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Abstract

In this paper we propose an approach for chaotic time
series and extreme events prediction based on WaveNet
model, which is a deep neural network that directly syn-
thesizes speech waveforms from acoustic features. We
test our approach on artificial data obtained from long
time series with extreme events generated by two cou-
pled bursting Hindmarsh-Rose neurons, and on two real-
life data sets (local field potentials recorded in mice
and electroencephalogram recorded in humans) contain-
ing patterns of epileptiform activity, which also can be
viewed as extreme events.
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1 Introduction

Extreme events are rare, repetitive and strong devia-
tions from the typical behavior of an observed variable in
biological and engineered systems that greatly influence
their dynamics [Lehnertz, 2006]. Examples of such be-
havior include oceanic rogue waves [Dysthe et al., 2008;
Kharif et al., 2008], events at financial markets [Longin,
2016], cell dynamics [Kashiwagi et al., 2006], failure
of mechanical parts [Zio and Pedroni, 2009], events in
laser dynamics [Pisarchik et al., 2012; Kumarasamy and
Pisarchik, 2018] and epileptic seizures [Lehnertz, 2006;
Pisarchik et al., 2018; Frolov et al., 2019].

Understanding and accurate prediction of such phe-
nomena still remains an urgent problem in applied math-
ematics [Qi and Majda, 2016; Majda and Tong, 2015;
Viotti and Dias, 2014; Cai et al., 2001]. Extreme events
can be both isolated rare events [Guth and Sapsis, 2019;
Cousins and Sapsis, 2015] and frequent in space and
time [Majda and Lee, 2014; Grooms and Majda, 2014].
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The curse of dimensionality is one of the important ob-
stacles for accurately predicting extreme events in large
complex systems, where both new models and efficient
numerical algorithms are required [Qi and Majda, 2018;
Mohamad and Sapsis, 2018; Chen and Majda, 2017].

Several approaches have been developed that success-
fully deal with non-Gaussian statistics of extreme events,
see [Varadhan, 1984; Weinan and Vanden-Eijnden,
2010; Qi and Majda, 2016; Mohamad and Sapsis, 2015;
Majda et al., 2019; Farazmand and Sapsis, 2017]. Such
approaches often use a specific problem structure, which
is applicable in cases where the dynamics of the system
are well known. For systems in which our understand-
ing of the governing laws is partial, or in situations where
there are serious errors in model construction, it has been
shown that combining existing models (incomplete or
with errors) with a data-driven approach improves the
efficiency of prediction compared to each of the meth-
ods separately [Wan et al., 2018].

However, there are situations when the only avail-
able information characterizing the system is observa-
tions. In this case the task can be solved using ma-
chine learning algorithms, especially deep neural net-
works, which have been effectively applied to a wide
range of problems, in particular, those related to extreme
events, see, e.g. [Jordan and Mitchell, 2015; Hramov
et al.,, 2017; Maksimenko et al., 2018; Qi and Ma-
jda, 2018]. Namely, different deep learning architec-
tures, such as long short-term memory (LSTM) [Ding
et al., 2019; Wambura et al., 2020; Li et al., 2023] and
gated recurrent unit (GRU) [Durairaj et al., 2023; Zhang
et al., 2024] networks, reservoir computings [Pyragas
and Pyragas, 2020] and transformers [Feng and Fox,
2022; Gao et al., 2023], were applied to a problem of
extreme events prediction. In this literature, LSTM is
the most commonly used architecture because of its abil-
ity to process long-term dependences in the temporal se-
quences and deal with the vanishing gradient problem.
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It should be noted that in some cases machine learning
algorithms developed for specific tasks also show good
performance in the task of predicting complex dynamics
and extreme events. For instance, deep neural networks
developed for image processing have been proposed for
data-driven prediction of chaotic dynamical systems [Ma
and Wang, 2019; Pathak et al., 2018; Raissi and Karni-
adakis, 2018], climate and weather forecasting [Bolton
and Zanna, 2019; Weyn et al., 2019], and parameteriza-
tion of unsolved processes [Han et al., 2018; Han and
Jentzen, 2017; Brenowitz and Bretherton, 2018]. Nev-
ertheless, building optimal deep learning algorithms for
predicting extreme events is still an actively developing
topic [Durairaj et al., 2023].

