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Abstract
The practical problem of effective ventilation in un-

derground mines meeting requirements of production
leads to optimization problems having specific fea-
tures. Recent experience concerned, however, only
problems with fixed air flow in branches-consumers
and a limited dimension. In the paper a combined
method having features of feasible directions and
gradient-restoration methods is proposed to overcome
these deficiencies. The principal algorithm is formu-
lated and substantiated, some details of its implemen-
tation are discussed. Experience of the method appli-
cation is presented showing its usefulness to meet prac-
tical requirements.
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1 Introduction
For underground mining proper ventilation, i.e., sup-

ply of required quantity of fresh air to working zones as
well as removal of methane and other pollutant gases, is
a question of both safety and successful operation of a
mine. The cost of ventilation is an important thing too,
since energy consumption by fans is great and expen-
sive. Regulation of a mine ventilation network (MVN)
consists in determination of aerodynamic resistances of
passive regulators (e.g., special doors) alongside with
controlled parameters of main fans (MFs). Its1st aim
is to satisfy requirements of a given set of fresh air con-
sumers, the2nd to minimize energy consumption pro-
vided that consumer requirements are satisfied. It is the
general treatment of the problem of optimization of air
distribution in mine ventilation networks displayed in
many papers, including [Kumar et al, 1998; Lilić and
Kuzmanovíc, 1994; Wang, 1999].
The differences between various approaches to the

problem in question lie in interrelated topics of repre-
sentation of consumer requirements and regulators and

the choice of optimization techniques. In the above
listed papers a consumer demand is treated as a fixed
air flow quantity and the action of a passive regula-
tor is described by the loss of pressure in its branch.
Both [Kumar et al, 1998; Wang, 1999] rely on the gen-
eralized reduced-gradient method [Avriel, 1976], but
the 1st assume regulators to be only in fixed-quantity
branches and the second enable them to be in an ar-
bitrary branch. As to [Lilíc and Kuzmanovíc, 1994],
it is based on sequential unconstrained minimization
technique by Fiacco and McCormic [Fiacco and Mc-
Cormic, 1968]. Although the principal model of MVN
in the papers [Kumar et al, 1998; Lilić and Kuz-
manovíc, 1994; Wang, 1999] and many other is the
same, it is transformed into the optimization problem
in slightly different ways. In the presented examples
different approaches were successful to cope with opti-
mization problems in question, but dimension of the
problems were rather small and much less than for
mines of Donetsk coal basin for which we solved the
similar problems.
The model of air distribution problem put forward

in [Ushakov, 1999] differs from the mentioned above
models in two aspects: 1) the requirement of a con-
sumer is treated as a given direction and an admissible
range of air flow quantity; 2) an additional aerodynamic
resistance of a branch containing passive regulator in-
stead of pressure loss in it is treated as a controlled vari-
able. For our opinion, both assumptions are more real-
istic; besides, fixed air quantity is a particular case of
the admissible range for which lower and upper bounds
coincide.
Besides, the method of hierarchical segmentation of a

mine ventilation network from the viewpoint of sepa-
ration of air intake between groups of consumers put
forward in [Ushakov, 1999] gives recommendations
where to place passive regulators.
The method proposed to solve the optimization prob-

lems based on the proposed model is the combined
method having features of feasible directions and
gradient-restoration methods. Besides, it takes into



account the most general properties of the network
model relationships set structure. Instead, the specific
technique of feasibility restoration is incorporated in
it, namely well known Hardy Cross iterative method
[Cross, 1936].

2 The problem statement
2.1 Data and dependences that determine the

problem
Let J be the set of the MVN branches,qj being di-

rected air flow value for thei-th branch, andN the set
of ventilation network nodes. For any branch the nom-
inal direction is determined andqj > 0 for flows which
direction coincide with it, otherwiseqj < 0. We as-
sume that the nominal direction of branches containing
fans (W ) is the required direction.
For every fanj ∈ W dependences for depression

and energy consumption, i.e.,Hj(qj , uj), Nj(qj , uj),
must be determined representing respectively depres-
sion and energy consumption as functions of air flow
qj and control parameteruj values . The working zone
of a fan in thej-th branch is described in the space
(qj , uj) with restrictions

Qj min(uj) ≤ qj ≤ Qj max(uj),

uj min ≤ uj ≤ uj max.

The desired quality of ventilation is described with the
set of branches-consumers (P ) with given ranges of
air flow quantity ([qimin, ≤ qimax], i ∈ P ), its re-
quired direction being the nominal direction for each
i ∈ P , and the set of so-called likely diagonals (D) for
which the nominal direction of air flow in each guaran-
tee the absence of forbidden subsequent ventilation of
consumers.

