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Abstract
Although there are a number of theoretical method-

ologies to use time delayed feedback controller for con-
trolling chaos, useful algorithms are still lacking. In
this paper, some algorithms to adjust parameters of
time delayed feedback controller derived from theoret-
ical results in time domain and frequency domain are
presented. Comparison of theses approaches based on
computer simulations is included.
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1 Introduction
Delay differential equations (DDEs) have attracted

much attention in the field of nonlinear dynamics. They
are used to model complex phenomena like physiolog-
ical diseases by [Mackey & Glass(1977)], population
dynamics by [May(1976)], neural networks by [Wei
& Ruan(1999)], nonlinear optical devices by [Ikeda &
Matsumoto(1987); Lang & Kobayashi(1980)] and [Lu
& He(1996)]. Many of these systems are accurately
described by a single scalar DDE of the form

ẋ(t) = −x(t) + fb(x(t− τ)), (1)

where b and τ are bifurcation parameters and fb(y) de-
notes a nonlinear function of y. Response of the system
can be very rich ranging from periodic to high dimen-
sional chaotic outputs in a certain range of bifurcation
parameters.
Because of unpredictable nature of chaos, it is often

viewed as an undesirable characteristic of practical de-
vices.To utilize or to eliminate chaotic oscillations, re-
searchers have recently been paying increasing atten-
tion to chaos control (cf. [Schöll et al.(2008)] for a
recent overview of topics in chaos control). Among the
chaos control methodologies, time delayed feedback

controller (TDFC) has been receiving considerable at-
tention since it was proposed by [Pyragas(1992)].
The TDFC consists of a linear feedback from the dif-

ference between the current state and the delayed state
of the system

u(t) = k(x(t− T )− x(t)). (2)

Control input vanishes when the stabilization of the de-
sired orbit or fixed point is attained.
From the control theory viewpoint, there are two im-

portant problems to use TDFC: The first to find the de-
lay time T and control gain k analytically when the
original system is known; the second is stability analy-
sis of the closed loop system under TDFC.
Recently [Vasegh & Khaki-Sedigh(2008)] and (2009)

have introduced two analytical approaches to study
the behaviors of time delayed chaotic system under
TDFC: Time domain approach and Frequency domain
approach.
In this paper, first a brief introduction of the above

approaches are presented. Also, some new results in
the frequency domain are presented to determine crit-
ical bifurcation points in section 2. These consist of
section 2. In section 3, these results are summarized
in some useful practical algorithms to determine con-
troller parameters T and k to stabilize unstable fixed
points (FPs) and periodic orbits (POs). Some numer-
ical examples are used to establish usefulness of the
proposed algorithms. Section 4 includes comparison
of the above two approaches. It is shown that although
the analytical pedestal of the methods are different, the
results confirm each other. Finally, the paper is closed
with some conclusions.

2 Analytical Results
2.1 Time domain results
In this subsection τ is used as the bifurcation parame-

ter. Let x0 be the FP of (1) so that the linearized model



around it becomes

ż(t) = −z(t) + µz(t− τ), (3)

where µ = f ′b(x0). [Vasegh & Khaki-Sedigh(2008)]
have shown that x0 is locally asymptotically stable if
|µ| < 1 and unstable if µ > 1. If µ < −1, a sequence
of Hopf bifurcation occurs at the critical delays:

τj =
1
ω0

((j + 1)π − arctan(ω0)), ω0 =
√

µ2 − 1.

(4)
When µ < −1, the changes in the qualitative behavior
of (1) as the parameter τ is varied are as follows: x0

is locally asymptotically stable if τ < τ0; For τ0 <
τ < τ1, there is a stable limit cycle. A period-doubling
bifurcation sequence and chaos are observed when τ is
more increased ([Giannakopoulos & Zapp(1999)]).
Now, assume that (1) behaves chaotically. Controller

(2) can be used to stabilize unstable FPs or POs em-
bedded in chaotic attractor. The closed loop model is
as follows

ẋ(t) = −x(t)+fb(x(t−τ))+k(x(t−T )−x(t)). (5)

[Vasegh & Khaki-Sedigh(2008)] proved that (2) cannot
stabilize x0 if µ > 1. But if µ < −1, one has two
choices to stabilize x0: first set T = τ and choose k ≥
−(1 + µ)/2; second set T ¿ 1 and choose k > −(1 +
µτ)/T .
To stabilize unstable PO embedded in the chaotic at-

tractor by TDFC, it has been proposed to set T such
that the bifurcation critical point of open loop model
preserves in the closed loop model. It means the open
loop roots±iω at τ = τj must be the roots of the closed
loop characteristic equation:

λ + µe−τjλ − ke−Tλ + k + 1 = 0 (6)

The feedback gain k must be adjusted such that ±iω
are the rightmost roots of (6).

