), respectively:

Ǩ = µ2

[2(p20DH ∓ b2x2
0 V4)

D̄x2
0

− V2 −
x2
0p

2
0V5

2D̄ D̃

]
−µ1V1+µ3

[x2
0p

2
0V5

2D̄ D̃
−V3−

2(p20DH ∓ x4
0V4)

x2
0D̄

]
.(40)

The integrals V̌1, V̌2+ V̌3±2V̌4 take stationary values
on IMs (35), (37), i.e. these IMs are stationary.
On special solutions corresponding to pendulum-like

motions
In the problem under study, the solutions, for which
p = r = 0 or q = r = 0, correspond to the oscillations
and rotations of the top in a plane around one of its
principal axes. Consider the following solutions of Eqs.
(33):

p = r = δ3 = 0, δ2 = ±1 (41)

and

q = r = γ3 = 0, γ1 = ±1. (42)

It is easy to verify by IM definition that Eqs. (41), (42)
define four IMs of codimension 4 of Eqs. (33).
The equations of motion on IM (41) have the form:

2q̇ = x0γ3, γ̇1 = −qγ3, γ̇3 = qγ1.

In the original phase space of the problem, with me-
chanical viewpoint, IMs (41) correspond to pendulum-
like oscillations of the body around its immobile prin-
cipal axis Oy.
The equations of motion on IM (42) can be written as:

2ṗ = bδ3, δ̇2 = pδ3, δ̇3 = −pδ2.

In the original phase space, IMs (42) correspond to
pendulum-like oscillations of the body around its im-
mobile principal axis Ox.
On substituting IMs (41), (42) into integral V̌4 (34) it

is identically equal to zero. So, with mechanical view-
point, in the original phase space of the problem the
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IMs correspond to the pendulum-like oscillations of the
top in orthogonal force fields.
By direct computations, one can verify that the inte-

grals Ǩ1 = Ȟ2 − V̌1 + 2b [(Ȟ + b)V̌3 + V̌
1/2
1 ] and

Ǩ2 = Ȟ2− V̌1−2b [(Ȟ−b)V̌3− V̌
1/2
1 ] take stationary

values on corresponding IMs (41). Analogously, the in-
tegrals Ǩ3,4 = Ȟ2 − V̌1 + 2x0 [(x0 ∓ Ȟ)V̌2 ± V̌

1/2
1 ]

take stationary values on IMs (42). Thus, these IMs are
stationary.

Finding the IMs of 2nd-level

Now, for differential equations (33), we shall seek the
IMs of maximal dimension, which the above solutions
belong to. First, we solve this problem for the equa-
tions of motion on IM (12):

2ẇ1 = −iw1w3 + z1, 2ẇ2 = iw2w3 + z2,

2ẇ3 =
i

w1w2
[w2

1x2 − w2(w2x1 + w3z1)

+w1w3z2)], (43)
ẋ1 = i(w1z1 − w3x1), ẋ2 = i(w3x2 − w2z2),

2ż1 =
i

w2w3
(2w2

2w3x1 + w2w
2
3z1 + w1x2z1

+w2x1z2 + w3z1z2),

2ż2 = − i

w1w3
[w1x2(2w1w3 + z1) + z2(w2x1

+w3(w1w3 + z1))].

They are derived by the elimination of the variables
y1, y2 from Eqs. (4) with the use of (12).
Consider some of explicitly written relations (11),

e.g.,

λ5 [(w1w3x2 + (x2 − x1) z1 − w2
2w3x

2
1)(w1x2

+w3z2)− w2(w3z1(w3x1 − w1z1) + x1(x1

−x2) z2 + w1w3z
2
2)] + 2λ4(w1x2z1 + w2x1z2

+w3z1z2) = 0,
λ1w1w2w3 [(w1w3x2 + (x2 − x1) z1 − w2

2w3

×x2
1)(w1x2 + w3z2)− w2(w3z1(w3x1 − w1z1)

+x1(x1 − x2)z2 + w1w3z
2
2)] + 4λ4(w1x2z1

+w2x1z2 + w3z1z2)
2 = 0.