2.2 The problem formulation
Air flows distribution in a mine ventilation network

(MVN), i.e., directed air flows quantities in network
branches (qj , j ∈ J) with aerodynamic resistancesrj ,
is subject to Kirchhoff equations

∑
i∈I+(j)

qi−
∑

i∈I−(j)
qi = 0, j ∈ N\{0}, (1)

−
∑

i∈I(k)
riqi|qi|+

∑
i∈I(k)∩W

Hi(qi, ui) = 0, k ∈ K, (2)

whereN and K are the sets of MVN nodes and in-
dependent contours respectively [Abramov, Tyan and
Potyomkin, 1978],I−(j) andI+(j) being the sets of

branches quitting and entering thej-th node. In the for-
mulation of the problem it is convenient to represent the
set of Kirchhoff equations (1) with the use of incidence
matrix of the ventilation network [Abramov, Tyan and
Potyomkin, 1978] as

∑

j∈J

Iijqj = 0, i ∈ N\{0}, (3)

(whereIij=1 if the j-th branch enters to thei-th node,
Iij = −1 if the j-th branch quits thei-th node, other-
wiseIij=0), and to represent equations (2) with the use
of generalized incidence matrix as

∑

j∈J

(Im+ijrjqj |qj |+ Hj(qj , uj)) = 0, i ∈ K, (4)

whereHj(qj , uj)=0 if the j-th branch has no fan,m
is the number of nodes,Im+ij=-1 if the j-th branch
belongs to thei-th contour and the contour is passed
round in the nominal branch direction,Im+ij = 1 if the
directions of passing round the contour and the branch
are opposite andIm+ij=0 if the j-th branch does not
belong to thei-th contour.
Controlled variables are: 1) aerodynamic resistances

of branches belonging to the setR ⊂ J of branches
containing air flow regulators and 2) controlled param-
eters of MFs (ui, i ∈ W ) subject to corresponding con-
straints

0 < rj min ≤ rj ≤ rj max, j ∈ R, (5)

uj min ≤ uj ≤ uj max, j ∈ W, (6)

Qj min(uj) ≤ qj ≤ Qj max(uj), j ∈ W. (7)

Restrictions expressing demands for ventilation qual-
ity are

qj min ≤ qj ≤ qj max, j ∈ P, (8)

0 ≤ qj , j ∈ D. (9)

Restrictions (4)–(6) are easy to satisfy. Due to the
above notation the 1st problem (to minimize the maxi-
mum residual in the constraints) has the form

z → min, (10)



qi min − qj ≤ z, qj − qi max ≤ z, j ∈ P, (11)

qj ≥ −z, j ∈ D, (12)

Qj min(uj)− qj ≤ z, (13)

qj −Qj max(uj) ≤ z, j ∈ W,

under restrictions (3)–(6) and the 2nd one (to minimize
total energy consumption by MFs) — as

∑
i∈W

Ni(qi, ui) → min (14)

under restrictions (3)–(9).

3 Computational method and algorithm
3.1 A combined optimization method
The proposed method of the problem solution may

be treated as a specific variant of a feasible directions
method for a problem with inequality constraints. For
this representation Kirchhoff equations are treated as
means of representation of dependences that determine
these constraints as implicit functions of controlled
variablesrj , j ∈ R, ui, i ∈ W . So we must treat
the operation of the method as taking place in admissi-
ble domainX of controlled variables space. According
to the general scheme of the method descent directions
are (for a certain vector norm) the direction of steepest
descent when the control vectorx lies insideX and not
close to its boundary∂X. In the vicinity of ∂X the
descent directions deviate towards the tangent plane in
the nearest point of the boundary and tend to the pro-
jection of the steepest descent direction to the tangent
plane.
For detailed description it is more convenient to re-

gard it as a hybrid method that combine features of fea-
sible directions and gradient-restoration methods. One
of the preferences of this representation is that variants
of the method with regulated accuracy of the projection
phase depending on how near the obtained point is to
the optimum point.
In this representation the set of controlled variables

consists ofrj , j ∈ R, ui, i ∈ W , andqj , j ∈ J . Kirch-
hoff equations determine the surfaceS in the domainY
of respective controlled variables vectors. The problem
I of finding the descent direction for a knowny ∈ Y
is being sought in the tangent hyperplane toS in y and
then a step is done in this direction. It is analogous
to gradient-restoration problem [Bazaraa, Sherall and
Shetty, 1993], but the problemI is more complicated.
After that the obtained pointy′ of the tangent hyper-
planeTS(y) is being projected toS (the problemII )
analogously to classical gradient-restoration methods.
Each (r-th) iteration of the method consists of solutions

of problemsI and II for the correspondingy(r). The
principal construction of the method resembles that of
[Valuev, 1990].
Let us determinex as a vector which components are

rj , j ∈ R, ui, i ∈ W , andq as a vector with compo-
nentsqj , j ∈ J , and their dimensions asNX andNQ.

