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Abstract
In this paper authors introduce novel results on op-

timality and performance for surplus-based decentral-
ized production control method. The main objective of
this production method is to guarantee that the cumu-
lative number of produced products follows the cumu-
lative production demand on the output of any given
network. As an extension of our previous result a gen-
eral idea of this method is presented for the case of one
manufacturing machine, where the implemented con-
trol strategy is proven to be optimal. Then a flow model
for a line of N machines with bounded buffers is ana-
lyzed. Results on performance of this strategy for a line
of machines show the uniform ultimate boundedness of
production errors of each machine in the network. Per-
formance and robustness issues of the closed-loop flow
line model are illustrated in numerical simulations.
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1 Introduction
Production control methods with capabilities of quick

responses to rapid changes in the demand and efficient
distribution of the raw material throughout the network
are of a big importance among leading manufacturers.
Thus, there is a substantial literature on control poli-

cies for manufacturing systems as well as many classi-
fications of these policies are introduced by different
authors. In this paper we will follow the classifica-
tion introduced by S.R. Gershwin. In his work (Gersh-
win (2000)) the author separates the control policies in
3 main streams: token-based, time-based and surplus-
based. In token-based approaches so called tokens are

generated and utilized in order to trigger certain events
occurring in the manufacturing system. The most fa-
mous example of such a policy are Kanban (Rees et al.
(1987)), Conwip (Spearman et al. (1990)) and Bases-
tock (Silver et al. (1998)). In time-based approaches
the control decisions depend on a time when a cer-
tain operation should take place, i.e. Material Resource
Planning, Least Stack and Earliest Due Date strategies
(see, e.g., Burgess and Passino (1997)). In the surplus
approach control decisions are made based on the pro-
duction error which is the difference between the cu-
mulative demand and the cumulative output of the sys-
tem (see, e.g., Bielecki and Kumar (1988); Gershwin
(2000); Nilakantan (2010)).
In this paper we first tackle the problem of optimality
analysis for a surplus-based control approach for one
manufacturing machine introduced in (Starkov et al.
(2010)). The main idea of this approach is based on
production managing with a primary goal of tracking
demand. Further, our goal is to apply classical tools
from control theory in order to evaluate a performance
of this technique for a unidirectional manufacturing
line of N machines. The proposed methodology is
proven to be optimal for one machine and is reformu-
lated for a production line of N machines with lim-
ited capacity intermediate buffers. The production flow
process is described by means of difference equations
and in order to analyse performance Lyapunov theory
approach is exploited.
The paper is organized as follows. First, in Section 2
the flow model of one manufacturing machine is pre-
sented, where the analysis of optimal control strategy
for production error tracking is developed. Then in
Section 3 the flow model of a manufacturing line with
bounded intermediate buffers is presented. Here the
optimal control strategy from previous section is in-
troduced for this model. The result on performance of



each machine in the network is also give in this section.
Performance and robustness issues of the closed-loop
flow model of production line are illustrated in numer-
ical example in Section 4. Finally, Section 5 contains
conclusions and future developments.

2 Analysis of one manufacturing machine
2.1 Flow model
In discrete time a cumulative number of produced

products in time k for a simple manufacturing machine
can be described as a sum of its production rates at each
time step till time k. Thus the flow model of one man-
ufacturing machine in discrete time is defined as

y(k + 1) = y(k) + u(k) + f(k), (1)

where y(k) ∈ R is the cumulative output of the ma-
chine in time k, u(k) ∈ R is the control signal, and
f(k) ∈ R is an unknown external disturbance.
Under the assumption that there is always sufficient

quantity of the raw material to feed the machine, the
control aim is to track the non-decreasing cumulative
production demand. We define the production demand
by using yd(k) ∈ R given by

yd(k) = yd0 + vdk + ϕ(k), (2)

where yd0 is a positive constant that represents the ini-
tial production demand, vd is a positive constant that
defines the average desired demand rate, and ϕ(k) ∈ R
is the bounded fluctuation that is imposed on the linear
demand vdk. Specifically, we are going to minimize
the output tracking error ε(k) = yd(k) − y(k) in the
class of control strategies fed by available data:

u(k) = Uk(y(0), . . . , y(k), yd(0), . . . , yd(k)) ∈ {0; 1} .
(3)

Thus, in time step k the control input u is limited to
taking the value of 1 when the machine is required to
produce and taking the value of 0 when no production
is required.
Here ε(k + 1)) − ε(k) along the solutions of ε(k) is

given by:

ε(k+1) = ε(k)−u(k)+vd+∆ϕ(k)−f(k). (4)

