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Abstract
In the present paper some problems of global opti-

mization for focusing beam lines are discussed. The
main features of this concept are described, and
there are cited solutions for a variant of micro- and
nanoprobe systems. For this purpose some analytical
and numerical methods and tools are realized and dis-
cussed some results of numerical experiments.
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1 Introduction
Today, big place in science and technology is occu-

pied with focusing systems that form a beam on the
target with size less than a micrometer (up to nanome-
ters) and named micro- and nanoprobes. Their specifics
is that their construction stage always includes a stage
of theoretical research of possible choice of such sys-
tems. The thing is, that the calibration process of fin-
ished systems (the adjustment) doesn’t lead to signif-
icant system improvements and therefore the need to
upgrade the systems by adding new elements arises,
thus increasing the installation price. The traditional
process of designing and tuning of focusing systems
such as micro- and nanoprobes in order to produce cer-
tain desired properties is not straightforward. So the
process of searching for optimal accelerator parameters
has to come by with a thorough research of structures
suiting the experimenter physicist, and can be divided
into the following steps:
I. Basic modeling.
X aligning the succession of structure optimality cri-

teria based on the existing systems;
X selection and classification of optimization param-

eters and influences, i. e. constructing a vector of oper-
ating parameters and operating functions;

X creating a physical and mathematical model of the
whole focusing system suiting all the possibilities and
expectations of the experimenter physicists.

II. Research of the constructed models, parameters
and quality criteria functionals.

X linear model adjustment, which result is the local
optimum set for selected criteria of the system;

X rejection of solutions not suiting the researcher’s
additional criteria, some of which could be admission
satisfactions, realization possibilities and so on;

X including of additional effects in the scope of the
linear model, such as fringing fields, self-charge etc;

X the account of nonlinear effects with the purpose
of consecutive rejection of the local minima found at
the previous stages.
As a result of performance of the given list of actions,

the researcher receives a final set of acceptable deci-
sions from which final customer carries out a choice
based on additional, weakly-formalized criteria such as
cost, technological realization restrictions of the given
decisions.
The above told implies that the problem has to satisfy

multiple criteria. At the same time, many of those cri-
teria are contradicting (antagonistic), therefore antago-
nism account problem instantly appears, by means of
the weight factors, indicators or any other.
The ideology described above is considered in the

present paper on an example of a probe forming sys-
tem (see [Lebed, 2002]).

2 Physical Backgrounds
Among the big family of beam lines, the special place

is occupied by ion-optical systems, to which, in partic-
ular, micro- and nanoprobes concern. Under an ion-
optical system we understand a system intended for
transferring a beam from one part of the space to an-
other (transportation), in which the basic attention is
given to the formation of cross-section phase charac-
teristics of the beam (focusing).
Figure 1 presents an example of a nanoprobe.
Distances between lenses, lense lengths, distance

from objective to target (’working distance’), ’pre-
distance’ and fields created by lenses serve as the con-
trols in systems of this type. At the same time, a num-



Figure 1. An exemplary structure of probe forming system.

ber of parameters, such as, for example, lense lengths,
remain fixed after the construction of the beam line or
demand considerable expenses for customization, and
the other part can be subsequently corrected via adjust-
ment.
Physical controls can be divided on two categories:
— control parameters (lengths, distances, diaphragm

characteristics);
— control functions (functions describing field dis-

tribution along the optical axis of the system).
However, often, by choosing operation functions from

some class (for example, from piecewise-constant) it is
possible to carry out a transition from the control func-
tions to the system elements parameters.
When designing the given kind of beam lines, it is

necessary to consider the following complex of qual-
ity functionals and restrictions:

1. The criteria defining focusing characteristics.
2. Aperture restrictions.
3. Additional restrictions (for example, fixation of

distance between lenses).
4. Luminosity of the beam line.

