Nonlinear model following control with parameter identification for a 3 DOF model helicopter

Mitsuaki Ishitobi, Masatoshi Nishi and Masaaki Miyachi
Department of Mechanical Systems Engineering
Kumamoto University
2-39-1 Kurokami, Kumamoto 860-8555, Japan
mishi@kumamoto-u.ac.jp

Index Terms-model helicopters, nonlinear control, model following control, parameter identification

I. Introduction

The interest for designing feedback controllers for helicopters has increased during the last decade due to important potential applications. The main difficulties for designing stable feedback controllers for helicopters arise from their nonlinearities and couplings. To date, various efforts have been directed to development of effective nonlinear control strategies for helicopters. Most of the existing results have been obtained mainly for flight regulation. In this paper, the flight tracking control problem of 3 DOF model helicopter is considered and a nonlinear model following control method with parameter identification is applied. Experimental results are presented to show the performance of the designed controller.

II. System description

Consider a model helicopter of Quanser Consulting, Inc. shown in Fig.1. The helicopter body is mounted at the end of an arm and free to move about the elevation axis, the pitch axis as well as about the horizontal travel axis. In other words, the helicopter has 3 DOF: the elevation ε, the pitch θ and travel ϕ angles. The angles of movement are measured via optical encoders. Two DC motors with propellers generate a driving force proportional to the voltage output of a controller. The system dynamics are expressed by the following highly nonlinear and coupled state variable equations.

$$
\begin{equation*}
\dot{\boldsymbol{x}}_{p}=f\left(\boldsymbol{x}_{p}\right)+\left[g_{1}\left(\boldsymbol{x}_{p}\right) g_{2}\left(\boldsymbol{x}_{p}\right)\right] \boldsymbol{u}_{p} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \boldsymbol{x}_{p}= {[\varepsilon \dot{\varepsilon} \theta \dot{\theta} \phi \dot{\phi}]^{T}, \boldsymbol{u}_{p}=\left[\begin{array}{ll}
u_{p 1} & u_{p 2}
\end{array}\right]^{T} } \\
& u_{p 1}= V_{f}+V_{b}, u_{p 2}=V_{f}-V_{b} \\
& \dot{\varepsilon} \\
& f\left(\boldsymbol{x}_{p}\right)= {\left[\begin{array}{c}
p_{1} \cos \varepsilon+p_{2} \sin \varepsilon+p_{3} \dot{\varepsilon} \\
\dot{\theta} \\
p_{5} \cos \theta+p_{6} \sin \theta+p_{7} \dot{\theta} \\
\dot{\phi} \\
p_{9} \dot{\phi}
\end{array}\right.} \\
& g_{1}\left(\boldsymbol{x}_{p}\right)= {\left[\begin{array}{llllll}
0 & p_{4} \cos \theta & 0 & 0 & 0 & p_{10} \sin \theta
\end{array}\right]^{T} } \\
& g_{2}\left(\boldsymbol{x}_{p}\right)= {\left[\begin{array}{llllll}
0 & 0 & 0 & p_{8} & 0 & 0
\end{array}\right]^{T} }
\end{aligned}
$$

Here, V_{f} and V_{b} are the voltages for the front motor and the rear motor, respectively.

Fig. 1. Overview of a model helicopter.

It is worth noting that all the parameters $p_{i}(i=1 \ldots 10)$ of the equations are constant.

For position control of the model helicopter, two angles, the elevation ε and the travel ϕ angles, are selected as the outputs among three detected signals of the angles. Hence, we have

$$
\begin{equation*}
\boldsymbol{y}_{P}=[\varepsilon, \phi]^{T} \tag{2}
\end{equation*}
$$

Then, it is not difficult to verify that the system is input-output linearizable and minimum phase.

III. CONTROL SYSTEM DESIGN

In this section, a nonlinear model reference control system is designed for the 3 DOF model helicopter mentioned in the previous section.