2.2 Frequency domain results
To use frequency domain tools, model (1) is trans-

formed into the equivalent feedback structure as Fig. 1
([Vasegh & Khaki-Sedigh (2009)]), where a linear sub-
system Lo(s) is connected to a nonlinear one defined
by

Lo(s) =
e−τs

s + 1
, n(x) = −fb(x). (7)

Assume that b is the bifurcation parameter. If x0 is the
equilibrium point of (1) (or equivalently (7)), then

x0 + Lo(0)n(x0) = 0 (8)
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Figure 1. Lur’e form of the model (1).

The stability of x0 can be obtained by the Nyquist plot
of Lo(jω) which is shown in Fig. 2 .
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Figure 2. Nyquist plot of Lo(jω) lies in disc D(−1, 1).

Since Lo(jω) is Hurwitz and its Nyquist plot lies
in the disc D(−1, 1), by using the circle criterion
([Cook(1994)]), x0 is stable if |µ| = |f ′(x0)| < 1
which is in good agreement with the results obtained
in time domain. To study periodic solutions let

x(t) = A + B cos(ωt). (9)

From the well known describing function method, A,
bias of periodic solution; B, amplitude of periodic so-
lution and ω the frequency of periodic solution are ob-
tained from the following equations:

1 + N0(A,B) = 0, (10)

tan(τω) = −ω, (11)

1 + cos(τω)N1(A,B) = 0. (12)

where

N0(A,B) =
−1
2πA

∫ π

−π

fb(A + B cos(ωt))dωt,(13)

N1(A,B) =
−1
πB

∫ π

−π

fb(A + B cos(ωt)) cos(ωt)dωt.(14)



One can see that (11) predicts many limit cycles.
Now, we find bifurcation critical points of µ. Assume

the bifurcation parameter µ (or equivalently b) is near
by its critical point µ∗. So the amplitude of periodic so-
lution B is almost small and A ≈ x0. By using Taylor
expansion for fb(x) around x0 we have

fb(x0 +B cos(ωt)) = f(x0)+ f ′(x0)B cos(ωt)+ · · ·

= x0 + µ∗B cos(ωt) + · · · .

Substitute it in (14), we have

N1 ≈ −1
πB

∫ π

−π

[x0 +µ∗B cos(ωt)] cos(ωt)dωt = −µ∗

Compare this with (12) we find that

µ∗i = −1/ cos(τωi) (15)

where ωi is obtained by (11). Similarly we can find that

N0 ≈ −1
2πx0

∫ π

−π

[x0 + µ∗B cos(ωt)]dωt = −1

which satisfies (10).
Alternatively, if (Ai, Bi, ωi) is a solution of (10)-(12),

the stability of predicted PO can be determined by the
following condition ([Cook(1994)]):

∂

∂B
N1(A,B)|(Ai,Bi) Im

{
d

dω
(Lo(jω))

∣∣∣
ω=ωi

}
< 0

(16)
If the system is chaotic, one can stabilize the FP x0 or

predicted PO embedded in chaotic attractor by TDFC.
To do this, consider the closed loop model (5) which
can be modeled as the following feedback structure
([Vasegh & Khaki-Sedigh (2009)])

Lc(s) =
e−τs

s + 1 + k − ke−Ts
, n(x) = −fb(x).

(17)
Since Lc(jω) is Hurwitz we can use the circle criterion
([Cook(1994)]). Let

h(T, k) = inf
ω≥0

Re
(
Lc(jω)

)
. (18)

Then the Nyquist plot of Lc(jω) lies in the right half
plane of Re(s) = h(T, k). If for some T and k we have
µh(k, T ) < 1, then x0 will become locally asymptoti-
cally stable.
To extract one of the periodic solution embedded in

chaotic attractor, first we find the frequency of PO of
the open loop model ωi. So that T must be set 2π/ωi.
The feedback gain k is determined such that Lc(jω)
filters other periodic solutions.

