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I. INTRODUCTION

The interest for designing feedback controllers for helicopters
has increased during the last decade due to important potential
applications. The main difficulties for designing stable feed-
back controllers for helicopters arise from their nonlinearities
and couplings. To date, various efforts have been directed
to development of effective nonlinear control strategies for
helicopters. Most of the existing results have been obtained
mainly for flight regulation. In this paper, the flight tracking
control problem of 3 DOF model helicopter is considered and
a nonlinear model following control method with parameter
identification is applied. Experimental results are presented to
show the performance of the designed controller.

II. SYSTEM DESCRIPTION

Consider a model helicopter of Quanser Consulting, Inc.
shown in Fig.1. The helicopter body is mounted at the end
of an arm and free to move about the elevation axis, the pitch
axis as well as about the horizontal travel axis. In other words,
the helicopter has 3 DOF: the elevation ε, the pitch θ and
travel φ angles. The angles of movement are measured via
optical encoders. Two DC motors with propellers generate a
driving force proportional to the voltage output of a controller.
The system dynamics are expressed by the following highly
nonlinear and coupled state variable equations.

ẋp = f(xp) + [g1(xp) g2(xp)]up (1)

where

xp = [ε ε̇ θ θ̇ φ φ̇]T , up = [up1 up2]T

up1 = Vf + Vb, up2 = Vf − Vb

f(xp) =

⎡
⎢⎢⎢⎢⎢⎢⎣

ε̇
p1 cos ε + p2 sin ε + p3ε̇

θ̇

p5 cos θ + p6 sin θ + p7θ̇

φ̇

p9φ̇

⎤
⎥⎥⎥⎥⎥⎥⎦

g1(xp) = [0 p4 cos θ 0 0 0 p10 sin θ]T

g2(xp) = [0 0 0 p8 0 0]T

Here, Vf and Vb are the voltages for the front motor and the
rear motor, respectively.
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Fig. 1. Overview of a model helicopter.

It is worth noting that all the parameters pi (i = 1 . . . 10)
of the equations are constant.

For position control of the model helicopter, two angles, the
elevation ε and the travel φ angles, are selected as the outputs
among three detected signals of the angles. Hence, we have

yP = [ε, φ]T (2)

Then, it is not difficult to verify that the system is input-output
linearizable and minimum phase.

III. CONTROL SYSTEM DESIGN

In this section, a nonlinear model reference control system
is designed for the 3 DOF model helicopter mentioned in the
previous section.

When the outputs are chosen as (2), the decoupling matrix
B(xP ) is calculated as

B(xP ) =
[

p4 cos θ 0
p10 sin θ 0

]
(3)

and obviously singular. Hence, it is needed to apply the
nonlinear structure algorithm for design of a model reference
controller.

First, the reference model is given as

ẋM = AMxM + BMuM , yM = CMxM (4)

xM = [xM1, xM2, xM3, xM4, xM5, xM6, xM7, xM8]T

yM = [ εM φM ]T , uM = [ uM1 uM2 ]T



where

AM =
[

K1 0
0 K2

]
, BM =

[
i1 0
0 i1

]
, CM =

[
i2

T 0T

0T i2
T

]

Ki =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1

ki1 ki2 ki3 ki4

⎤
⎥⎥⎦, i1 =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦, i2 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦

Then, the input vector is given by

uP = R (x) + S (x) uM , x = [xT
P xT

M ]T (5)

R (x) =
1

d2(x)p4 cos xp3

[ −d2(x) 0
d1(x) p4 cos xp3

][
ē1 − r1 (x)
ē2 − r2 (x)

]

S (x) =
−1

d2(x)p4 cos xp3

[ −d2(x) 0
d1(x) p4 cos xp3

][
0 0

d3(x) 1

]

where

ē1 = −σ12ė1 − σ11e1

ē2 = −σ24e
(3)
2 − σ23ë2 − σ22ė2 − σ21e2

r1(x) = −p1 cos xp1 − p2 sin xp1 − p3xp2 + xM3

r2(x) = {−d5(x) (p9p11 tan xp3 + xp4d4(x))
−p11xp2 tan xp3 (p1 cos xp1 + p2 sin xp1)}xp2

+ {p3xp4d4(x) + p11 tan xp3(p3p9 − d5(x))}
(xM3 − r1(x)) + {p3 (xM3 − r1(x))
+(2xp4 tan xp3 − p12) (ë1 − r1(x)) − xM4

+e
(3)
1 − xp2d5(x)

}
xp4d4(x) + d4(x)

(ë1 − r1(x)) (p5 cos xp3 + p6 sin xp3 + p7xp4)

−(p9)3xp6 + (xp4d4(x) − p11p12 tan xp3) e
(3)
1

+p11 tan xp3 (p12xM4 − k1xM1 − k2xM2

−k3xM3 − k4xM4) − xp4xM4d4(x)
+k5xM5 + k6xM6 + k7xM7 + k8xM8

+p11e
(4)
1 tan xp3

d1 (x) =
(
p3p9 − d5(x) − (p9)2

)
p10 sin xp3

+p3p4xp4d4(x) cos xp3

d2 (x) = p8d4(x) (ë1 − r1(x))
d3 (x) = −p11 tan xp3, e1 = xM1 − xp1

ė1 = xM2 − xp2, ë1 = −σ12ė1 − σ11e1

e
(3)
1 = (σ2

12 − σ11)ė1 + σ12σ11e1

e
(4)
1 = (−σ3

12 + 2σ12σ11)ė1 − σ11(σ2
12 − σ11)e1

e2 = xM5 − xp5, ė2 = xM6 − xp6

ë2 = p11 tan xp3 (ë1 − r1(x)) − p9xp6 + xM7

e
(3)
2 = p11 tan xp3 {p3 (xM3 − r1(x)) − xp2d5(x)