In this paper, we develop a deep machine learning
framework to predict chaotic dynamics and extreme
events using WaveNet, which is promising neural speech
generation model [Oord et al., 2016]. In speech tech-
nologies, WaveNet is a widely used fully probabilistic
generative deep learning model for creating sound [Oord
et al., 2016]. It can be considered as a causal filter
that does not look into the future, therefore it can be
applicable for time series prediction. Speech time se-
ries are obviously irregular, with mode switching and
large-amplitude spikes (events), which resemble extreme
events. We test our approach on artificial data obtained
from long time series with extreme events generated by
two coupled bursting Hindmarsh-Rose neurons, and on
two real-life data sets (local field potentials recorded
in mice and electroencephalogram recorded in humans)
containing patterns of epileptiform activity, which also
can be viewed as extreme events.

The paper is organized as follows. In Section 2 we
describe data sets based on which we demonstrate the
performance of our approach. In Section 3 we describe
the architecture of WaveNet, which is a type of con-
volutional deep neural networks. Here we also briefly
describe an architecture of LSTM network, which is a
type of recurrent deep neural networks, and compare two
these architectures. In Section 4 we formulate the prob-
lem of chaotic time series prediction and introduce eval-
uation metrics. In Section 5 we present results of pre-
diction of chaotic time series and time series containing
extreme events using WaveNet. In Section 6 we discuss
our findings and draw our conclusions.

2 Data: time series with extreme events
2.1 Data Set 1: artificial data

2.1.1 Data source In order to create data set con-
taining sufficient number of extreme events, we calcu-
lated long time series using well-known dynamical sys-
tem that is able to generate extreme events. Similar ap-
proach to creating data set with extreme events was used
in [Gromov et al., 2022]. It can help to overcome is-
sues related to data imbalance that naturally arise in tasks
of extreme events prediction: the time series often con-
tains very few examples of extreme events comparing to
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other events. Such a strong data imbalance can poten-
tially lead any machine learning model into one of two
problematic situations: either it has difficulties learning
extreme events patterns and simply recognizes all sam-
ples as belonging to the most popular non-standard dy-
namics, or it faces the overfitting problem, when the al-
gorithm perfectly remembers train samples, but does not
actually learns complex nonlinear dependencies and fails
on test set. Deep neural networks widely used for classi-
cal time series prediction, are observed to have troubles
in dealing with data imbalance [Wang et al., 2019].

In order to generate artificial data we used the system
of two bursting Hindmarsh-Rose neurons with recipro-
cal chemical couplings [Mishra et al., 2018], which is
described by the following equations:

B =y +bx? —ax? — z + 1 — ki(z; — vs)T(z5)
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Here the variable z; describes the membrane potential of
the ¢-th neuron, the variables y; and z; correspond to fast
and slow ion currents flowing through the membrane of
the i-th neuron. The parameter » << 1 determines the
ratio of the characteristic time scales of these currents. In
our study, we fix » = 0.001. The parameter I describes
the external current applied to the neuron. In the study,
we fix its value I = 4. Other parameters describe the
nonlinearity of the membrane conductivity: a = 1, b =
3, c=1,d=05,zr = —1.6, s = 5, which are typical
values for bursting regime in an isolated element.

Chemical synaptic couplings are described by the sig-
moid function

1
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with parameters A = 10, © = —0.25, v, = 2. Param-
eters kq 2 correspond to the strength of chemical cou-
plings and are control parameters in the system. De-
pending on its values, we can simulate different types
of impact: inhibitory (k12 < 0), excitatory (k1,2 > 0)
and mixed (k; > 0 and k3 < 0 or vice versa). Note
that such coupling function takes into account the basic
principles of the chemical interaction of neurons: (i) the
presence or absence of activity of the postsynaptic ele-
ment depends on the level of activity of the presynaptic
element; (ii) all interactions between neuronal cells are
inertial due to the fact that signal transmission is not in-
stantaneous.

We choose the variable ;7 = x1 + x2 as the ob-
servable variable based on biological background of this
system. It was shown in [Mishra et al., 2018] that de-
scribed system demonstrates extreme events for a wide
range of governing parameters k; and ky. We took
k1 = ko = —0.17 in our numerical experiments. The ex-
ample of corresponding time series containing extreme
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events is shown in Fig. 1. Probability density function of
all events demonstrates dragon-king-type hump for the
tailed part of the distribution [Mishra et al., 2018].

Here we employ the simplest framework consists only
of two elements. For more biologically plausible mod-
elling one can use ensembles with greater number of el-
ements, see, e.g., [Plotnikov, 2021]. Also more sophis-
ticated single neuron models, such as Hodgkin—Huxley
model [Borisenok, 2022], can be used in tasks of simu-
lating epileptiform activity.