3 Algorithms
In this section, some algorithms are affirmed based on

the analytical results of last section. First, we use the
time domain outcomes.
Algorithm 1 Stabilizing unstable periodic orbit

Data: τ > 0 and µ < −1;
Results: Time delay T and a range for feedback gain k;
Steps:

1. Let ω0 =
√

µ2 − 1;
2. Set T = 2π

ω0
;

3. Find τj such that τj ≤ τ < τj+1;
4. Find a range for k such that for τj and T of step

(1), the rightmost roots of (6) being ±iω0.

Remark 1. T = 2π
ω0

preserves the bifurcation critical
points τj .
Remark 2. To find a suitable range of k one can
use some numerical approach such as continuous pole
placement ([Michielsl et al.(2002)]).
Remark 3. The step (4) ensured that all dynamics are
independent of periodic solution and the periodic so-
lution corresponding to characteristic roots ±iω0 are
stable.
The following example illustrates the controller de-

sign procedure to stabilize unstable FP and PO. Con-
sider Logistic model, which is one of the famous sys-
tems in the class of (1),

ẋ(t) = −x(t) + bx(t− τ)(1− x(t− τ)). (19)

This model has two FPs x1 = 0, x2 = b−1(b − 1).
Also, we have f ′(0) = b and f ′(x2) = 2 − b. [Jiang
et al.(2006)] have shown that for b = 4, (19) may be-
have chaotically for some values of τ . Chaotic attractor
of (19) is shown in Fig. 3 for τ = 5.
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Figure 3. Chaotic attractor of Logistic model for τ = 5

The origin cannot be stabilized by TDFC but x2 be-
comes stable if we set (T = 0.5, k = 10) or (T =
4, k = 0.5). The response of closed loop are shown in
Fig. 4 for both selections of controller parameters.



0 30 60 90 120
0.25

0.5

0.75

1

t

x(
t)

Figure 4. x2 = 0.75 is stabilized by TDFC where T =
.5, k = 10 (dash line) and T = 5, k = 0.5 (solid line).

Now to stabilize the unstable PO, we apply algorithm
1. Here ω0 =

√
(2− b)2 − 1 =

√
3 so we may set

T = 2π/
√

3 = 3.6276. Since

τ5 ' 4.8 < τ < τ6 ' 5.7,

we must find the range of k such that ±iω0 are the
rightmost roots of (6) for τ = τ5 and T = 3.6276.
By numerical method we find that the above conditions
are satisfied by 0.75 ≤ k ≤ 4. We choose k = 1 and
apply TDFC to the model. The stabilized PO in phase
space of the closed loop system is shown in Fig. 5.
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Figure 5. Stable periodic solution of the closed loop model with
T = 3.6276 and k = 1

Now, the frequency domain approaches to stabilize FP
and PO are stated in the following two algorithms:
Algorithm 2 Stabilizing x0

Data: τ > 0 and µ < −1
Results: The suitable ranges of parameters T and k;
Steps:

1. Let Tmax = 2τ , kmax = −3µ;

2. Plot surface h((T, k) for 0 < T ≤ Tmax and 0 <
k ≤ kmax;

3. Plot plane z(T, k) = −1/µ;
4. All the points of h(T, k) on the top of the plane

z(T, k) determine suitable parameters of TDFC.

Remark 4. This choice of Tmax and kmax guarantees
the existence of T and k to stabilize model (1).
By applying this algorithm to model (19) almost all

(T , k) that stabilize FP, are obtained. These solutions
are plotted in Fig. 6.
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Figure 6. Projection of h(k, T ) > −1/µ on the plane(k, T )

Time response of the closed loop model for k = 3,
T = 1.5 is shown in Fig. 7. These parameters cannot
be obtained by the proposed time domain method.
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Figure 7. Time response of closed loop model for T = 1.5 and
k = 3.

The frequency method to take out PO of chaotic at-
tractor is summarized as follows:
Algorithm 3 Stabilizing Periodic Orbits

Data: τ > 0 and fb(x)
Results: Time delay T and a range for feedback gain k;

1. Compute N0 and N1 using (13) and (14);



2. Compute all solutions of (11) satisfy 0 < ωi < 2;
3. Find Ai and Bi, bias and amplitude of the corre-

sponding ωi by (10) and (12);
4. Check stability of the PO:(Ai, Bi, ωi);
5. Select one of the stable PO and set T = 2π/ωi;
6. Determine k such that 2|Lc(jωi)|2 < |Lo(jωi)|2;