The external disturbance f(k) and the fluctuation ϕ(k)
in (1) and (2) are bounded

α1 < ∆ϕ(k)− f(k) < α2 ∀k ∈ N (5)

where ∆ϕ(k) = ϕ(k + 1) − ϕ(k) and α1, α2 are un-
known constants that obey the following bounds

α2 < 1− vd, α1 > −vd. (6)

By first and second inequalities in (6) we state that
the machine can never produce products faster than its
maximal speed and that considering the presence of
perturbations bounded by (α1, α2) the demand rate can
only de positive, respectively. Thus, from (5) and (6)
the following condition (also known as capacity condi-
tion) holds

0 < ξ(k) < 1 ∀k, (7)

where for the sake of brevity ξ(k) := vd + ∆ϕ(k) −
f(k).

2.2 Results on performance
In this section, we examine the following two perfor-

mance criteria:

JT = sup
ξ(0),...,ξ(T−1)

T∑

k=0

|ε(k)|p → min
U

, (8)

J∞ = lim sup
k→∞

sup
ξ(·)

|ε(k)|p → min
U

. (9)

Here sup is taken over all ξ(·) satisfying (7), U =
{Uk(·)}∞k=0 is the control strategy, formula (8) deals
with a finite and given time horizon T of the experi-
ment, whereas it is infinite in (9), and p ∈ [1, +∞) is
a given parameter. It will be shown, that the optimal
control strategy doesn’t depend on the choice of p.
To state the main result, we introduce the following

notation:

sign+(ε) =





1 if ε > 0
0 if ε < 0
0, 1 if ε = 0

.

The last line means that sign+ is permitted to take any
of the values 0 and 1.

Theorem 1. The following control strategy

u(k) = sign+

(
ε(k)

)
(10)

is optimal with respect to the performance index (8) for
any given T , as well as with respect to the performance
criterion (9). This is true irrespective of the choice of
p ∈ [1, +∞).

Proof. Based on (4), it is easy to see that without any
loss of generality, the class of admissible control strate-
gies (3) can be reduced to those processing only the
tracking errors: u(k) = Uk(ε(0), . . . , ε(k)) ∈ {0; 1} .
We start with the problem (8). The proof is based on

the min-max dynamic programming. So we first intro-
duce the cost-to-go:

Vτ (a) = min
Uτ (·),...,UT−1(·)

sup
ξ(·)

T∑

k=τ

|ε(k)|p, VT (a) := |a|p,
(11)



where the minimum is over all functions
Uk(εk, . . . , εT−1) ∈ {0; 1}, and ε(k) is obtained
from (4), where k = τ, . . . , T − 1 and ε(τ) = a. This
function satisfies the Bellman equation (Bertsekas
(2005)):

Vτ−1(a) = min
u=0;1

sup
ξ∈(0;1)

{|a|p + Vτ (a− u + ξ)} ,

(12)
and the optimal strategy is given by u(τ − 1) =
U0

τ−1[ε(τ − 1)], where U0
τ−1[a] is the point furnishing

the minimum in (12).

Figure 1. (Left):The graph of VT ; (Right): The graph of VT−1

Figure 2. (Left):The graph of VT−2; (Right): The graph of VT−n

with n ≥ 3

Lemma 1. The cost-to-go (11) is the piece-wise
smooth even function depicted in Figures 1 and 2, and

U0
τ [a] = sign+(a) for τ = 0, . . . , T − 1. (13)

Proof. We first note that (12) can be shaped into

Vτ−1(a) = min





S0︷ ︸︸ ︷
sup

ξ∈(0;1)

Vτ (a + ξ),

S1︷ ︸︸ ︷
sup

ξ∈(0;1)

Vτ (a− ξ)





+ |a|p. (14)

Here S0 and S1 correspond to u = 0 and u = 1, respec-
tively. So U0

τ−1(a) = σmin, where σmin = 0, 1 is the
index of the term Sσ furnishing the minimum in (14).
We also note that since the function a 7→ |a|p is even,
simple induction on τ = T, . . . , 0 and the last equa-
tion from (11) show that Vτ (·) is even for any τ . With
this in mind, it becomes clear that firstly, σmax = 0, 1

for a = 0 and secondly, substitution a := −a in (14)
switches σmin to the alternative value. This permits us
to focus on a > 0 in the subsequent proof. For a > 0,
formula (13) (to be justified) takes the form U0

τ [a] = 1.
We proceed with immediate proof of the lemma, ar-

guing by induction on τ = T − n, n = 0, 1, . . ..
n = 0. The claim is immediate from the last equation

in (11).
n = 1. a ≥ 1

2
: Then evidently, S1 = |a|p, and

S0 = |a + 1|p > S1. So, due to (14), VT−1(a) =
2|a|p, as is depicted in Fig. 1(right), and U0

