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Abstract
The article discusses the methodology for construct-

ing an automatic control system for the feed module of
the cutting tool for lathes in the presence of input satu-
ration. The presence of the saturation function is due to
restrict unwanted movements of the feed module actua-
tor. The generator for periodic signals, the hyperstability
criterion, L-dissipativity conditions and an implicit ref-
erence model are used as the solution methods for struc-
tural synthesis of the control system. At the stage of sim-
ulation, the functioning quality of the developed control
system is illustrated.
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1 Introduction
One of the most important problems of the modern

theory and practice of automatic control is the problem
of developing regulators for tool feed electric drives of
the metal-cutting machines for processing non-circular
parts ([Nikolsky, 2012], [Nikolsky, 2016], [Li, Li ,1992],
[Yurkevich, 2001]). Such systems are characterized by
the cyclical nature of the reference action, which deter-
mines the desired movement of the cutter. Also, these
systems are subject to the influence of repeating external
disturbances arising due to elastic and thermal deforma-

tions during the processing of metal workpieces. In this
case, one of the most expedient methods for the synthesis
of such systems is so-called method of repetitive control.
The distinctive feature of this method is the presence in
the control system main loop of the generator for pe-
riodic signals which is capable to reproduce any cycli-
cal signals in order to track and/or parry them ([Hara
et al., 1988], [Yao et al., 2013], [Ishii, Yamamoto, 1998],
[Jiang et al., 1995], [Ramos et al., 2020], [Nikolova,
2019], [Toujeni et al., 2020], [Alsubaie et al., 2018], [Ma
et al., 2020], [Ghosh, Paden, 2000]). This is due to the
fact that it is necessary to obtain a solution that, on the
one hand, will provide high-precision processing of the
periodic reference signal (the required movement of the
machine tool). On the other hand it will compensate the
external force disturbance, which is also cyclical.

As it’s shown in [Eremin, Shelenok, 2018(2)],
[Eremin, Shelenok, 2018] and [Eremin, Shelenok,
2018(1)] the development of repetitive control systems
can be carried out with the help of hyperstability crite-
rion and concept of L-dissipativity. In this paper, we pro-
pose the nonlinear regulator for repetitive control system
of mechatronic module for cutting tool in the presence of
input saturation.

2 Preliminaries
We use the data of the acceleration curves of the elec-

tric drive of the lathes feed (Fig. 1) to construct the math-
ematical model of the considered control plant. On Fig.
1 a set of points represents the transient process of real
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control plant, solid lines show the boundaries of the re-
gion of its approximation, formed by fourth order inertia
links

W (s) =
K

s4 + a4s3 + a3s2 + a2s+ a1
, (1)

where K and ai, i = 1, ..., 4 are unknown coefficients
determined with precision to ranges

K− = 18.6 ≤ K ≤ 19.5 = K+,

a−1 = 18.4 ≤ a1 ≤ 23.5 = a+1 ,

a2
− = 41, 4 ≤ a2 ≤ 64 = a+1 ,

a3
− = 45.7 ≤ a3 ≤ 50 = a+3 ,

a4
− = 8.5 ≤ a4 ≤ 16.5 = a+4 .

(2)

Figure 1. Accelerating characteristic of the electric drive

On Fig. 1: curve 1 corresponds to maximum values of
ai, K. Curve 2 corresponds to their minimum values.

Taking into account that the plant (1) is a subject to ex-
ternal disturbances and requires to limit the input control
signal in order to prevent unwanted displacements of the
cutting tool, we represent the mathematical model (1) in
the following input-state-output form:

dx(t)

dt
= Ax(t) + b [S (u(t)) + f(t)] ,

y(t) = LTx(t) = x1(t),

A =


0 1 0 0
0 0 1 0
0 0 0 1
a1 a2 a3 a4

 , b =


0
0
0
K

 , L =


1
0
0
0

 .

(3)

where x(t) ∈ R4 is the state variables vector; A, b are
state matrix and control vector respectively with uncer-

tain parameters; u(t) ∈ R and y(t) ∈ R are control sig-
nal and output of the plant; L is the output vector; f(t)
are external bounded permanent disturbances; S (u(t))
is the nonlinear saturation function (Fig. 2) which has
the form

S (u(t)) =


S0, u(t) > S0,

u(t), |u(t)| ≤ S0

−S0, u(t) < −S0,

(4)

S0 > 0 is a known constant corresponding to the limita-
tion level.