+e
(3)
1 + p12 (r1(x) − ë1) − xM4

}
+ xM8

+xp4d4(x) (ë1 − r1(x)) − (p9)2xp6

p11 =
p10

p4
, d4(x) =

p11

cos2 xp3

p12 = p3 − p9, d5(x) = p1 sin xp1 − p2 cos xp1

The design parameters σij (i = 1, 2, j = 1, · · · , 4) are selected
so that the characteristic equations λ2 + σ12λ + σ11 = 0 and

λ4 + σ24λ
3 + σ23λ

2 + σ22λ + σ21 = 0 are stable. Then, the
closed-loop system has the following error equations

ë1 + σ12ė1 + σ11e1 = 0 (6)

e
(4)
2 + σ24e

(3)
2 + σ23ë2 + σ22ė2 + σ21e2 = 0 (7)

and the plant outputs converge to the reference outputs.
Since the controller requires the angular velocity signals ε̇, θ̇

and φ̇, in the experiment they are calculated numerically from
the measured angular positions by a discretized differentiator
with the first order filter

Hl (z) =
α

(
1 − z−1

)
1 − z−1 + αTs

which is derived by substituting s = (1 − z−1)/Ts into the
differentiator Gl(s) = αs/(s+α) where z−1 is a one step delay
operator, Ts is the sampling period and the design parameter α
is a positive constant. Hence, for example, we have

ε̇(k) ≈ 1
αTs + 1

[ε̇ (k − 1) + α {ε (k) − ε (k − 1)}]

IV. PARAMETER IDENTIFICATION

It is difficult to obtain the desired control performance by ap-
plying the above algorithm directly to the experimental system
since there are parameter uncertainties in the model dynamics.
Here, it is easy to understand that the system dynamics (1)
are linear with respect to unknown parameters though the
equations are nonlinear. Therefore, it is possible to introduce the
parameter identification scheme in the feedback control loop.

In this paper, the parameter identification scheme is designed
in the discrete-time form using measured discrete-time signals.
Hence, the estimated parameters are calculated recursively
at every instant kT where T is an updating period of the
parameters and k is a nonnegative integer. In the following,
T is omitted because of the simplicity of description. Then, the
dynamics of the model helicopter are rewritten from (1) as

w1(k) ≡ ε̈(k) = ζT
1 v1(k) (8)

w2(k) ≡ θ̈(k) = ζT
2 v2(k) (9)

w3(k) ≡ φ̈(k) = ζT
3 v3(k) (10)

where

ζ1 =
[

p1 p2 p3 p4

]T

ζ2 =
[

p5 p6 p7 p8

]T
, ζ3 =

[
p9 p10

]T

v1(k) =
[

cos ε sin ε ε̇ u1 cos θ
]T

v2(k) =
[

cos θ sin θ θ̇ u2

]T

v3(k) =
[

φ̇ u1 sin θ
]T

The parameter vectors ζ1, ζ2, ζ3 are identified by the recursive
least squares algorithm.

Then, the tracking of the two outputs is achieved under the
persistent excitation of the signals v = [vT

1 , vT
2 , vT

3 ]T .



V. EXPERIMENTAL RESULTS

The estimation and control algorithm mentioned above were
applied to the experimental system. The design parameters are
given as follows. The sampling period Ts is Ts = 2 [ms], the
updating period of the parameters T is also T = 2 [ms] and the
filter parameter α for estimation of velocities and accelerations
is α = 100. The inputs uM1 and uM2 of the reference model
are given by

uM1 =
{

0.3 45k − 52.5 ≤ t < 45k − 30
−0.1 45k − 30 ≤ t < 45k − 7.5

uM2 =

⎧⎨
⎩

0 0 ≤ t < 7.5
0.4 45k − 37.5 ≤ t < 45k − 22.5
−0.4 45k − 22.5 ≤ t < 45k

(11)

k = 1, 2, 3, · · ·
The eigenvalues of the matrices K1 and K2 are all −1, and
the characteristic roots of the error equations (6) and (7) are
specified as (−2.0, − 3.0) and (−2.0, − 2.2, − 2.4, − 2.6),
respectively.

The outputs are shown in Fig. 2 and Fig. 3. The tracking
performance of the both outputs ε and φ is achieved. Two
estimated parameters are depicted in Fig. 4 and Fig. 5.
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Fig. 2. Outputs
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Fig. 3. Outputs;
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Fig. 4. Estimated parameter p̂2
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Fig. 5. Estimated parameter p̂9

VI. A CONCLUSION

This paper considers nonlinear model following control with
parameter identification of a 3 DOF model helicopter. The
experimental results are shown.