2.1.2 Definition of extreme events and numerical
criterion As the term “extreme event” is used in vari-
ous disciplines, a precise definition of extreme events is
not available. Rather, it depends on the particular disci-
pline where this term is being used. In this study, we se-
lect the extreme events based on their magnitude. There-
fore, it is crucial to set a threshold height so that we can
call an event “extreme” when it exceeds the threshold.
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+
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time
Figure 1. Time series for the two coupled Hindmarsh-Rose bursting

neurons (1). Parameters are specified in the main text. Red line marks

H level. Here Hy = w+60.

Here to define extreme events we adopt a numerical
criterion first introduced in [Dysthe et al., 2008] and then
widely used in numerous studies, see e.g. [Chowdhury
et al., 2019; Mishra et al., 2020]. Namely, we calculate
the level

H, = pu+ No, 3)

where p is mean value and o is standard deviation of
all events in temporal diagram of the observable vari-
able. Constant N depends on particular system or data
source; in this case N = 6. In order to do this we took
a long runs (= 2 - 10° iterations) of observable variable,
measured the local maximum values and estimate their
mean . = (P,) and standard deviation o = (P?) — 2.
An event is then classified as extreme when it crosses a
threshold, H,. This criterion reflects that the amplitude
of extreme events exceeds several times the standard de-
viation of the observed variable from its mean value.
Mathematically, extreme events are connected with
highly irregular, chaotic (or even hyperchaotic [Olenin
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and Levanova, 2023]) dynamics of the system under
study. The prediction horizon, which is the maximum
number of steps ahead that one can make a prognosis, is
finite for chaotic time series. The prediction horizon is
attributed to an exponential divergence of initially close
trajectories due to the Lyapunov instability of chaotic
time series [Pyragas and Pyragas, 2020], which results in
exponential error growth for multi-step prediction. The
highest Lyapunov exponent serves here as the exponent
coefficient. This explains the fact that most papers deal-
ing with chaotic time series prediction, discuss results
for a single step prediction only, whereas the problem of
multi-step prediction for chaotic time series is still unre-
solved.

2.2 Data Set 2: recordings of epileptiform activity
in mice

2.2.1 Data source A dataset of recordings of
chronic neuronal activity containing patterns of epilep-
tiform activity was obtained at the Experimental Ani-
mal Clinic of the Institute of Theoretical and Experi-
mental Biophysics of the Russian Academy of Sciences
(Pushchino, Russia). Local field potentials (LFPs) were
recorded in the hippocampus and medial entorhinal cor-
tex of mice. Young healthy outbred CD1 mice were
used, divided into two groups: control (n=6) and with
induced chronic epileptiform activity (n=6). Epilepti-
form activity in mice was modeled using intraperitoneal
administration of pilocarpine (280 mg/kg). Registration
of DILI in awake mice was carried out one month after
the induction of epileptiform activity. Detailed protocol
of biological experiment can be found at [Gerasimova
etal., 2023].

In this study, recordings of chronic neuronal activity
from the hippocampus and MEC III were used, while
data on the study of behavioral patterns at the time of
recording of neuronal activity were not used.

The data were pre-processed before carrying out nu-
merical experiments. In particular, artifacts were re-
moved and a Gaussian filter was applied in order to
remove noise. Then the data was normalized so that
the mean value was zero and the spread was equal
to one. Next, the data were converted to a time se-
quence-response format. For example, to predict one
step, 20 time samples were fed to the model input, and
the 21st was used as the response. To predict several
steps, the model’s response to the previous step was iter-
atively added to the sequence at the input to the network.

2.2.2 Definition of extreme events and numerical
criterion Here we define extreme events as spike-wave
discharges [Dolinina et al., 2022] and other epileptiform
activity temporal patterns. The marking of patterns of
epileptiform activity was carried out by specialists in
[Gerasimova et al., 2023]. Fig. 2 shows time series for
the local field potentials recorded in mice in vivo.
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Figure 2.
in vivo.

Time series for the local field potentials recorded in mice

2.3 Data Set 3: EEG data with epileptic seizures

2.3.1 Data source As a source of EEG data con-
taining epileptic seizures we used CHB-MIT Scalp EEG
Database freely available at Physionet [Goldberger et al.,
2000]. The data is collected from Children’s Hospital
Boston (CHB), composed of EEG recordings observed
for several days. This is the only open database that con-
tains continuous long-term scalp EEG recordings suit-
able for the purpose of our study.