Figure 2. Graph of the saturation function

The obtained plant’s mathematical model (2) - (4) has
an equivalent analog in the input-output form:

y(t) = W (p) {S (u(t)) + f(t)} , (5)

where p = d/dt; y(t) is the output signal; W (p) is the
transfer function.

We suppose that the plant (5) operates under the fol-
lowing assumptions:

1. External force disturbances satisfy the inequality:

|f(t)| ≤ f0, f0 = const > 0, ∀t 6= 0,

where f0 is a known constant.
2. Parameters of f(t) are priori unknown: f(t) =

= fξ(t), ξ are unknown parameters which incudes
in the known bound numerical set Ξ.

3. The transfer function of the plant (5) has the fol-

lowing form: W (p) =
K

a(p)
, a(p) = p4 + a4p

3 +

+ a3p
2 + a2p + a1, where a(p) is the normalized

polynomial with unknown coefficients and an arbi-
trary roots.

4. For direct measurement only the output signal y(t)
is available.
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Let us pass the signal y(t) through the output correc-
tion filter (OCF) [Eremin et al., 2020]

yF (t) = WF (p)y(t) =

(
Tp+ 1

T ∗p+ 1

)3

y(t), (6)

where yF (t) and y(t) are filter output and input signals
respectively; WF (p) is the filter transfer function; T and
T ∗ are correcton filter time constants; the value of T ∗ is
small.

In this case the model of the serial connection of the
plant (5) and the OCF (6) can be represented in the fol-
lowing form

yF (t) = WF (p) ·W (p) {S (u(t)) + f(t)} =

=

(
Tp+ 1

T ∗p+ 1

)3

· K

a(p)
{S (u(t)) + f(t)} =

=
b̃(p)

ã(p)
{S (u(t)) + f(t)} =

= W̃ (p) {S (u(t)) + f(t)} ,

ã(p) = a(p) (T ∗p+ 1)
3
, b̃(p) = K (Tp+ 1)

3
.

(7)

The real connection of the OCF and the control plant
(7) can always be associated with their ”virtual” serial
connection:

W̃ (p) =
K

a(p)
·
(
Tp+ 1

T ∗p+ 1

)3

=

=
b̃(p)

a(p)
· 1

(T ∗p+ 1)
3 = Ŵ (p) · 1

(T ∗p+ 1)
3 .

(8)

As it’s shown in [Eremin et al., 2020] due to a
small time constant T ∗ we can write the fair relation

1

(T ∗p+ 1)
3
∼= 1 and replace model (7) with the approx-

imate mathematical model

yF (t) ∼=
b̃(p)

a(p)
y(t) = Ŵ (p) {S (u(t)) + f(t)} ,

b̃(p) = K (Tp+ 1)
3

= b̃3p
3 + b̃2p

2 + b̃1p+ b̃0,

(9)

or in the state-space like

dx(t)

dt
= Nx(t) + b

{
aTx(t)+

+ S (u(t)) + f(t)
}
, yF (t) = cTx(t),

x(t0) = x0, t ≥ t0 = 0,

(10)

where x(t) = [x1(t), x2(t), x3(t), x4(t)]
T is the state

variables vector; N is the nilpotent matrix of (4× 4)

size; b = [0, 0, 0, 1]
T is stationary vector; aT =

= [a1, a2, a3, a4] and cT =
[
b̃0, b̃1, b̃2, b̃3

]
are vec-

tors with the appropriate coefficients.

3 Control Goals and Reference Model
Let us formulate two control goals for the considered

system (1) – (10).

3.1 Main Control Goal
It is required to provide a high-precision tracking of

the plant’s (5) output signal to the command signal r(t),
which sets the required processing profile of the product
(the required movement of the cutting tool):

lim
t→∞

|r(t)− y(t)| ≤ ∆r,

∆r = const > 0,
(11)

where ∆r is a small value relatively to the maximum
value of the command signal r(t) (required tracking ac-
curacy).