There are various approaches to the methodology of
the formation of these functionals and the account
of restrictions. The matter is, in some cases it is
favourable to consider this or that restriction as a func-
tional component, and in others – to include it in the list
of restrictions in the form of equalities or inequalities.
Criteria defining focusing characteristic. Criteria

defining focusing characteristics serve as the basic cri-
teria for ion-optical systems. For nanoprobes where the
target size of a beam on a target must be of an order of
several nanometers, the requirements for beam com-
pression factor can reach up to 100 and more times.
Approaches to definition of what to understand as a

Figure 2. Different focusing criteria examples.

size of a beam on a target are various, therefore dif-
ferent quality functionals arise. Figure 2 shows some
of such approaches. We then consider the given ap-
proaches and rule out the functionals.
1. The circle of the least radius comprising a projec-

tion of a beam phase portrait to the axis plane can act
as a functional defining the beam size on a target. Then
the focusing problem can be formulated as follows:
finding inf

U∈U
sup
M

(x2 + y2), where M is a projection

of a beam phase portrait, and U is a set of admissible
controls.
2. The area occupied by a beam on a target:
finding inf

U∈U
S(x, y), where S(x, y) — area of a pro-

jection of a beam phase portrait to the axis plane.
3. The greatest deviation of one of the coordinates of

a beam phase portrait projection:
finding inf

U∈U
max(sup

M
x, sup

M
y).

Possible cases are when the deviation of one of the
coordinates is less critical than of the other, i. e. the
beam section can have the oblong form. In this case
it is necessary to add the corresponding weight factor
into the current criterion.
Aperture restrictions. Aperture restrictions are the

natural restrictions of ion-optical systems, and are de-
fined by system composition.
1. For a square-shaped vacuum tube the following re-

strictions can be used:
sup

s∈[s0,sT ]

|x(s)| ≤ xmax−ε, sup
s∈[s0,sT ]

|y(s)| ≤ ymax−
ε,
where s is the optical axis of the beam system, xmax

and ymax represent the distance between the optical
axis and aperture, ε is the minimal allowed distance
between the beam and the aperture.
2. In the case of round-shaped aperture, the restriction

can be formulated in terms of cylindric coordinates as
follows:

sup
s∈[s0,sT ]

|r(s)| ≤ rmax − ε, r(s) =
√

x(s) + y(s).

Often though, the restrictions can be more com-
plex. In the examples demonstrated above,
xmax, ymax, rmax can be not constant but some
given functions of s.
Additional restrictions. When constructing beam

lines depending on their purpose, additional limitations
often arise, that are related to some specifics of the sys-
tem. For example, the minimal distance between con-
trol elements, driven by technological reasons, or the
given distance between certain lenses, can be selected
as one of the limitations in order to have a future possi-
bility of installing additional modules.
Luminosity of the beam line. Other than focusing,

another important factor is the amount of focused par-
ticles hitting a target, which defines the luminosity.
The system has to have maximum acceptance, i. e. the
phase space bandwidth, in order to provide high lumi-
nosity:
sup
U∈U

sup
V ∈V

∫
M

f( ~X)d ~X , where ~X = (x, x′, y, y′) is the



vector of the basic phase variables, f(X) is the par-
ticle distribution function, U is the set of admissible
controls, and V is the set of collimator system parame-
ters. Depending on the starting distribution of the base

Figure 3. Acceptance examples.

phase set, certain acceptance values can be accepted.
For instance, Figure 3 shows an acceptance outlined
with a thick line, providing full preservation of the par-
ticles getting absorbed by the focusing system input. In
the case of the uniform distribution of particles of the
basic set (see Fig. 3a), the acceptance represented by
thick broken line provides a 50% particle pass-through,
which is unacceptable in most cases. However, if the
distribution is nonuniform (see Fig. 3b) and the accep-
tance is at 95%, such values suit quite well.
Thus we are in the need to minimize a set of function-

als at a time, which, in general form, could be repre-
sented with one using αi and Pi weights, the selection
of which defines the level of significance of a criterion:

I( ~B, ~U) =
k∑

i=1

αiI
2Pi
i ( ~B, ~U),

where B is the control parameters set, U is the control
functions set, ~B ∈ B, ~U ∈ U .
As stated before, the selection of the control functions

set defining the controlling field from a certain appro-
priate class allows us to introduce parameters. So in-
stead of [B,U] we will be using the pair [B,Bu] where
Bu is the set parameters describing the controlling field.

3 Mathematical model of beam control system

Figure 4. Russian quadruplet focusing system.