When the outputs are chosen as (2), the decoupling matrix $B\left(\boldsymbol{x}_{P}\right)$ is calculated as

$$
B\left(\boldsymbol{x}_{P}\right)=\left[\begin{array}{cc}
p_{4} \cos \theta & 0 \tag{3}\\
p_{10} \sin \theta & 0
\end{array}\right]
$$

and obviously singular. Hence, it is needed to apply the nonlinear structure algorithm for design of a model reference controller.

First, the reference model is given as

$$
\begin{align*}
\dot{\boldsymbol{x}}_{M} & =A_{M} \boldsymbol{x}_{M}+B_{M} \boldsymbol{u}_{M}, \boldsymbol{y}_{M}=C_{M} \boldsymbol{x}_{M} \tag{4}\\
\boldsymbol{x}_{M} & =\left[\begin{array}{lll}
x_{M 1}, & x_{M 2}, & x_{M 3}, \\
x_{M 4}, & x_{M 5}, & x_{M 6}, \\
x_{M 7} & x_{M 8}
\end{array}\right]^{T} \\
\boldsymbol{y}_{M} & =\left[\begin{array}{ll}
\varepsilon_{M} & \phi_{M}
\end{array}\right]^{T}, \quad \boldsymbol{u}_{M}=\left[\begin{array}{ll}
u_{M 1} & u_{M 2}
\end{array}\right]^{T}
\end{align*}
$$

where

$$
\begin{gathered}
A_{M}=\left[\begin{array}{cc}
K_{1} & 0 \\
0 & K_{2}
\end{array}\right], B_{M}=\left[\begin{array}{cc}
\boldsymbol{i}_{1} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{i}_{1}
\end{array}\right], C_{M}=\left[\begin{array}{cc}
\boldsymbol{i}_{2}^{T} & \mathbf{0}^{T} \\
\mathbf{0}^{T} & \boldsymbol{i}_{2}{ }^{T}
\end{array}\right] \\
K_{i}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
k_{i 1} & k_{i 2} & k_{i 3} & k_{i 4}
\end{array}\right], \boldsymbol{i}_{1}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right], \boldsymbol{i}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
\end{gathered}
$$

Then, the input vector is given by

$$
\boldsymbol{u}_{P}=R(\boldsymbol{x})+S(\boldsymbol{x}) \boldsymbol{u}_{M}, \boldsymbol{x}=\left[\begin{array}{ll}
\boldsymbol{x}_{P}^{T} & \boldsymbol{x}_{M}^{T} \tag{5}
\end{array}\right]^{T}
$$

$R(\boldsymbol{x})=\frac{1}{d_{2}(\boldsymbol{x}) p_{4} \cos x_{p 3}}\left[\begin{array}{cc}-d_{2}(\boldsymbol{x}) & 0 \\ d_{1}(\boldsymbol{x}) & p_{4} \cos x_{p 3}\end{array}\right]\left[\begin{array}{l}\bar{e}_{1}-r_{1}(\boldsymbol{x}) \\ \bar{e}_{2}-r_{2}(\boldsymbol{x})\end{array}\right]$
$S(\boldsymbol{x})=\frac{-1}{d_{2}(\boldsymbol{x}) p_{4} \cos x_{p 3}}\left[\begin{array}{cc}-d_{2}(\boldsymbol{x}) & 0 \\ d_{1}(\boldsymbol{x}) & p_{4} \cos x_{p 3}\end{array}\right]\left[\begin{array}{cc}0 & 0 \\ d_{3}(\boldsymbol{x}) & 1\end{array}\right]$
where