Remark 5. The limitation of ωi in step 2 is applied
because Lo(jω) is a low pass filter with bandwidth
ωc = 1.
Remark 6. TDFC dose not change the stability of PO.
([Vasegh & Khaki-Sedigh (2009)]).
Remark 7. By Step 6 one ensures that the closed loop
model rejects undesired PO.
By applying this algorithm to model (19) we have

N0 = b(A2−A+B2/2)/A, N1 = b(2A−1) (20)

and ω1 = 0.531, ω3 = 1.6785. So we select the
corresponding POs from chaotic attractor with period
T1 = 11.83 and T3 = 3.74. k = 1 satisfies step 6. Fig.
8 shows the phase space of the closed loop model after
transition time.
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Figure 8. Phase space of the closed loop model after transition time.

4 Comparison study
The time and the frequency domain methods pre-

sented in section 2 are different methods to solve the
same problem. Different approaches to design TDFC,
provide different properties of the controller. In this
section we provide a comparison study of the two pro-
posed methods. Moreover it is shown that these two
methods confirm each other.

4.1 Robustness of the methods
In the time domain method, it is assumed that b is fixed

and τ is the bifurcation parameter. It is found that the
proposed method to find controller parameters T and k
is robust against the variation of bifurcation parameter
τ . Fig 9 shows the bifurcation diagram of the closed

loop model with respect to τ . It shows that although
the controller is designed for fixed τ = 5, but the pe-
riod one is remained stable for a large range of τ . In
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Figure 9. Bifurcation diagram of the closed loop system with re-
spect to τ .

frequency domain method, τ is fixed and b is the bi-
furcation parameter and the proposed method is robust
against the variation of bifurcation parameter b. Fig 10
shows the bifurcation diagram of the closed loop model
with respect to b. Again, although the controller is de-
signed for b = 4, the period one is remained stable for
a large range of b. Note that the Lgistic model is unsta-
ble and the trajectories of the open loop model goes to
infinity for b > 4.2, but period one is stable in closed
loop model for b ≤ 5
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Figure 10. Bifurcation diagram of the closed loop system with re-
spect to b.

4.2 Similarity of the methods
In this subsection it is shown that the two proposed

methods lead us to the unique relations to find the con-
troller parameters based on the free system analysis.
Again see (4) to find critical delay time τ and (15)-(11)



to find critical µ:

τj =
1
ω0

((j + 1)π − arctan(ω0)), ω0 =
√

µ2 − 1,

(21)
and

µi = −1/ cos(τωi), tan(τωi) = −ωi. (22)

By (21) we have tan(τjω0) = −ω0 which confirms
(22).
Also (22) implies that µ2

i = 1 + ω2
i which confirms

(21).
Note that in (21), µ is fixed and τj is calculated in term

of µ but in (22), τ is fixed and µi is calculated in term
of τ . It means two presented approach validate each
other.
Although, open loop analysis leads to similar results,

there is significant difference in the delay time of the
controllers. By using algorithm 1, the period of the
closed loop is the same as T just for τ = τj , the shape
of the stabilized periodic orbit and the periodic orbit of
the open loop model at bifurcation critical point τ0 are
alike which is shown in Fig. 11. For other τ the control
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Figure 11. Periodic solutions of the free and closed loop model near
bifurcation critical points.

effort u(t) in (2) dose not converge to zero.
If we use algorithm 3 to find the controller parameters

and then apply it to the chaotic model, the period of the
stabilized PO dose not change by varying bifurcation
parameter b. But strongly depends on the delay time τ
of the model since the period of PO of the free model
is determined by solving the nonlinear equation (11).

5 Conclusion
In this paper chaos control is studied from two view-

points: Time and Frequency domains. Practical algo-
rithms are given in each approach.
Almost all the suitable parameters of TDFC are de-

termined by the fixed point stabilizing algorithm (al-
gorithm 2). In applying algorithms 1 and to stabilize

unstable POs. Note that: if delay time τ is fixed and
b varies, algorithm 3 is suitable and if b is fixed and τ
varies, algorithm 1 is appropriate.
In both methods adjusting delay time T is more im-

portant than feedback gain k. In many works ([Schöll
et al.(2008)]) it is shown that a suitably chosen T can
broaden the allowed range of k. So one can use (9)
or (11) to find the frequency of unstable POs of sys-
tems (and also period of solutions) and then adjust k
practically. Also by using (11), more than one periodic
solution can be found.
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