(44)

They define the IMs of codimension 1 for Eqs. (43).
In the original variables, expressions (44) are:

λ4F1 + iλ5G1 = 0, λ4F2 + iλ1G2 = 0, where
F1 = 2(pγ1δ3 + qγ3δ2) + rγ3δ3,
G1 = rγ1δ3 (qr + bδ3) + 2(x0qγ

2
1δ3 − bpγ3δ

2
2)

+ rγ3δ2(pr − x0γ3) + 2γ1δ2((p
2 + q2)r

−x0pγ3 + bqδ3)−2γ3δ3(q (p r−x0γ3) + bpδ3),
F2 = 2bx0F

2
1 , G2 = [bp δ3 + q(p r − x0γ3)]G1,

respectively.
Each of the equations

λ4F1 + λ5G1 = 0, λ4F2 + λ1G2 = 0 (45)

determines the family of IMs of codimension 1 for Eqs.
(33). Here λ1, λ4, λ5 are the parameters of the family.
The invariance of IMs (44), (45) is verified by direct

computations by IM definition.
From Eqs. (45), one can obtain the constraints on
λ1, λ5 under which solutions (36) satisfy these equa-
tions:

λ1 = −λ4 D̃
2

bx5
0p

4
0

, λ5 = − λ4 D̃

2bx3
0p

2
0

.

Having substituted the latter expressions into (45), we
have the equations for the families of IMs of codimen-
sion 1, which solutions (36) belong to:

λ4

2bx3
0p

2
0

[
2bx3

0p
2
0F1 − D̃ G1

]
= 0,

λ4

bx5
0p

4
0

[
bx5

0p
4
0 F2 − D̃2 G2

]
= 0. (46)

Here p0 is the parameter of the families.
Thus, solutions (36) lie at intersection of the families

of IMs defined by Eqs. (46).
Let us consider the expressions in the square brack-

ets (46) as the polynomials of p0. To eliminate p0
from one of them, we compute the resultant of these
polynomials. It has the form: Res = P1P2P3, where
Pi (i = 1, 2, 3) are the polynomials of p, q, r, γ1, γ3, δ2,
δ3.
It is easy to verify by IM definition that each of the

equations Pi = 0 (i = 1, 2, 3) determines the IM of
codimension 1 for differential equations (33). Both so-
lutions (36) and one-dimensional IM (35) belong to one
of these IMs. Its equation is written as:

2
[
(γ3δ3 + 1) [ q (p r − x0γ3) + bpδ3]− γ1δ2

×[(p2 + q2) r − x0pγ3 + bqδ3] + bpγ3δ
2
2

]
− x0qγ

2
1δ3

−r
[
γ1δ3(qr + bδ3) + γ3δ2(pr − x0γ3)

]
= 0.

Similarly, we find the IM of codimension 1, which
solutions (38) and one-dimensional IM (37) belong to.
This IM is given by the equation:

2
[
(γ3δ3 − 1) [ q (pr − x0γ3) + bpδ3]− γ1δ2

×[(p2 + q2) r − x0pγ3 + bqδ3] + bpγ3δ
2
2

]
− x0qγ

2
1δ3

−r
[
γ1δ3(qr + bδ3) + γ3δ2(pr − x0γ3)

]
= 0.

The equation of the IM, which solutions (41), (42) be-
long to, is derived from Eqs. (45) when λ4 = 0. It is
given by G1 = 0.
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3.3 On IM (16)
The equations of motion on IM (16) are rather bulky.

It is more convenient to analyse these equations in vari-
ables (3), i.e. the equations of motion on IM (15). They
are derived by the elimination of the variables x1, x2

from Eqs. (4) with the use of (15):

2ẇ1 = −i(w1w3 + z1), 2ẇ2 = i(w2w3 + z2),

2ẇ3 = −i(y1 − y2),

ẏ1 = i(w1z2 − w3y1), ẏ2 = i(w3y2 − w2z1),

2ż1 = i
[ w2 σ

w3 (w2
2y1 + z22) + w2z2(w2

3 + y1 − y2)

−w1y2

]
, (47)

2ż2 = −i
[ w1 σ

w3 (w2
1y2 + z21) + w1z1(w2

3 − y1 + y2)

−w2y1

]
,

where σ = w2z2(w
2
1y2 + z21) + w1z1(w

2
2y1 +

2w2w3z2 + z22).
As one can see from Eqs. (47), they have no solutions

corresponding to equilibria of the body, i.e. for which
w1 = w2 = w3 = 0. In this case, the equations have
a singularity. For the same reason, we could not obtain
the solutions corresponding to the permanent rotations
and pendulum-like motions of the top. However, Eqs.
(47) can be integrated on one of their IMs.
Consider the first integral of these equations:

−2λ5 [w2y1z1 + z2(w1y2 + w3z1)]

w2z1 + w1(w2w3 + z2)
= λ1.