3.2 Additional Control Goal
If the required dynamics of the system main output

yF (t) is determined, by analogy with [Eremin et al.,
2020], using the command correction filter (CCF) which
describes like

r̂(t) = WF (p)r(t) =

(
Tp+ 1

T ∗p+ 1

)3

r(t), (12)

where r̂(t) is the auxiliary command signal; then an ad-
ditional control goal can be formulated as following: it
is required to synthesize an explicit form of the control
law u(t) = u (yF (t), r̂(t)) that ensures the fulfillment of
the following objective

lim
t→∞

|r̂(t)− yF (t)| ∼= |y∗(t)− yF (t)| ≤ ∆̂r,

∆̂r = const > 0,
(13)

where ∆̂r is a small constant; y∗(t) is the output of im-
plicit reference model (IRM):

y∗(t) =
1

χ−1∗ p+ 1
r̂(t) =

χ∗
p+ χ∗

r̂(t),

χ∗ = const > 0,

(14)

which at χ∗ >> 0 can be represented as y∗(t) ∼= r̂(t).
Instead of reference (14) we will use its equivalent ana-
log to synthesize the control law:

y∗(t) =
χ∗b̃(p)b̃3

(p+ χ∗) b̃(p)b̃3
r̂(t) =

=
χ̂∗b̃(p)b̃

−1
3

(p+ χ∗) b̃(p)
r(t), χ̂∗ = χ∗b̃3.

(15)
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Mathematical model (15) in the state-space can be rep-
resented in the following form:

dx∗(t)

dt
= A∗x∗(t) + bχ̂∗r̂(t), (16)

y∗(t) = cTx∗(t), x(t0) = 0, t ≥ t0 = 0,

where x∗(t) = [x∗1(t), x∗2(t), x∗3(t), x∗4(t)]
T is the

reference state vector; A∗ = N + baT∗ = N +

b (a− χ∗c)
T is the Hurwitz matrix of (4× 4) size;

aT∗ = (a− χ∗c)
T

= [a∗1, a∗2, a∗3, a∗4] =

=
[
a1 − χ∗b̃3, a2 − χ∗b̃3, a3 − χ∗b̃3, a4 − χ∗b̃3,

]
is

vector with given coefficients.

4 Main Results
We will use the hyperstability criterion for designing

the nonlinear repetitive control law.
Considering the vector of deviations e(t) = x∗(t) −
− x(t), we can write the equivalent mathematical de-
scription of the system in the following form

de(t)

dt
= A∗e(t) + bµ(t), v(t) = cTe(t) =

= r̂(t)− yF (t),

µ(t) = θ(t)− χ∗yF (t)− u(t)−
− [S (u(t))− u(t)] ,

(17)

where v(t) and µ(t) are transformed output and control
signals respectively; θ(t) = θ(t+ T ) = χ∗ − f(t) is the
periodic signal.

In accordance with the requirements of the hypersta-
bility criterion ([Eremin, Shelenok, 2018(2)], [Eremin,
Shelenok, 2018], [Eremin, Shelenok, 2018(1)], [Eremin
et al., 2020]) for the equivalent system (13), it is neces-
sary to fulfill two conditions:

Re
[
cT (jωE−A∗)−1 b

]
> 0, ∀ω ≥ 0, (18)

η(0, t) = −
∫ t

0

µ(ς)v(ς)dς ≥ η20 ,

η0 = const > 0,∀t > 0.

(19)

The validity of the frequency condition (18) is obvious,
since the transfer function of the system (17) linear part
coincides with the description of the first order inertial
link:

W (p) = cT (pE−A∗)−1 b =
χ∗

p+ χ∗
. (20)

Let us ensure the fulfillment of the second condition
(19). We represent the control signal as u(t) = u1(t) +

u2(t) and transform the left side of the integral inequality
(19) like

η(0, t) =

∫ t

0

(u1(ς)− θ(ς)) v(ς)dς+

+

(∫ t

0

u2(ς)v(ς)dς +

∫ t

0

χ∗yF (ς)v(ς)dς

)
+

+

∫ t

0

[S (u(ς))− u(ς)] v(ς)dς =

=

2∑
i=1

ηi(0, t) +

∫ t

0

[S (u(ς))− u(ς)] v(ς)dς.

(21)

We syntesize u2(t) in the form of generator for peri-
odic signals:

u1(t) = u1(t− T ) + γ1v(t)ϑ̃(t),

u1(h) = 0, h ∈ [−T ; 0],
(22)

where γ1 = const > 0; T = const > 0; ϑ̃(t) is ouput
signal of the dynamic switch

τ̃
dϑ̃(t)

dt
+ ϑ̃(t) = ϑ(t), ϑ̃(0) = 0,

ϑ(t) =

{
1, ∀ [S (u(t))− u(t)] v(t) ≥ 0,

ϑ0, ∀ [S (u(t))− u(t)] v(t) < 0,

(23)

τ̃ is the switch time constant; ϑ(t) is the switching func-
tion; 0 < ϑ0 < 1 is the scaling coefficient.