τ (a) = 1.
0 < a < 1

2
: Since VT (·) is even, S1 = |a − 1|p <

|a + 1|p = S0. So VT−1 = |a − 1|p + |a|p, as is de-
picted in Fig. 1(Right), and U0

τ (a) = 1.
n = 2 a ≥ 1 : Similarly, in (14), the supre-

mum S0 is equal to 2|a + 1|p, whereas
S1 = 2|a|p < S0. 1

2
≤ a < 1 : S1 =




2|a|p a > p

√
1
2

1 a < p

√
1
2



 < 2|a + 1|p = S0. 0 ≤ a < 1

2
:

S1 =





2|a− 1|p a < 1− p

√
1
2

1 a > 1− p

√
1
2



 < 2|a + 1|p = S0.

Thus

VT−2(a) =





3|a|p a ≥ p

√
1
2

1 + |a|p 1− p

√
1
2 ≤ a < p

√
1
2

2|a− 1|p + |a|p a < 1− p

√
1
2

,

as depicted in Figure 2(Left), and U0
τ (a) = 1.

Figure 2(Left) is a particular case of Figure 2(Right).
So to complete the proof, it suffices to show that

C) Figure 2(Right) is correct and U0
T−n(a) = 1

for n = 2, 3, . . ., arguing by induction on n.
Suppose that C) is true for some n ≥ 2. To compute

VT−n−1(a), we consider separately several cases.

• a ≥ p

√
n

n+1
: Here p

√
n

n+1 > p

√
n−1

n . It follows

that in (14), the supremum S1 is attained at ξ = 0 and
thus equals (n+1)|a|p, whereas S0 = (n+1)|a+1|p >
S1. Thus C) does hold for n := n + 1.

• p

√
n−1

n
≤ a ≤ p

√
n

n+1
: Then evidently S1 = n,

whereas S0 = (n + 1)|a + 1|p > S1. Thus C) does
hold for n := n + 1.

• 1 − p

√
n−1

n
≤ a ≤ p

√
n−1

n
: Since the left end

a− 1 of the interval [a− 1, a] is still to the right of the
first fracture point of the graph from Figure 2(Right),
the situation replicates the previous one.

• 1 − p

√
n

n+1
≤ a ≤ 1 − p

√
n−1

n
: That end is to

the left of the first fracture point. So either S1 = n
(and is attained at the third fracture point) or S1 =
(n + 1)|a − 1|p (and is attained at ξ = 1). Elemen-
tary comparison shows that in fact S1 = n, and so the
situation still replicates the previous two ones.
• 0 ≤ a ≤ 1 − p

√
n

n+1
: Then conversely, S1 =

(n + 1)|a− 1|p, whereas S0 = (n + 1)|a + 1|p > S1.



Thus C) does hold for n := n+1, which completes the
proof.

For the performance index (8), Theorem 1 is straight-
forward from Lemma 1 and the dynamic programming
principle (Bertsekas (2005)).
To deal with (9), we introduce the following interme-

diate performance criterion

Jav = lim sup
T→∞

sup
ξ(0),...,ξ(T−1)

1
T

T∑

k=0

|ε(k)|p. (15)

It is clear that

inf
U

Jav ≥ lim sup
T→∞

1
T

min
U

JT
(11)== lim sup

T→∞

V T
0 [a]
T

,

where the upper index T in V T
τ underscores that the

cost-to-go is computed for the time horizon [0 : T ]. As
a result, Lemma 1 and the evident inequality J∞ ≥ Jav
imply the following lower estimates

inf
U

J∞ ≥ inf
U

Jav ≥
{
|a|p if |a| ≥ 1
1 otherwise

.

Now we are going to show that this lower estimate of
J∞ is attained at the control strategy (10), which will
complete the proof.
Let the system (4) be driven by the control law (10).

By invoking (7), we conclude that

ε(k + 1) ∈





(
ε(k)− 1, ε(k)

)
if ε(k) > 0(

ε(k), ε(k) + 1
)

if ε(k) < 0(
ε(k)− 1, ε(k) + 1

)
if ε(k) = 0

.

Hence f−(ε(k)) ≤ ε(k + 1) ≤ f+(ε(k)), where
f−(ε) := min{ε;−1}, f+(ε) := max{ε; 1}. It fol-
lows that ε−(k) ≤ ε(k) ≤ ε+(k) ∀k, where ε−(k)
and ε+(k) are the solutions of the following recursions
ε±(k + 1) = f±(ε±(k)), ε±(0) = a. It is evident that
ε±(k) ∈

[
min{−|a|,−1};max{|a|; 1}

]
, which com-

pletes the proof.