Here λ1, λ5 are some constants. This integral has been
obtained from stationary equations (6) together with
IM (15) in section 2.
Having eliminated the variable z2 from Eqs. (47) with

the use of the integral, one obtains:

2ẇ1 = −i(w1w3 + z1),

2ẇ2 = −iw2

( λ1(w1w3 + z1) + 2λ5y1z1
λ1w1 + 2λ5(w1y2 + w3z1)

− w3

)
,

2ẇ3 = −i(y1 − y2),

ẏ1 = −i
(w1w2 [λ1 (w1w3 + z1) + 2λ5y1z1]

λ1w1 + 2λ5 (w1y2 + w3z1)

+w3y1

)
, ẏ2 = i(w3y2 − w2z1), (48)

2ż1=−i
(w2 [λ1σ1 w

2
1+2λ5σ2 z

2
1+4λ1λ5w1w3z1]

λ2
1 + 4λ2

5y1y2 − 2λ1λ5(w2
3 − y1 − y2)

+w1y2

)
,

where σ1 = λ1 + 2λ5y2, σ2 = λ1 + 2λ5y1.

It is easy to verify by IM definition, the equations

w2 = 0, w3 = 0, y1 = 1, y2 = 1, z1 ± w1 = 0. (49)

define two one-dimensional IMs of differential equa-
tions (48).
The motions on these IMs are described by the equa-

tions

2ẇ1 = ∓iw1,

respectively. They can be integrated in the elementary
functions: w1(t) = C1 exp

∓it/2, where C1 is a con-
stant of integration.

4 On Stability of the Stationary Solutions
4.1 On IM (13)
Let us investigate the stability of the families of solu-

tions (28) on IM (13) on the basis of Lyapunov’s lin-
ear stability theorems [Lyapunov, 1992]. As is well-
known, they provide necessary stability conditions.
We introduce the deviations

y1 = δ2 − δ02 , y2 = δ3 − δ03 , y3 = γ1 − γ0
1 ,

y4 = γ3 − γ0
3 , y5 = p− p0, y6=q − q0, y7=r − r0

from the elements of the family under study, where
p0, q

0, r0, δ02 , δ
0
3 , γ

0
1 , γ

0
3 are the values of the variables

in unperturbed solution (28).
Next, we write the equations of first approximation in

the vicinity of the elements of the family:

ẏ1 = ± α

p0x0
y3 − p0y4 ∓

α

x2
0

y5 +
p20
x0

y7,

ẏ2 = −p0y1 ±
bp30
α

(y2 + y4)−
p0
x0

(by3 + p0y6)

+
bp20
x2
0

y5, ẏ3 = ∓ α

p0x2
0

(x0y1 + p0y6)

+
bp0
x2
0

(x0y2 + p0y7), ẏ4 = p0y1 ∓
bp30
α

(y2 + y4)

+
p0
x0

(by3 + p0y6)−
bp20
x2
0

y5, 2ẏ5 = by2 ±
αy6
p0x0

+
bp0
x0

y7, 2ẏ6 = x0y4 ∓
αy5
p0x0

− p0y7, (50)

ẏ7 = x0y1 ∓
2bp20x0

α
(y2 + y4) + by3.

From now and further, the denotations of section 3 are
used: D = b2 + x2

0, D̃ = Dp40 + x4
0, D̄ = b2 − x2

0,
α2 = (x4

0 − (b2 + x2
0) p

4
0).

Taking into account the conditions for solutions (28)
to be real, the characteristic equation of system (50)

λ3[p20x
2
0λ

2 + α2] [4p20x
2
0λ

2 + x4
0 − 3Dp40] = 0
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has only zero and pure imaginary roots under the fol-
lowing constraints on the parameters b, x0, p0:

p0 ̸= 0, (
√
3p20 + x0 < 0 or x0 >

√
3p20)

and
(
− σ ≤ b < 0 or 0 < b ≤ σ

)
, (51)

where σ = x0

√
x2
0 (3p

4
0)

−1 − 1.