Both the1st and the2nd problems may be represented
in the form

G0(x, q) → min, (15)

Gi(x, q) ≤ 0, i = 1, ..., M, (16)

xj min ≤ xj ≤ xj max, j = 1, ..., NX , (17)

Fi(x, q) = 0, i = 1, ..., NQ, (18)

whereM is the total amount of constraints-inequalities
(7).
The descent direction inTS(y) is represented with

vectors∆x, ∆q, ∆x being determined from the special
optimization problem and the corresponding∆q from
the system of linear equations

(∇xFi(x, q), ∆x) + (∇qFi(x, q), ∆q) = 0,

i = 1, ..., NQ.

The principal requirements a descent direction is reduc-
ing the value of the linear approximation of the target
function, i.e.,

(∇xG0(x, q), ∆x) + (∇qG0(x, q), ∆q) < 0,

safeguarding the inequality constraints satisfaction
what is expressed by the condition

Gi(x, q) + (∇xGi(x, q), ∆x) +
(∇qGi(x, q), ∆q) < 0, i = 1, ..., M,

and in the formal setup of the problemI both require-
ments are balanced. The value of∆q satisfying the
equations set (18) may be expressed asC(x, q)∆x
where theNQ × NX matrix C(x, q) which elements
are partial derivatives ofqk(x) with respect toxj gives
the solution of the equations system

(∇xFi(x, q))T + (∇qFi(x, q))T C(x, q) = 0, (19)

i = 1, ..., NQ.



Taking into account the dependence∆q = C(x, q)∆x,
we define the problemI like in [Zukhovitskii, Polyak
and Primak, 1963] (using as well recommendations of
[Pshenichnyi and Danilin, 1975][p. 246] for linear in-
equalities)

s ≡ max{mi + [(∇xGi(x, q))T + (∇qGi(x, q))T

×C(x, q)]∆x | i = 0, ...,M} → min,
(20)

xj ≤ xj + ∆xj ≤ xj ; −1 ≤ ∆xj ≤ 1,

j = 1, ..., NX , (21)

wherem0=0,mi = Gi(x, q), i=1,...,M .
After regrouping equations (19) we have a number of

similar equations sets for columnsccolj of the matrix
C(x, q), all system having the same matrix on the left
side. General form of these systems is:

A(x, q)ccolj = bj(x, q), j = 1, ..., NX . (22)

The set of equations system (22) is being solved in the
following way [Demmel, 1997]. By the direct phase of
Gauss elimination method (LU-decomposition) upper
and lower triangular matricesU(x, q) andL(x, q) are
determined which product is the matrix obtained from
A(x, q) by permutation of columns. After that the in-
verse phase of the elimination method is performed for
eachcj(x, q), that consists in the subsequent solution
of equations systems

U(x, q)yj = bj(x, q),
L(x, q)ccolj(x, q) = yj . (23)

Computation ofccolj(x, q) requires (NQ)2 multiplica-
tive and (NQ)2 additive operations because of prop-
erties of triangular matrices, whileLU-decomposition
demands (NQ)3/3 operations of both types [Demmel,
1997]. Thus the total amount of calculations for the
whole set ofNX << NQ systems (23) is not much
greater than for the unique one.
If fact, matricesA(x, q) generated by differentiation

of left sides of equations (3), (4) are sparse as each
equation contains much less variables than the num-
ber of branches. Practical experience show that after
all transformations they stay sparse and the total ratio
of non-zero elements is not more than 15%. Efficient
usage of sparse matrices techniques lead to greater ef-
ficiency of the whole optimization method.

3.2 The algorithm of the proposed optimization
method

The proposed principal algorithm of the problem
(15)–(18) solution is stationary, i.e. consists of a suc-
cession of the same iteration algorithms that calculate

the pairx(l+1), q(l+1) from the pairx(l+1), q(l+1) using
the same vector of parameters.
Algorithm Ω consists in the following.

Step 0. The vectorx(0) is given that satisfies
(17). Solving the system (18) by Hardy Cross iterative
method, compute the correspondingq(0). Setl=0.
Step 1 (thel-th algorithm iteration). Solve the problem
(19)–(20) withx = x(l), q = q(l). If its solution
yields s=0, halt (the optimum vectorx(l) is found).
Otherwise do the following.
Seta=1. Computex = x(l) + a∆x and findq from

solution of equation set (18) by Hardy Cross iterative
method. If constraints (16) are satisfied and