Then for η1(0, t) we can obtain following fair estimate
(see [Eremin, Shelenok, 2018(2)] and [Eremin, She-
lenok, 2018(1)]:

η1(0, t) ≥ γ1ϑ0
∫ t

0

v(ς)×

×
[∫ ς

0

ω0(ς − ρ)v(ρ)dρ− θ(ς)
]
dς ≥ −η201,

η201 = const, ∀t > 0,

(24)

where ω0 (·) is the weight function of the generator
for periodic signals (periodic integrator). Its transfer

function has the form W (s) =
β

1− exp (−sT )
, β =

= const ≥ 1.
If we synthesize u2(t) in the following combined form

u2(t) = γ21yF (t)

∫ t

0

yF (ς)v(ς)ϑ̃(t)+

+ γ22y
2
F (t)v(t)ϑ̃(t),

γ21 = const > 0, γ22 = const > 0,

(25)
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then for summand η2(0, t) from (21) we can obtain the
following integral estimate:

η2(0, t) = γ21

∫ t

0

yF (ς)v(ς)× (26)

×
∫ ς

0

yF (ρ)v(ρ)ϑ̃(ρ)dρdς+

+ γ22

∫ t

0

y2F (ς)v2(ς)ϑ̃(ς)dς+

+ χ∗

∫ t

0

yF (ς)v(ς)dς ≥ γ21ϑ0
∫ t

0

yF (ς)v(ς)×

×
∫ ς

0

yF (ρ)v(ρ)dρdς + γ22ϑ0

∫ t

0

(yF (ς)v(ς))
2
dς+

+ χ∗

∫ t

0

yF (ς)v(ς)dς ≥ γ21ϑ0
2

(∫ t

0

yF (ς)v(ς)dς

)2

+

+ χ∗

∫ t

0

yF (ς)v(ς)dς ± χ2
∗

2γ22ϑ0
≥

≥ − χ2
∗

2γ22ϑ0
= η202, η02 = const, ∀t > 0.

Let us rewrite the integral from (21) like

∫ t

0

[S (u(ς))− u(ς)] v(ς)dς =

=

∫ t∗

0

[S (u(ς))− u(ς)] v(ς)dς+

+

∫ t

t∗

[S (u(ς))− u(ς)] v(ς)dς,

(27)

where t∗ is a time since which condition |u(t)| ≤ S0 is
always fair. In this case for the first summand from (27)
due to the boundednes of integrable function on a finite
time interval we can write the following inequality

∣∣∣∣∫ t∗

0

[S (u(ς))− u(ς)] v(ς)dς

∣∣∣∣ ≤ η203,
η03 = const, ∀t ∈ [0; t∗] .

(28)

Since at t > t∗ the identity S (u(t)) = u(t) will always
hold for the second term from (27) following relation
will be fair:

∫ t

t∗

[S (u(ς))− u(ς)] v(ς)dς = 0, ∀t ≥ t∗. (29)

Thus, the obtained estimates (24), (26), (28) and (29)
will provide following fair esimate for intgral inequality
(19):

η(0, t) ≥ −
3∑
i=1

η20i = −η20 ,

η0 = const, ∀t > 0.

(30)

The obtained estimate (30) ensures the fulfillment of
positivity of the nonlinear non-stationary part of the
equivalent system (17).

As a result, we have the nonlinear repetitive control
system (1) – (10), (12), (16) in which with the help of
the robust-periodic control law

u(t) =
(
u1(t− T ) + γ1v(t)ϑ̃(t)

)
+ (31)

+

(
γ21

∫ t

0

yF (ς)v(ς)ϑ̃(ς)dς+

+ γ22yF (t)v(t)ϑ̃(t)

)
yF (t),

τ̃
dϑ̃(t)

dt
+ ϑ̃(t) = ϑ(t), ϑ̃(0) = 0,

ϑ(t) =

{
1, ∀ [S (u(t))− u(t)] v(t) ≥ 0,

ϑ0, ∀ [S (u(t))− u(t)] v(t) < 0,

the fulfillment of the additional (12) and, as a conse-
quence, the main (11) control goals are insurred.