The above-represented inequalities provide the neces-
sary conditions of the stability for solutions (28). We
derive the sufficient stability conditions for these so-
lutions by the Routh-Lyapunov method. This method
uses first integrals and their families taking stationary
values on solutions under study. The problem is to ver-
ify the sign-definiteness conditions for the 2nd varia-
tion of the corresponding family of integrals obtained
in the vicinity of the studied solution on the linear man-
ifold defined by the first variations of “conditional” in-
tegrals.

We shall use the family of integrals K̂1 (32) taking
stationary values on the elements of the families of so-
lutions (28) under the condition µ4 = 0. In this case, it
has the form:

K̂0=µ0

[
H+

x2
0 (b

2V̂3+x2
0 V̂2)

2Dp20
− 2x4

0V̂5

D D̃

]
−µ1V̂1. (52)

The 2nd variation of the integral K̂0 in the vicinity of
the elements of the studied family of solutions in the
deviations yi (i = 1, . . . , 7) on the linear manifold

δH = p0x0(x0y3 − by1) + 2p20(x0y5 + by6)± αy7

= 0,

δV̂2 = ±2 [b2p40y2 ± αp20(x0y3 − by1)

+x2
0(x

2
0 − p40) y4] = 0,

δV̂3 = ±2 [(b2p40 − x4
0)y2 ± αp20(x0y3 − by1)

−p40x
2
0y4] = 0,

δV̂5 = −(x4
0 + p40D) [2bp20D(x0y1 − p0y6)

±αx0(b
2y2 − x2

0y4)− 2p20x0D(x0y3

+p0y5)∓ αp0Dy7] = 0

is written as: 2δ2K̄0 = α11y
2
1 +α12y1y2 +α15y1y5 +

α17y1y7 + α22y
2
2 + α25y2y5 + α27y2y7 + α55y

2
5 +

α57y5y7 + α77y
2
7 , where

α11 = − DL

2p20x
2
0

, α12 = ± 2αD̄

bp20D
α11,

α15 = −4p0
b

α11, α17 = ∓ 2αx0

bp0D
α11,

α22 = − 1

4b2p60x
2
0

[
2α2 DL− µ0x

4
0(α

2 − 2b2p40)
]
,

α25 = ± α

b2p30x
2
0

[
(2b2 − x2

0)L− 2µ1p
2
0x

2
0D

]
,

α27 =
1

2b2p50x0

[
2µ1p

2
0[2b

2x4
0 − α2(3b2 + x2

0)]

−(p40D̄ + x4
0)L

]
,

α55 = −D[4µ1p
2
0D − µ0x

2
0]

b2x2
0

, α57 = ± αx0

p20 D
α55,

α77 =
p0
2x0

α27, L = 2µ1p
2
0D − µ0x

2
0.

The conditions for the quadratic form δ2K̂0 to be pos-
itive definite are sufficient for the stability of the ele-
ments of the family of solutions (28). In the form of
Sylvester’s inequalities, they are:

− D

b2x2
0

[
4µ1p

2
0D − µ0x

2
0

]
> 0,

µ0D
2L

b2p20x
2
0

> 0,

µ0DL

b2p60x
4
0

[
2µ1p

2
0D (3p40D − x4

0)−(x4
0 + p40D)L

]
>0,

αµ2
0 L

2

b2p120 x2
0

(x4
0 − 3p40D) > 0. (53)

Taking into account the conditions for solutions
(28) to be real, the above inequalities are consis-
tent under the following constraints on the parameters
µ0, µ1, b, x0, p0:

µ0 < 0 and p0 ̸= 0 and 2µ1 <
µ0x

2
0

p20D
and

(
√
3p20 + x0 < 0 or x0 >

√
3p20) (54)

and
(
− σ < b < 0 or 0 < b < σ

)
.