Let’s consider a so-called “russian quadruple” [An-
drianov, Dymnikov and Osetinsky, 1978] as an exam-
ple, which allows to form beams with high degrees
of compression. For the given system of quadrupoles

(see Fig. 4) energy supply symmetry conditions are sat-
isfied:

k(s) = −k(st − s), s ∈ [s0, st], (1)

where s — parameter of length along an optical axis
of the system, s0, st — an initial and an end points ac-
cordingly, k(s) is a gradient distribution function.
The particle motion equations in the linear approxi-

mation have the following appearance:

x′′ + k(s)x = 0, x′ = dx/ds,

y′′ − k(s)y = 0, y′ = dy/ds.
(2)

The solution of the given equation system can be writ-
ten down with the use of matrix propagator of the sys-
tem R(s|s0):

~X(s) = R(s|s0) ~X0, ~X0 = ~X(s0), (3)

Usually, focusing systems have a necessary constraint
set up on the point-to-point beam transference (see,
for example, [Andrianov, Dymnikov and Osetinsky,
1978]), which, in linear approximation, equals to:

r12 = r34 = 0, (4)

where r12, r34 — the elements of R(s1|s0).
The matrix R(s|s0) can be presented as following:

R(st|s0) = RgM(s1|s0)Ra, (5)

where Rg, M(s1|s0), Ra — matrixes corresponding to
passage of the working distance, focusing system and
pre-distance accordingly.
Taking (1) into account for identity of transfer ma-

trixes in planes {x, x′}, {y, y′} it is enough (see [An-
drianov, Edamenko, Chernyshev and Tereshonkov,
2008]) for the following condition to satisfy:

m11 = m22, (6)

where m11, m22 — the elements ofM(s1|s0).
In a nonlinear case, the equation of particle motion

have much more difficult appearance. In the assump-
tion of monochromaticity of a beam, let’s write out the
equation with the third order decomposition:

x′′ + kx =− 3
2
kxx′ − 1

2
kxy′2 + kx′yy′+

+ k′xyy′ +
1
12

k′′x3 +
1
4
k′′xy2 +O(5),

y′′ − kx =
3
2
kyy′ +

1
2
kyx′2 − ky′xx′−

− k′yxx′ − 1
12

k′′y3 − 1
4
k′′yx2 +O(5).

(7)



In this case, the solution is:

~Z(s) = R11(s|s0)~Z0 + R13(s|s0)~Z
[3]
0 . (8)

where ~Z [3] — the third order Kronecker degree of a
phase vector ~Z.

4 Optimization methods
When solving optimization problems, a researcher

may encounter difficulties with picking a method fully
appropriate for the given problem. The high-quality
implementation of the properly selected method or
method aggregates allows finding the desired solution
with the least computing costs.

4.1 The problem definition
While describing fringing fields, a transition from

functions to parameters can be made. Thus, the se-
lection of a function approximately describing a given
fringing field and its parametrical representation is
made at the same time.
Consequently, after we have the appropriate quality

functionals and restrictions, the following problem of
nonlinear programming can be formulated:

find inf I( ~B, ~Bu),
limited by the equations: hi( ~B, ~Bu) = 0, i =

1, . . . , m,
and inequalities: gi( ~B, ~Bu) ≥ 0, i = m + 1, . . . , p.

Here I( ~B, ~Bu), hi( ~B, ~Bu) and gi( ~B, ~Bu) could be ei-
ther linear or nonlinear functions.
As the basic method class of nonlinear programming

problem solving we can outline the following:
— methods using derivatives;
— direct methods;
— statistical methods.

Gradient methods have proved themselves to be good
among derivative-classes for some types of function-
als. However, the using of such methods requires in-
clusion of all the limitations into a functional, which,
considering the given antagonism, leads to it’s over-
complication. Additionally, the calculation of complex
functional derivative may also pose additional difficul-
ties.
Calculations have shown that sliding tolerance method

using deformed polyhedron (see [Himmelblau, 1975])
shows high efficiency as a direct method. The main
idea of this method lies in building and adjusting a
multi-dimensional polyhedron on each step, that ap-
proaches the optimum while being in a certain neigh-
bourhood of the restriction satisfaction area. While
approaching the solution, this neighbourhood shrinks
down and the restrictions are precisely satisfied when
the sought point is reached. This method stands out
thanks to its feature allowing us to choose between the
inclusion of restrictions into the very minimizing func-
tional with various weight coefficients, as well as their
taking into account while building the restriction satis-
faction area.

While using statistical methods, the problem of work-
ing out the limitations, considering their nonlinear
structure, also arises, just like for the derivative-using
ones. Usually, statistical methods don’t tend to have
a high convergence speed and become inappropriate
for finding the global minimum when a certain high
amount of parameters is reached. However, they can
aid well in the task of getting initial approximations for
other optimization methods.

The author’s method requires:
— the using of random search for getting initial ap-

proximations and the selection of areas suspicious to be
enclosing the optimum;

— the further minimization of the said approxima-
tions using the sliding tolerance method.