The recordings are grouped into 23 cases collected
from 22 subjects (17 females of age 1.5-19 years old
and five males aged 3-22 years old [Shoeb, 2009]. The
signals are sampled at 256 samples/sec of 16-bit resolu-
tion, which includes 23 EEG signals. EEG electrode po-
sition and nomenclature (International 10-20 systems)
are also recorded. In some cases, other signals are also
recorded (ECG signal). The EEG signals are in easy
to read format where the dummy signals are ignored.
The files are composed of 664 .edf files, and the records
(seizures) list the files with more seizures [Shoeb, 2009].
The records include 198 seizures (182 original sets with
23 cases). The long sequences of EEG samples contain
labeled seizures.

In total, 18 channels are consistent across all 24 cases:
FP1-F7, F7-T7, T7-P7, P7-O1, FP1-F3, F3-C3, C3-P3,
P3-0O1, FP2-F4, F4-C4, C4-P4, P4-O2, FP2-F8, F8-T8,
T8-P8, P8-02, FZ-CZ and CZ-PZ.

We perform single-channel prediction, for which data
only from FP1-F7 channel were used. On the one hand,
this approach (single-channel prediction) allows one to
reduce the workload to the total number of electrode
points. On the other hand, it still allows to test our deep
learning architectures and compare its performance.

For numerical experiments, we normalized the data by
converting them to zero mean and unit variance. After
that, the noise was filtered with a Gaussian filter with
o = 3 and with radius = 5. The data was then
separated into inputs and outputs for the model (“time
sequence-response” format). The input data consisted of
20 time samples, and the output was the 21-st sample.
The optimal number of time samples in the input data
was determined experimentally during the optimization
process. After normalizing and splitting the data, we
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split it into train and test sets in a 4:1 ratio.
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Figure 3. Example of human epileptic EEG signals from CHB-MIT
Scalp EEG Database (single channel, FP1-F7, frontal area). Red line

marks seizure according to given annotation file.

2.3.2 Definition of extreme events and numerical
criterion Epileptic seizures can be viewed as extreme
events in this case [Frolov et al., 2019]. The long se-
quence of EEG samples contains seizure intervals, the
beginning time and the end time of which are annotated
by doctors for each subject with seizures. These seizure
intervals are termed as ictal stages. The example of EEG
data that contains recorded seizures is shown in Fig. 3.

3 Methods

In this Section we compare the performance of
WaveNet deep learning architecture with the perfor-
mance of long short-term memory (LSTM) network,
which is widely used in time series prediction tasks.

3.1 Long short-term memory (LSTM) network

LSTM networks are one of the most well-known deep
learning architectures that belongs to a class of recur-
rent neural networks. LSTM network consists of LSTM
cells.

An LSTM cell is schematically presented in Fig. 4(a).
The cell has two hidden states, one representing short-
term memory(h;) and the other representing long-term
memory(c;), which interact through filters. The idea of
long-term memory is that, based on the totality of infor-
mation from short-term memory and input, it is regulated
which information should be forgotten from it and which
should be remembered. First, let us consider the infor-
mation that needs to be forgotten, a forgetting filter with
a sigmoid function is responsible for this, it returns val-
ues from O to 1 and they are multiplied component-by-
component by the state of long-term memory, this can be
interpreted as follows: if the output is O, then this infor-
mation is forgotten, 1 — left .

fi = o (Wyyzy + Whrhe + by) 4)
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Figure 4. LSTM architecture. (a) LSTM cell. (b) LSTM network.

For information that needs to be remembered, a sigmoid
input filter is used to understand which components of
the long-term memory state to insert the information into

it = U(Wzizt + Whiht + b’L)a (5)

and a hyperbolic tangent filter is used to understand what
information needs to be added

gt = tanh(Wgay + Wighy + bg). (6)

Then the final formula for changing long-term memory
is:

= fexci—1 4+ 1 gy @)

To obtain an output from a cell, an output filter and in-
formation from long-term memory are used:

ht = op * tanh(cy), )

[ O'(onxt —|— Whoht + bo).

Weight matrices W and bias b are trained in the network

using the backpropagation method, optimizing the loss
function [LeCun et al., 2015].

The deep neural network LSTM used in this study has

the following architecture, see Fig. 4(b). The first is
the input linear layer, which translates the input infor-

mation into a feature space of dimension 100. Then
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follow two layers of LSTM cells. The result is pro-
jected by the linear output layer. Weight matrices W
and bias b are trained using backpropagation using the
mean square loss function. This LSTM network archi-
tecture was tested in our previous studies [Gromov et al.,
2022; Gromov et al., 2023; Gerasimova et al., 2023; Bel-
tyukova et al., 2023].