As one can see from (54), inequalities (54) are divided
into 2 groups. The first (the constraints on the parame-
ters p0, b, x0) provides the sufficient conditions for the
stability of the elements of families (28). The 2nd sep-
arates some subfamily from the family of the integrals
K̂0, the elements of which give us a possibility to de-
rive these conditions.
On comparing inequalities (54) and (51) we conclude

that the conditions (51) are necessary and sufficient for
the stability of the elements of families (28) up to the
boundary of the conditions.
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We have derived the above stability conditions for the
families of solutions (29). The family of integrals K̂0

(52) was used to obtain the sufficient conditions.

4.2 On IM (14)

The stability of the stationary solutions on IM (14)
is analyzed also as above. To obtain the sufficient
stability conditions for the elements of families (36)
we use the family of integrals Ǩ (40) when λ2 =
(b2 − x2

0)(λ1 + 1/(b2 + x2
0)), λ3 = 0. Under these

constraints the family of the integrals Ǩ becomes:

Ǩ1 = (λ1D + 1)
[2p20
x2
0

Ȟ − 1

D
[ D̄V̌2

+2b2V̌4 −
p20x

2
0V̌5

2D̃
]
]
− λ1V̌1. (55)

The 2nd variation of the integral Ǩ1 obtained in the
vicinity of the elements of the studied family of solu-
tions on the linear manifold

δȞ=p0x0(x0ξ3 − bξ1) + 2p20(x0ξ5 + bξ6)± αξ7 = 0,

δV̌2 = 2αp30x
2
0(x0ξ3 − bξ1) + α2p0x

2
0ξ4

+2p50x
2
0(b

2ξ2 − x2
0ξ4) + D̃2(αξ5 + p20x0ξ7) = 0,

δV̌4 = 4αbp30x
2
0(bξ1 − x0ξ3) + α2bp0x

2
0(ξ2 − ξ4)

+4bp50x
2
0(x

2
0ξ4 − b2ξ2)− αD̃2(bξ5 + x0ξ6)

−2bD̃2p20x0ξ7 = 0,

δV̌5 = 2D̃2 [± 4αp30x0D(x0ξ3 − bξ1)− p0x0(x
4
0

−3p40D)(b2ξ2 − x2
0ξ4)± α(x4

0 + 5p40D)

×(x0ξ5 + bξ6) + p20D(α2 + 2x4
0) ξ7] = 0

is written as: δ2Ǩ1 = ξ21 + α15ξ1ξ5 + α16ξ1ξ6 + ξ23 +
α35ξ3ξ5+α36ξ3ξ6+α55ξ

2
5 +α56ξ5ξ6+α66ξ

2
6 , where

α15=− 2D̃2

bp30 D
, α16=2

( p0
x0

− x3
0

p30 D

)
, α35=−α16,

α36 = 2b
( p0
x2
0

+
x2
0

p30 D

)
,

α55 =
1

α2 b2p60x
2
0D

[
(Dλ1 + 1) [α2 (4x6

0D̄

+α2 (b2 (p40 − x2
0) + 4x4

0))− 4x8
0 (p

4
0 (p

4
0 − x2

0)

+b2x2
0)] + α2 (α4 + 4p40x

6
0) + α4D̃2

]
,

α56 =
2

α2 bp60x
3
0 D

[
(Dλ1 + 1) [α2 (α2(b2p40 + 4x4

0)

−8x8
0) + 4x8

0 (x
4
0 − p80)]

]
,

α66 =
1

α2p60x
4
0D

[
(Dλ1 + 1) [α2(α2 (b2p40 + 3x4

0)

−4x8
0)− 4p40x

8
0(p

4
0 + x2

0)] + α2 (4x6
0(x

2
0 − p40)

−α2(2x4
0 + D̃2))

]
, α2 = x4

0 − p40D.

Here ξi (i = 1, . . . , 7) are the deviations from the ele-
ments of the studied family of solutions (36).
The conditions of positive definiteness for the

quadratic form δ2Ǩ1 in the form of Sylvester’s inequal-
ities are given by

(p40 − x2
0)

α2
> 0,

G2

α2
> 0, where

G =
(Dλ1 + 1) [x8

0 + p40D (D̃2 + x4
0) + 4p40x

6
0]

p60x
2
0 D

.