Remark. The fast-acting correction filters (6) and (12)
in the obtained control system are used. For the pur-
pose to weaken the influence of peaks on the formation
of control signals, similar to [Khalil, 2002], we limit the
output of OCF (6) with the help of nonlinearities of the
saturation type. Then we can rewrite the technically fea-
sible control law (31) as following:

u(t) =
(
u1(t− T ) + γ1v(t)ϑ̃(t)

)
+

+

(
γ21

∫ t

0

sat (yF ) (ς)v(ς)ϑ̃(ς)dς+

+ γ22sat (yF (t)) v(t)ϑ̃(t)

)
yF (t),

τ̃
dϑ̃(t)

dt
+ ϑ̃(t) = ϑ(t), ϑ̃(0) = 0,

ϑ(t) =

{
1, ∀ [S (u(t))− u(t)] v(t) ≥ 0,

ϑ0, ∀ [S (u(t))− u(t)] v(t) < 0.

(32)

5 Control System Simulation
We consider the problem of control for lathe mecha-

tronic feed module to illustrate the functioning quality
of the obtained system (1) – (10), (12), (16), (32).

The initial data is as follows:

1. Setting action that determines the required process-
ing profile of the product:

r(t) = r(t+ T ) = 1.1−
= −0.1 exp (−t)− |cos (0.04πt)| , µm.

(33)
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Figure 4. Tracking error

Figure 5. Control signal u(t) and the force disturbances f(t)

2. Periodic force disturbance:

f(t) = f(t+ T ) = 0.5 sin2 (0.04πt) , µm. (34)

3. Numerical parameters of the control plant (1) – (4)
corresponding to given class of uncertainty:

K = 19, a1 = 21.5, a2 = 48, a3 = 46.9

a4 = 10.2, S0 = 5.
(35)

4. The transfer functions of CCF and OCF:

WF (p) =

(
0.17p+ 1

0.01p+ 1

)3

. (36)

In the course of computational experiments we ob-
tained the results are depicted in Fig. 3 – 5. The parame-
ters of the control loop (32) in order to increase the speed
of the system were selected with the following values:

γ1 = 40, γ21 = 200, γ22 = 150, T = 25,

ϑ0 = 0.5, τ̃ = 15,

sat (yF (t)) =


5, yF (t) > 5,

yF (t), |yF (t)| ≤ 5,

−5, yF (t) < −5.

(37)

Figure 3. Required (dotted lines) and actual (solid lines) displace-
ments of the executive body in the control system (1) – (10), (12),
(16), (32) – (37)

The obtained dynamic characteristics indicate a good
quality of the proposed control system. With the se-
lected coefficients of the nonlinear repetitive regulator
(32), (37), the parameters (35) of the controlled plant
(1) and external cyclic noises (34), the system provides
high-precision tracking of the required command signal
(33), which means the fulfillment of the control goal
(11).

The graphs of the system tracking errors with the plant
parameters corresponding the upper bound of parametric
uncertainty (2)

K = K+ = 19.5, a1 = a+1 = 23.5,

a2 = a+2 = 64, a3 = a+3 = 50,

a4 = a+4 = 16.5,

(38)

are shown in Fig. 6,a. Fig. 6,b shows tracking error
when the plant parameters are equal to the lower bound
of uncertainty (2):

K = K+ = 18.56, a1 = a+1 = 23.5,

a2 = a+2 = 41.4, a3 = a+3 = 45.7,

a4 = a+4 = 8.5.

(39)

It should be noted that the value of the control error
when changing parameters of the control plant from the
initial moment of time does not exceed 3.5µm (3%). In
the steady state (6 seconds after the systems start op-
erating), the tracking error in all cases does not exceed
0.5µm (1%).
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Figure 6. Tracking errors at different parameters of the control plant

6 Conclusion
The nonlinear-periodic controller has been developed

on the basis of V.M. Popov’s hyperstability criterion and
L-dissipativity conditions for the control system of the
mechatronic module of lathes.

The synthesized nonlinear repetitive control loop en-
sures invariance of the system to changes in parameters
of controlled plant (when they change within the uncer-
tainty class), as well as to a significant increase in exter-
nal force disturbances.
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