3.2 WaveNet

WaveNet allows to process and generate audio signals
[Oord et al., 2016]. Namely, it models time series with
conditional probabilities, where the probability of each
value z; in the series is conditioned on r previous values:
p(z¢||xi—r, ..., zi—1). It models these relationships be-
tween past and future values with multiple causal convo-
lutional layers, where the causal property ensures that no
future values are considered when making the prediction
for the next time step. Therefore, the network receives
the last  time samples of a time series as input, and pre-
dicts the next ¢ + 1 sample.

The architecture of WaveNet is schematically depicted
in Fig. 5. Here each layer is displayed as a block of its
own color. All blocks of the same color represent the
same layer, i.e. they have the same weights. As one may
see, the structure of a network is a tree-like. Each block
has a fairly simple architecture. First comes the dilated
convolution, which allows to exponentially increase the
distances between the inputs to the next layer.

DilatedConvOuty, = Weona, [4]- )

where ¢ in [t —k,t —2k,t —3k . ..], Weona, is a trainable
weight matrix for block k and x; is a sample in the mo-
ment t. The core of this convolution contains gaps, the
size of which can be specified. This convolution allows
to consider a larger receptive field with fewer parame-
ters. Two such convolutions are used, one for the sig-
moid output, the other for the hyperbolic tangent, i.e. a
typical example of filters is implemented, as in recurrent
neural networks, such as LSTM and GRU.

Gatingy, = tanh(DilatedConvOuty,)* (10)
* o(DilatedConvOuty,)

The output is passed through fully connected layers, one
for the next block:

oM = ok + Wi Gating,, (11)
and another for the predictor:
K
i1 = Softmar(Woyt, Relu(Woyt, Relu(z z*))),
=

where k is a depth of the network (number of blocks),
Wy is another trainable weight matrix for block k,
Wout, » Wout, are output trainable weight matrices.
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Figure 5.  WaveNet vocoder architecture.(a) Stack of dilated causal convolution layers. (b) Residual block and the entire architecture.
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Figure 6. The dependence of the value of evaluation metrics on the prediction horizon. (a) Data Set 1. (b) Data Set 2. (c) Data Set 3.
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Figure 7. Comparison of predictions of both of our networks for Data

Set 1 with a different formulation of the task, as classification with
cross-entropy loss function (dashed lines) and as regression task with
MSE loss function (continuous lines).

The network predicts values autoregressively, i.e.
when the ¢-th sample is received, it is added to the list,
the (¢t —r)-th sample is removed from the list, so the time
series is synthesized step by step.

Note that WaveNet is in fact a convolutional deep
network, which has a valuable advantage in time se-
ries prediction compared with recurrent deep networks.
Namely, recurrent networks tends to predict a very simi-
lar sample to the last one seen to optimize the loss func-
tion, and thus the network tends to converge to predict
the mode. Convolutional deep networks converge to
mode much more slowly due to a large receptive field,
and the network does not give preference to any sample.

4 Problem statement and evaluation metrics

The task of predicting chaotic time series and time se-
ries containing extreme events can be formulated both as
a regression task and as a classification task.

Regression task implies predicting the next time step.
In this case one should optimise mean squared error
(MSE) loss function, which is

n

_1 )2
MSE =~ > (i — i), (13)

i=1

where n is number of training sequences, y; is correct
sample and y; is predicted sample.

Classification task implies dividing samples into 256
classes, representing uniform intervals from the mini-
mum value of the time series to the maximum. In this
task one should optimise multiclass cross-entropy loss
function, which is

n

1
CrossEntropy = - Z(yilog(zii))- (14)

i=1

In previous studies researchers used different evalua-
tion metrics to examine the quality of a deep learning
models in similar tasks by quantitatively measuring the
accuracy in terms of RMSE, co-efficient of determina-
tion (R? ), MSE and MAE, see [Hussain et al., 2019]. In
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our study we used as an evaluation metric a root-mean-
square error (RMSE), which has very intuitive interpre-
tation in terms of relative error:

5)

Here the meaning of parameters is the same as in case of
MSE, see Eq.(13). The RMSE metric shows how far the
predicted value is from the true value in absolute mea-
sure [LeCun et al., 2015].