4.2 Global optimization

The solving of a nonlinear programming problem is a
problem of global optimization. Usually, under global
optimization, a search of one best decision giving a
global minimum to the quality functional is under-
stood. However, at the decision of real physical prob-
lems on beam lines designing, the given approach is
impracticable. This is connected with impossibility of
accurate formalization of all the quality criteria, with
construction of a uniform functional with limited num-
ber of parameters and realization of its global mini-
mization in comprehensible time. The search of the
demanded decision is a creative process and assumes
obligatory presence of the person competent in the
given area, capable to appropriately place priorities of
various quality criteria by carrying out some numerical
experiments, to estimate a possibility of realization and
reliability of the found decisions.

In the present paper, under global optimization, we
understand the consecutive process, allowing to receive
a limited set of decisions optimum in a certain sense,
their gradual rejection on a number of additional crite-
ria, their research on satisfaction to admissions and re-
alization possibility. The result of the given process is a
small set of decisions on the basis of which the experi-
menter carries out a definitive choice of the decision for
realization based on cost, reliability and convenience of
the realization criteria.

The given process is mostly iterative. Varying dif-
ferent parameters that define the importance of some
quality criteria, as well as entering of various criteria
into the functional or their consideration in the form of
restrictions and the use of personal experience in anal-
ysis of the results approaches the researcher to the re-
quired decision. Thus, the big role in the given process
is played by the presence of the qualitative software and
tools, allowing to carry out the necessary calculations
and represent the received results in the form conve-
nient for the analysis.



5 Solution to the task
The calculations were made using the Maple applied

algebra package as well as the custom software (see
Fig. 5).

Figure 5. Custom software package screenshot.

Let us analyze the possible solutions for the system
considered above (see Fig. 4). The controlling parame-
ters vector in this case is ~B = (s, λ, a, g; k1, k2). Let’s
then apply a number of limitations onto the control-
ling parameters as follows: a = 150, g = 1, λ = 2,
s = 0.5.

Figure 6. Load curves and working distance length restriction g =
1.

Figure 6 shows graphs representing the satisfaction of
(6), as well as the load curves (solid line) and the work-
ing distance length restriction g = 1 (broken line).
The corresponding intersection points are marked as
follows: K1 = (0.54345, 0.69629), K2 = (1.37421,
1.00696), K3 = (2.23405, 1.07949).

The following beam compression factors correspond
with the aforementioned points in the scope of our
linear model: r11(K1) = -0.0352203, r11(K2) =
0.0061025, r11(K3) = 0.0087011.
Regarding the compression factors, the most interest-

ing is the point K2. Note, however, the stability of this
solution regarding the deviation of control fields from
the values set. Figures 7, 8, 9 plot the corresponding
values, with solid line representing K1, broken line —
K2, and dotted line — K3.

Figure 7. Load curves condition brakes given the deviations of k1,
k2.

Figure 7 shows that, for the two solutions found, a
minor deviation from the optimal parameters (k1, k2)
leads to a major break of condition (6), which may also
lead to the point-to-point focusing condition break.

Figure 8. Beam compression factor values given the deviations of
k1, k2.

Figure 8 represents the change of the beam compres-
sion factor when the (k1, k2) parameters deviation takes



place. Inside the neighborhood of the solutions K1 and
K2 there is a stable enough conservation of the com-
pression factor value. K3 shows a major deviation of
the compression factor while the certain minor param-
eter deviation takes place (see Fig. 9).

Figure 9. Unlimited derating of the beam compression factor given
the deviations of k1, k2.

Therefore, at this stage we have the screening of the
solution K3. The two remaining solutions require fur-
ther analysis for satisfying additional criteria such as
fringing fields (see [Tereshonkov, Andrianov, 2008],
for example) and nonlinear effects (see, for example,
[Andrianov, Edamenko and Tereshonkov, 2008]), as
well as influence of parameter deviation sensitivity of
the condition (6) to the solution K2.

6 Conclusion
In the present paper, the methodology of modeling

and finding the optimal parameters for beam lines with
high beam compression requirements, based on multi-
objective analysis, is considered. The given methodol-
ogy aims for solving the problem of taking into account
many, and often contradicting, criteria of quality, con-
sequently considering them. The linear model building
and analysis, followed by the inclusion of additional
limitations and criteria, leads to the shrinking of a set of
solutions down to a finite fixed set, appropriate enough
for the selection of a certain solution to be realized.
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