$$
\begin{aligned}
& \bar{e}_{1}=-\sigma_{12} \dot{e}_{1}-\sigma_{11} e_{1} \\
& \bar{e}_{2}=-\sigma_{24} e_{2}^{(3)}-\sigma_{23} \ddot{e}_{2}-\sigma_{22} \dot{e_{2}}-\sigma_{21} e_{2} \\
& r_{1}(\boldsymbol{x})=-p_{1} \cos x_{p 1}-p_{2} \sin x_{p 1}-p_{3} x_{p 2}+x_{M 3} \\
& r_{2}(\boldsymbol{x})=\left\{-d_{5}(\boldsymbol{x})\left(p_{9} p_{11} \tan x_{p 3}+x_{p 4} d_{4}(\boldsymbol{x})\right)\right. \\
& \left.-p_{11} x_{p 2} \tan x_{p 3}\left(p_{1} \cos x_{p 1}+p_{2} \sin x_{p 1}\right)\right\} x_{p 2} \\
& +\left\{p_{3} x_{p 4} d_{4}(\boldsymbol{x})+p_{11} \tan x_{p 3}\left(p_{3} p_{9}-d_{5}(\boldsymbol{x})\right)\right\} \\
& \left(x_{M 3}-r_{1}(\boldsymbol{x})\right)+\left\{p_{3}\left(x_{M 3}-r_{1}(\boldsymbol{x})\right)\right. \\
& +\left(2 x_{p 4} \tan x_{p 3}-p_{12}\right)\left(\ddot{e}_{1}-r_{1}(\boldsymbol{x})\right)-x_{M 4} \\
& \left.+e_{1}^{(3)}-x_{p 2} d_{5}(\boldsymbol{x})\right\} x_{p 4} d_{4}(\boldsymbol{x})+d_{4}(\boldsymbol{x}) \\
& \left(\ddot{e}_{1}-r_{1}(\boldsymbol{x})\right)\left(p_{5} \cos x_{p 3}+p_{6} \sin x_{p 3}+p_{7} x_{p 4}\right) \\
& -\left(p_{9}\right)^{3} x_{p 6}+\left(x_{p 4} d_{4}(\boldsymbol{x})-p_{11} p_{12} \tan x_{p 3}\right) e_{1}^{(3)} \\
& +p_{11} \tan x_{p 3}\left(p_{12} x_{M 4}-k_{1} x_{M 1}-k_{2} x_{M 2}\right. \\
& \left.-k_{3} x_{M 3}-k_{4} x_{M 4}\right)-x_{p 4} x_{M 4} d_{4}(\boldsymbol{x}) \\
& +k_{5} x_{M 5}+k_{6} x_{M 6}+k_{7} x_{M 7}+k_{8} x_{M 8} \\
& +p_{11} e_{1}^{(4)} \tan x_{p 3} \\
& d_{1}(\boldsymbol{x})=\left(p_{3} p_{9}-d_{5}(\boldsymbol{x})-\left(p_{9}\right)^{2}\right) p_{10} \sin x_{p 3} \\
& +p_{3} p_{4} x_{p 4} d_{4}(\boldsymbol{x}) \cos x_{p 3} \\
& d_{2}(\boldsymbol{x})=p_{8} d_{4}(\boldsymbol{x})\left(\ddot{e}_{1}-r_{1}(\boldsymbol{x})\right) \\
& d_{3}(\boldsymbol{x})=-p_{11} \tan x_{p 3}, \quad e_{1}=x_{M 1}-x_{p 1} \\
& \dot{e}_{1}=x_{M 2}-x_{p 2}, \quad \ddot{e}_{1}=-\sigma_{12} \dot{e}_{1}-\sigma_{11} e_{1} \\
& e_{1}^{(3)}=\left(\sigma_{12}^{2}-\sigma_{11}\right) \dot{e}_{1}+\sigma_{12} \sigma_{11} e_{1} \\
& e_{1}^{(4)}=\left(-\sigma_{12}^{3}+2 \sigma_{12} \sigma_{11}\right) \dot{e}_{1}-\sigma_{11}\left(\sigma_{12}^{2}-\sigma_{11}\right) e_{1} \\
& e_{2}=x_{M 5}-x_{p 5}, \quad \dot{e}_{2}=x_{M 6}-x_{p 6} \\
& \ddot{e}_{2}=p_{11} \tan x_{p 3}\left(\ddot{e}_{1}-r_{1}(\boldsymbol{x})\right)-p_{9} x_{p 6}+x_{M 7} \\
& e_{2}^{(3)}=p_{11} \tan x_{p 3}\left\{p_{3}\left(x_{M 3}-r_{1}(\boldsymbol{x})\right)-x_{p 2} d_{5}(\boldsymbol{x})\right. \\
& \left.+e_{1}^{(3)}+p_{12}\left(r_{1}(\boldsymbol{x})-\ddot{e}_{1}\right)-x_{M 4}\right\}+x_{M 8} \\
& +x_{p 4} d_{4}(\boldsymbol{x})\left(\ddot{e}_{1}-r_{1}(\boldsymbol{x})\right)-\left(p_{9}\right)^{2} x_{p_{6}} \\
& p_{11}=\frac{p_{10}}{p_{4}}, \quad d_{4}(\boldsymbol{x})=\frac{p_{11}}{\cos ^{2} x_{p 3}} \\
& p_{12}=p_{3}-p_{9}, \quad d_{5}(\boldsymbol{x})=p_{1} \sin x_{p 1}-p_{2} \cos x_{p 1}
\end{aligned}
$$