Taking into account the conditions for solutions (36)
to be real, the inequalities are consistent under the fol-
lowing constraints on the parameters λ1, p0, b, x0:

λ1 +
1

D
< 0 and p0 ̸= 0 and (p20 + x0 < 0

or x0 > p20) and
(
− σ̌ < b < 0 or 0 < b < σ̌

)
, (56)

where σ = x0

√
x2
0p

−4
0 − 1. Whence, we can con-

clude on the stability of the elements of the family un-
der study.
Likewise as above, the obtained inequalities are di-

vided into 2 groups. The first (the constraints on the pa-
rameters p0, b, x0) provides the sufficient stability con-
ditions for the elements of families (36). The second
separates some subfamily from the family of the inte-
grals Ǩ1, the elements of which enable us to derive
these conditions.
The necessary stability conditions for the studied fam-

ily of solutions (36) were obtained from the analysis of
differential equations (33) linearized in the vicinity of
the elements of this family. They are given by

p0 ̸= 0 and (p20 + x0 < 0 or x0 > p20)

and
(
− σ̌ ≤ b < 0 or 0 < b ≤ σ̌

)
.

Their comparison with conditions (56) shows that they
are necessary and sufficient for the stability of the ele-
ments of the families of solutions (36) up to the bound-
ary of the conditions.
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The above stability conditions have also been derived
for the families of solutions (38). To obtain the suffi-
cient conditions, we used the family of integrals which
is similar to (55).

5 On Stabilization of Motions in
Conservative Systems

Let us consider the following equations:

p = r = γ2 = δ1 = δ3 = 0, δ2 = ±1. (57)

These define two IMs of codimension 6 for differen-
tial Eqs. (1). The IMs correspond to IMs (41) in the
original phase space.
We investigate the stability of the 1st IM of IMs (57),

using the integral

K̂ = H2 − V1 + 2b [(b+H)V3 + V
1/2
1 ]

for constructing a Lyapunov function.
On the linear manifold

δV3 = 2y6 = 0,

the 2nd variation of the integral K̂ in the vicinity of the
solution under study can be written as:

δ2K̂ = σ1[σ2 (4(x0γ1 + b) y21 − x2
0y

2
3

+2b x0y3y4 + b (σ1 + σ2) y
2
4

+4qy1(x0y3 − by4)) + y22 + 2by25 ],

where yi (i = 1, . . . , 5) are the deviations in the unper-
turbed motion, σ1 = q2+x0γ1, σ2 = (q2+x0γ1+b)−1.
The conditions

−x2
0 σ1

σ2
< 0, −x2

0 σ
2
1

σ2
> 0, −b x2

0 σ
3
1

σ2
< 0 (58)

for the quadratic form δ2K̂ to be negative definite are
sufficient for the stability of the IM under study.
Since the integral of energy on the IM under consider-

ation has the form

H|0 = q2 + x0γ1 − b = ĥ,

inequalities (58) hold when

ĥ < 0 and 0 < b < − ĥ

2
.

The above presented problem of stability can be con-
sidered as a stabilization problem. When stability con-
ditions for the solution of conservative system have the
form of some constraints on the constants of problem’s
first integrals, as in the above case, one can speak about
the stabilization of this solution by means of these con-
strains. Moreover, in the case discussed, we can speak
about an optimal stabilization, because the correspond-
ing first integral takes an extremum value on this solu-
tion.

6 Conclusion
In this work, with the use of the algorithms presented

in the previous paper, the equations of motion for the
generalized Kowalewski top were studied. We have
made qualitative analysis for the differential equations
obtained as a result of reduction of the initial equations
of motion to their IMs. Some of these IMs are pre-
viously known, and one of them has been obtained in
this work. For the equations of motion on the IMs, the
special solutions and their families have been found.
The linear and nonlinear combinations of the first in-
tegrals taking stationary values on the found solutions
have been constructed. These combinations were used
to analyse the stability of the solutions. For a series of
the solutions, sufficient stability conditions have been
compared with necessary ones. The possibility of sta-
bilization of motions in conservative systems was dis-
cussed.
The obtained results prove the efficiency of the ap-

proach and algorithms which were applied. The al-
gorithms and the results can be used in the qualitative
analysis of conservative systems.

Acknowledgements
This work was supported by the Russian Foundation

for Basic Research (Project 16-07-00201a) and the Pro-
gram for the Leading Scientific Schools of the Russian
Federation (NSh-8081.2016.9).