Now that for one machine the optimal tracking con-
troller is derived we extend our analysis of this strategy
applied to a line of N manufacturing machines with
bounded intermediate buffers.

3 A line of machines with bounded buffers
3.1 Flow model
The flow model of a manufacturing line is presented in

this section. Figure 3 presents a schematics of a line of
N manufacturing machines with machines Mj , buffers

Bj , and infinite product supply. Here the optimal con-
trol strategy from previous section is modified with re-
spect to the number of buffers and machines present
in the line. New limitations such as desired buffer con-
tent and buffer capacity restriction are considered in the
model.
The flow model of the manufacturing line is defined

as

∆y1(k) = β1(k)sign−(w2(k)− γ2),
∆yj(k) = βj(k)signBuff(wj(k)− βj(k))

× sign−(wj+1(k)− γj+1), j = 2, . . . , N − 1,

∆yN (k) = βN (k)signBuff(wN (k)− βN (k)),
(16)

where ∆yj(k) = yj(k + 1) − yj(k), yj(k) is the cu-
mulative output of machine Mj in time k, wj(k) =
yj−1(k) − yj(k) is the buffer content of buffer Bj ,
βj(k) = uj(k)+fj(k), ∀j = 1, . . . , N , fj is the exter-
nal disturbance affecting machine Mj (e.g. production
speed variations, undesired delay or setup time), uj is
the control input of machine Mj ,

signBuff(x) =

{
1 if x ≥ 0
0 if x < 0

, sign−(z) =

{
1 if z ≤ 0
0 if z > 0

,

and γj+1 is the threshold value of the buffer content
wj+1. Basically for each machine we introduce an
extra restriction on production which is based on the
buffer content of its upstream and downstream buffer.
Any machine Mj , with j = 2, . . . , N − 1, is activated
only if three authorizations are given. The first autho-
rization comes from control input uj(k) of Mj . The
second authorization comes from the restriction on the
upstream buffer content (signBuff(·)), which is granted
if the buffer contains at least the minimal number of
products required (βj(k)) in order for the machine Mj

to start its work. The third authorization (sign−(·))
comes from the downstream buffer of given machine.
This authorization is possible only if the downstream
buffer have sufficient storage in order to accept incom-
ing production.

Figure 3. Flow model diagram for a line of N machines.



In order to give a solution to the demand tracking
problem we propose the following control inputs:

uj(k) = µjsign+(εj+1(k) + wdj+1 − wj+1(k))
∀j = 1, . . . , N − 1, (17)

uN (k) = µN sign+(yd(k)− yN (k)), (18)

where µj is the processing speed of machine j, wdj+1

is the desirable buffer level of buffer Bj+1 and εj+1

is the tracking error of machine Mj+1. Here for sim-
plicity we restrict the value of sign+ function, which
was defined in the previous chapter, to sign+(x) =(1,
if x > 0|0, otherwise).
The tracking error of each machine is given by:

εj(k) = εj+1(k) + (wdj+1 − wj+1(k)), (19)
∀j = 1, . . . , N − 2

εN−1(k) = εN (k) + (wdN
− wN (k)), (20)

εN (k) = yd(k)− yN (k). (21)

It follows from (21) that the error of machine MN is
defined exactly as for the single machine case. The
buffer restriction, as seen from (16), is the only differ-
ence in the flow model of machine MN with the flow
model of (1). For (19), (20) new considerations are ap-
plied for the tracking error of each machine Mj , where
j = 1, ..., N − 1. Here tracking error εj(k) depends
on number of produced products yj(k) with respect to
current demand yd(k) and desired buffer content wdj+1

of each downstream buffer. This means that every up-
stream machine needs to supply wdj+1 lots more than
the downstream one. Constant parameter wd is intro-
duced in order to prevent downstream machines from
lot starvation, e.g. in case of a sudden growth of the
product demand.
It is important to take into account that the control

actions are decentralized throughout the network. In
other words the control action of each machine in the
line depends only on the tracking error of its neigh-
boring downstream machine (except for machine MN ,
which depends directly on cumulative demand input)
and the current buffer content of its upstream and
downstream buffer (Fig.3). This gives our flow model
an extra robustness with respect to the undesired events
such as temporal machine setup or breakdown.
For further analysis, let us rewrite flow model (16) in

a closed-loop with (17), (18) as

∆ε1(k) = vd + ∆ϕ(k)
− β1(k)sign−(w2(k)− γ2),

∆εj(k) = vd + ∆ϕ(k)− βj(k)signBuff(wj(k)
−βj(k))sign−(wj+1(k)− γj+1),

∆εN (k) = vd + ∆ϕ(k)− βN (k)
× sign−(wN (k)− βN (k)).