The design parameters $\sigma_{i j} \quad(i=1,2, j=1, \cdots, 4)$ are selected so that the characteristic equations $\lambda^{2}+\sigma_{12} \lambda+\sigma_{11}=0$ and
$\lambda^{4}+\sigma_{24} \lambda^{3}+\sigma_{23} \lambda^{2}+\sigma_{22} \lambda+\sigma_{21}=0$ are stable. Then, the closed-loop system has the following error equations

$$
\begin{align*}
& \ddot{e}_{1}+\sigma_{12} \dot{e}_{1}+\sigma_{11} e_{1}=0 \tag{6}\\
& e_{2}^{(4)}+\sigma_{24} e_{2}^{(3)}+\sigma_{23} \ddot{e}_{2}+\sigma_{22} \dot{e}_{2}+\sigma_{21} e_{2}=0 \tag{7}
\end{align*}
$$

and the plant outputs converge to the reference outputs.
Since the controller requires the angular velocity signals $\dot{\varepsilon}, \dot{\theta}$ and $\dot{\phi}$, in the experiment they are calculated numerically from the measured angular positions by a discretized differentiator with the first order filter

$$
H_{l}(z)=\frac{\alpha\left(1-z^{-1}\right)}{1-z^{-1}+\alpha T_{s}}
$$

which is derived by substituting $s=\left(1-z^{-1}\right) / T_{s}$ into the differentiator $G_{l}(s)=\alpha s /(s+\alpha)$ where z^{-1} is a one step delay operator, T_{s} is the sampling period and the design parameter α is a positive constant. Hence, for example, we have

$$
\dot{\varepsilon}(k) \approx \frac{1}{\alpha T_{s}+1}[\dot{\varepsilon}(k-1)+\alpha\{\varepsilon(k)-\varepsilon(k-1)\}]
$$

IV. PARAMETER IDENTIFICATION

It is difficult to obtain the desired control performance by applying the above algorithm directly to the experimental system since there are parameter uncertainties in the model dynamics. Here, it is easy to understand that the system dynamics (1) are linear with respect to unknown parameters though the equations are nonlinear. Therefore, it is possible to introduce the parameter identification scheme in the feedback control loop.