References
Adler, V. E., Marikhin, V. G., Shabat, A. B. (2012).
Quantum Tops as Examples of Commuting Differ-
ential Operators. Theoret. and Math. Phys., 172(3),
pp. 1187–1205.
Bobenko, A. I, Reyman A. G., Semenov-Tian-
Shansky, M. A. (1989). The Kowalewski Top 99 Years
Later: A Lax Pair, Generalizations and Explicit Solu-
tions. Commun. Math. Phys., 122, pp. 321–354.
Bogoyavlenskii, O. I. (1984). Two integrable cases of
a rigid body dynamics in a force field. Dokl. Akad.
Nauk SSSR, 275(6), pp. 1359–1363. (In Russian)
Bolsinov, A. V. and Fomenko, A. T. (1999). Integrable
Hamiltonian systems. Geometry, topology, classifi-
cation. Izdatel’skii Dom “Udmurtskii Universitet”,
Izhevsk. (In Russian)



CYBERNETICS AND PHYSICS, VOL. 7, NO. 3 143

Buchberger, B. (1976). Theoretical basis for the re-
duction of polynomials to canonical forms. SIGSAM
Bulletin, 10(3), pp. 19–29.
Char, B.W., Geddes, K.O., Gonnet, G.H., Monagan,
M.B., Watt, S.M. (1992). Maple Reference Manual.
Watcom Publications Limitid, Waterloo, Canada.
Cox, D., Little, J., and O’Shea, D. (1997). Ideals, Va-
rieties, and Algorithms. Springer–Verlag. New York.
Irtegov, V. D. and Titorenko, T. N. (2009). The invari-
ant manifolds of systems with first integrals. J. Appl.
Math. Mech., 73(4), pp. 379–384.
Irtegov, V. D. (1986). Invariant manifolds of sta-
tionary motions and their stability. Nauka. Novosi-
birsk.(In Russian)
Irtegov, V. and Titorenko, T. (2015). On Invariant
Manifolds and their Stability in the Problem of Mo-
tion of a Rigid Body under the Influence of Force
Fields. Springer, LNCS, 9301, pp. 220–232.
Irtegov, V. and Titorenko, T. (2016). Qualitative
Analysis of the Reyman-Semenov-Tian-Shansky In-
tegrable Case of the Generalized Kowalewski Top.
Springer, LNCS, 9890, pp. 289–304.
Irtegov, V. D. and Burlakova, L. A. (2017). Algo-
rithms for the inverstigation of nonlinear systems with
first integrals. Cybernetics and Physics, 6(4), pp. 222–
230.
Kharlamov, M. P. and Ryabov, P. E. (2017). Topolog-
ical Atlas of the Kovalevskaya Top in a Double Field.

J. Mathematical Sciences, 223(6), pp. 775–809.
Kowalewski, S. (1889). Sur le probleme de la rotation
d’un corps solide autour d’un point fixe. Acta Math.,
12, pp. 177–232.
Lyapunov, A. M. On Permanent Helical Motions of
a Rigid Body in Fluid. Collected Works, Akad. Nauk
SSSR, Moscow–Leningrad, 1, pp. 276–319. (In Rus-
sian)
Lyapunov, A. M. (1992). The General problem of the
stability of motion. Taylor & Francis. London.
Reiman, A. G. and Semenov-Tyan-Shanskii, M. A.
(1988). Lax representation with a spectral parameter
for the kowalevski top and its generalizations. Func-
tional Analysis and Its Applications, 22(2), pp. 158–
160.
Ryabov, P. E. et al. (2012). Classification of singulari-
ties in the problem of motion of the Kovalevskaya top
in a double force field. Sbornik: Mathematics, 203(2),
pp. 257–287.
Sarychev, V. A. and Gutnik, S. A. (2015). Dynam-
ics of a Satellite Subject to Gravitational and Aero-
dynamic Torques. Investigation of Equilibrium Posi-
tions. Cosmic Research., 53(6), pp. 449–457.
Smirnov, A. V. (2008). Systems of sl(2, C) tops as
two-particle systems. Theoretical and Mathematical
Physics, 157(1), pp. 1370–1382 .
Wolfram, S. The Mathematica book, 5th ed. (2003).
Wolfram media. USA.