(22)

Here we consider that system (22) satisfies the follow-
ing assumptions.

Assumption 1 (Boundedness of perturbations).
There are constants α1, α2 and α3 such that
Wj(k) = ∆ϕ(k)− fj(k) satisfies

α1 < Wj(k) < α2, ∀k ∈ N, (23)

and fj(k) satisfies

fj(k) ≤ α3, ∀k ∈ N. (24)

Assumption 2 (Capacity condition). Constants α1,
α2 satisfy the following inequalities

α2 < µj − vd, (25)
α1 > −vd. (26)

Thus, from (23), (25), and (26) the following condition
holds

0 < vd + Wj(k) < µj , ∀j = 1, . . . , N. (27)

It is important to notice that each Mj machine in the
line has a processing speed of µj lots per time unit,
which can differ from the rest of the machines and the
buffer content condition is considered as

βj(k) ≤ wj(k) < γj , ∀j = 2, . . . , N. (28)

Note that the physical restriction on buffer content is
given as

0 ≤ wj(k) < γj + µj−1 + α3, ∀j = 2, . . . , N.(29)

Here γj = µj + α2−α1 + wdj where wdj satisfies the
following

Assumption 3 (Desired buffer content condition).
The constants wdj comply with the following inequality
wdj ≥ µj + µj−1 + α3 + α2 − α1, from where it
follows that

wdj ≥ βj(k) + µj−1 + α2 − α1, j = 2, . . . , N.(30)

3.2 Results on performance
The obtained results on the production error trajec-

tories behavior of flow model (22) can be formulated
through the following theorem.

Theorem 2. Assume that the discrete time system de-
fined by (22) satisfies Assumptions 1, 2, and 3. Then all
solutions of (22) are uniformly ultimately bounded by

lim sup
k→∞

εj(k) ≤ vd + α2, (31)

lim inf
k→∞

εj(k) ≥ vd + α1 − µj . (32)



Proof. The proof of Theorem 2 will be given in the
forth coming paper.

Now, in order to support the present development let
us extend our analysis to simulation example.

4 Simulation example
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Figure 4. Buffers Content wj(k).
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Figure 5. Tracking Errors εj(k).

Consider a following example of a production line that
consists of 4 manufacturing machines operating under
variable structure regulators (17), and (18). The pro-
cessing speed for each machine is set to (µ1, . . . , µ4) =
(6, 4, 6, 4) (lots per time unit), with j = 1, .., 4, the
desired buffer content of each buffer is selected con-
sidering (30) as (wd2 , wd3 , wd4) = (12, 12, 12) (lots),
with j = 2, .., 4 and the mean demand rate vd = 3.5
(lots per time unit) with fluctuation rate of ∆ϕ(k) =
0.2 sin(5k). The tracking error of each machine in the
line is depicted in Figure 5. Here the initial conditions
(yd0, y1(0), y2(0), y3(0), y4(0)) were set to the zero
value. After the first 60 time steps, as it is shown in
Figures 5, the system reaches its steady state. Track-
ing errors are maintained inside [-2.7,3.7] lots for ma-
chine M1, [-0.7,3.7] lots for machine M2, [-2.7,3.7]
lots for machine M3, and [-0.7,3.7] lots for machine
M4, which satisfy (31) and (32). From Figure 4 it can
be observed that the inventory level of each buffer sat-
isfies the buffer limit given by the second part of in-
equality (29) and the capacity condition (28) is some-
times violated due to the discrete nature of the model.
Here (γ2, γ3, γ4) = (14.8, 16.8, 14.8) (lots). In con-
clusion, presented simulation results reflect the desired
flow model behavior. All technical conditions pro-
posed in this section correspond to analytical results
described in Section 3.

5 Conclusion
The variable structure controller implemented in

(Starkov et al. (2010)), in order to give a solution to the
demand trajectory tracking problem for one manufac-
turing machine, is proven to be optimal. By extending
this control strategy to a line of machines the results on
uniform ultimate boundedness for tracking error trajec-
tories of each machine were obtained. Here assump-
tion on variable processing speed of machine and re-
striction on intermediate buffer capacity were consid-
ered. Presented simulation example reflects effective-
ness and robustness of the flow model. Furthermore,
studies on variable structure control policy’s applica-
tion to re-entrant network, multiple part type produc-
tion systems, and performance analysis with the pres-
ence of production delays and setup times will be pur-
sued in our future research.
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