In this paper, the parameter identification scheme is designed in the discrete-time form using measured discrete-time signals. Hence, the estimated parameters are calculated recursively at every instant $k T$ where T is an updating period of the parameters and k is a nonnegative integer. In the following, T is omitted because of the simplicity of description. Then, the dynamics of the model helicopter are rewritten from (1) as

$$
\begin{align*}
& w_{1}(k) \equiv \ddot{\varepsilon}(k)=\boldsymbol{\zeta}_{1}^{T} \boldsymbol{v}_{1}(k) \tag{8}\\
& w_{2}(k) \equiv \ddot{\theta}(k)=\boldsymbol{\zeta}_{2}^{T} \boldsymbol{v}_{2}(k) \tag{9}\\
& w_{3}(k) \equiv \ddot{\phi}(k)=\boldsymbol{\zeta}_{3}^{T} \boldsymbol{v}_{3}(k) \tag{10}
\end{align*}
$$

where

$$
\begin{aligned}
\boldsymbol{\zeta}_{1} & =\left[\begin{array}{llll}
p_{1} & p_{2} & p_{3} & p_{4}
\end{array}\right]^{T} \\
\boldsymbol{\zeta}_{2} & =\left[\begin{array}{llll}
p_{5} & p_{6} & p_{7} & p_{8}
\end{array}\right]^{T}, \quad \boldsymbol{\zeta}_{3}=\left[\begin{array}{ll}
p_{9} & p_{10}
\end{array}\right]^{T} \\
\boldsymbol{v}_{1}(k) & =\left[\begin{array}{llll}
\cos \varepsilon & \sin \varepsilon & \dot{\varepsilon} & u_{1} \cos \theta
\end{array}\right]^{T} \\
\boldsymbol{v}_{2}(k) & =\left[\begin{array}{llll}
\cos \theta & \sin \theta & \dot{\theta} & u_{2}
\end{array}\right]^{T} \\
\boldsymbol{v}_{3}(k) & =\left[\begin{array}{lll}
\dot{\phi} & u_{1} \sin \theta
\end{array}\right]^{T}
\end{aligned}
$$

The parameter vectors $\boldsymbol{\zeta}_{1}, \boldsymbol{\zeta}_{2}, \boldsymbol{\zeta}_{3}$ are identified by the recursive least squares algorithm.

Then, the tracking of the two outputs is achieved under the persistent excitation of the signals $\boldsymbol{v}=\left[\boldsymbol{v}_{1}^{T}, \boldsymbol{v}_{2}^{T}, \boldsymbol{v}_{3}^{T}\right]^{T}$.

V. Experimental results

The estimation and control algorithm mentioned above were applied to the experimental system. The design parameters are given as follows. The sampling period T_{s} is $T_{s}=2[\mathrm{~ms}]$, the updating period of the parameters T is also $T=2$ [ms] and the filter parameter α for estimation of velocities and accelerations is $\alpha=100$. The inputs $u_{M 1}$ and $u_{M 2}$ of the reference model are given by

$$
\begin{array}{r}
u_{M 1}=\left\{\begin{array}{cc}
0.3 & 45 k-52.5 \leq t<45 k-30 \\
-0.1 & 45 k-30
\end{array}\right)=t<45 k-7.5 \\
u_{M 2}=\left\{\begin{array}{cc}
0 & 0 \\
0.4 & 45 k-37.5 \leq t<45 k-22.5 \\
-0.4 & 45 k-22.5 \leq t<45 k \\
& \quad k=1,2,3, \cdots
\end{array}\right.
\end{array}
$$

The eigenvalues of the matrices K_{1} and K_{2} are all -1 , and the characteristic roots of the error equations (6) and (7) are specified as $(-2.0,-3.0)$ and $(-2.0,-2.2,-2.4,-2.6)$, respectively.

The outputs are shown in Fig. 2 and Fig. 3. The tracking performance of the both outputs ε and ϕ is achieved. Two estimated parameters are depicted in Fig. 4 and Fig. 5.

Fig. 2. Outputs

Fig. 3. Outputs;

Fig. 4. Estimated parameter \widehat{p}_{2}

Fig. 5. Estimated parameter \widehat{p}_{9}

VI. A conclusion

This paper considers nonlinear model following control with parameter identification of a 3 DOF model helicopter. The experimental results are shown.