We have compared the performance of both architec-
tures in two task settings on artificial data (Data Set
1), see Fig. 7. It was shown that for single step
prediction LSTM network demonstrates better perfor-

mance with MSE loss function (regression task) than
with Cross-Entropy loss function (classification task).

This is also true for predicting a small number of steps
ahead. WaveNet showed better performance with Cross-
Entropy loss function (classification task) in all cases.
Therefore, in all further numerical experiments we will
compare the performance of LSTM with MSE loss and
WaveNet with Cross-Entropy loss.

5 Results

LST™M
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- - Predicted

=

X1 + X2

-2

0 150 300 450 600 750 900
(a) time
WaveNet

— True 1
1
1. = — Predicted 1

0 150 300 450 600 750 900

(b) time

Figure 8. True (blue solid line) and predicted (red dashed line) value
for 1 step of prediction for Data Set 1. (a) LSTM. (b) WaveNet.

Described in Section 3 LSTM and WaveNet deep ar-
chitectures were trained on sequences “’time sequence —
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response”. Here the response of the model to the previ-
ous step was iteratively added to the sequence to the net-
work input. We compared the performance of two neural
networks using performance metrics on the example of
artificial and real data.
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Figure 9. True (blue solid line) and predicted (red dashed line) value
for 15 steps of prediction for Data Set 1. (a) LSTM. (b) WaveNet.

First, let us study how these two models deal with ar-
tificial data containing chaos and extreme events (Data
Set 1). In Fig. 8 examples of true and predicted artificial
signal are shown for one-step prediction. In Fig. 9 ex-
amples of true and predicted artificial signal are shown
for multi-step prediction (namely, for 15 steps). The de-
pendence of the value of evaluation metrics on the pre-
diction step length (prediction horizon) is presented in
Fig. 6(a). It can be clearly seen that for a small num-
ber of prediction steps LSTM perform better. Neverthe-
less, in case of LSTM prediction error roughly increases
with the increase in the number of prediction steps. Vice
versa, WaveNet shows better performance for multistep
prediction. Note that prediction error for WaveNet in-
creases much slower than for LSTM.

Second, let us study how these two models deal with
real-life data that contain records with epileptiform ac-
tivity in mice (Data Set 2). The sampling frequency for
recording local field potentials was 100 Hz. Accord-
ingly, the time between adjacent points (i.e., 1 time step)
was 10 ms. In Fig. 10 examples of true and predicted
signal with epileptiform activity are shown for 10 ms
prediction. In Fig. 11 examples of true and predicted

27

LFP signal in mice are shown for multi-step prediction

(namely, for 8 steps, which are 80 ms). The dependence
of the value of evaluation metrics on the prediction step

length (prediction horizon) is presented in Fig. 6(b). As
in the case of artificial data (Data Set 1), WaveNet shows
better performance for multistep prediction and much
slower growth in the value of prediction error with the
increase in prediction step length.

Third, let us study how these two models will per-
form on another real-life data, namely, on EEG data with
epileptic seizures (Data Set 3). Note that the sampling
frequency of the EEG recording was 256 Hz, respec-
tively, the time between adjacent points (i.e., 1 time step)
is 1/256 s. In Fig. 12 examples of true and predicted
EEG signal with epileptic seizures are shown for 1 step
prediction. In Fig. 13 examples of true and predicted
EEG signal with epileptic seizures are shown for multi-
step prediction (namely, for 10 steps). From Fig. 6(c)
one can see that for this data set Wavenet shows worse
performance, than the LSTM network.

6 Conclusion

We proposed WaveNet deep learning architecture,
which is usually used for speech generation, to be em-
ployed in tasks of predicting chaotic time series and time
series containing extreme events. To the best of our
knowledge, this is a first attempt to use vocoders in the
task of extreme events prediction.

We train WaveNet network on artificial and real-life
data sets and compared its performance with the perfor-
mance of LSTM deep network, which is a first-choice
architecture in time series and sequences prediction. We
showed that for chosen prediction horizon prediction
LSTM network demonstrates better performance with
MSE loss function than with Cross-Entropy loss func-
tion. We also showed that WaveNet is able to capture
complex relationships within the signals of all tested
types and in several cases is consistently superior in per-
formance compared to the LSTM model.

This study can make a contribution to improving real-
time estimation of neural activity in different proto-
cols, e.g. in neuroprosthesis [Beltyukova et al., 2023]
and brain-computer interfaces [Chholak et al., 2019],
[Rasheed, 2021], providing higher performance in real-
time applications compared to previous state-of-the-art
methods, such as LSTM.
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