G0(x, q) ≤ G0(x(l), q(l)) + as/2,

setx(l+1) = x, q(l+1) = q and proceed to Step 2, oth-
erwise seta = a/2 and repeat computations of Step 1.
Step 2. Setl = l + 1 and proceed to Step 1.
The substantiation of the method may be done analo-

gously to the paper [Valuev, 1990]. According to [Val-
uev, 1990], we will consider two conditions on proper-
ties of the problem (15)–(18).
Condition 1. There is∆ > 0 andY∆ is the set of

approximately admissible in (15)–(18) pairsy = (x, q)
satisfying the conditions

Gi(x, q) ≤ ∆, i = 1, ..., M,

xj min −∆ ≤ xj ≤ xj max + ∆, j = 1, ..., NX ,

|Fi(x, q)| ≤ ∆, i = 1, ..., NQ,

Y∆ is bounded, functionsGi(y), i=0,. . . , M , and
Fi(y), i=0,. . . , NQ, are defined, continuous and
Lipschipz-continuously differentiable onY∆.
Practically dependencesHj(qj , uj), Nj(qj , uj),

Qj min(uj), Qj max(uj) are presented by manufactures
of fans in graphic form that show curves represent-
ing them are smooth as well as boundedness ofY
which bounds are presented with (6)–(7). HenceY∆

for small ∆ > 0 is bounded too. Smoothness of
graphs of these functions shows the possibility to de-
scribe them as at least twice continuously differentiable
and therefore Lipschipz-continuously differentiable on
the closed bounded setY∆. Other functions are linear,
except|q|q which 1st derivative is equal to 2|q| and so
Lipschipz-continuous for anyq=0 with Lipschipz con-
stant 2. So Condition 1 is valid for problems in ques-
tion.
Let us define for arbitraryε > 0 and (x, q) ∈

Y∆ sets ofε-active restrictions of types (16)–(17) re-
spectively asI2ε(x, q)={i |Gi(x, q) ≥ε} for (16),



I3Lε(x)={j | xj min + ε ≥ xj} for left (17),
I3Rε(u) = {j | xj ≥ xj max − ε} for right (17).
Condition 2. For any (x, q) ∈ Y∆ the system of vec-

tors gi = (∇xGi(x, q), ∇qGi(x, q)), i ∈ I20(x, q),
ej , j ∈ I3L0(x) ∪ I3R0(x), fi = (∇xGi(x, q),
∇qGi(x, q)), i=1,...,NQ, is linearly independent.
Condition 2 means that the matrixB(x, q) which rows

are gT
i , i ∈ I20(x, q), eT

j , j ∈ I3L0(x) ∪ I3R0(x),
fT

i , i = 1, ..., NQ, is not rank-deficient. To test it is suf-
ficient to fulfil transformations of Gaussian elimination
method with choosing the resolving element on thei-th
cycle as having maximum absolute value in thei-th row
of the transformed matrix; the criterion of linear inde-
pendence of rows is that the resolving element is non-
zero for all rows. To evaluate the degree of indepen-
dence of the vectors systembi it is reasonable to scale
it replacingbi by b′i = bi/||bi||. Numerical experience
shows that for correspondingB′(x, q) which rows are
b′i absolute values of resolving elements stay not very
small and usually greater than10−3. The proof of Con-
dition 2 validity may be effectuated in the same com-
putational process as calculation of matrixC(x, q) and
demands not much more computations than determina-
tion of C(x, q) since the number of additional rows to
the left-side matrix in (22) for this goal is not greater
thanNX << NQ.
Theoretically for the problem in question linear de-

pendencies betweenbi are possible. Letk be the node
with two entering branches (numbered asi andj) and
one quitting branch(l) and let restrictions on them
be qi min ≥ qi ≥ qi max, qj min ≥ qj ≥ qj max,
qi min+qj min ≥ ql ≥ qi max+qj max. Thenql = qi+qj

and if bothqi, qj reach their low or high limits simul-
taneously thenql reaches its corresponding limit as
well, i ∈ I20(x, q), j ∈ I20(x, q), l ∈ I20(x, q) and
gi+gj = gl, so linear dependence may take place. This
situation is, however, only formally possible and abso-
lutely contradicts with real construction of MVN where
consumers may not be ventilated successively! Then
two theorems may be formulated which statements and
proof may be derived from results of the paper [Valuev,
1990] as particular cases of more general propositions.

Theorem 1. If the problem(15)–(18)satisfies the con-
ditions 1 and 2 and the vectory = (x, q) is optimal
in it, then for each vectorw = (wX , wQ) satisfying
conditions

(Giy(y), w) ≤ 0, i ∈ I10(y),

0 ≤ wXj , j ∈ I3Rε(x); wXj ≤ 0, j ∈ I3Rε(x),

(Fix(x), w) = 0, i = 1, ..., NQ,

the inequality is valid

(G0y(y), w) ≥ 0.

Theorem 2. Let the problem(15)–(18) satisfies the
conditions 1 and 2 and the sequence is generated with
AlgorithmΩ. Then the limity∗(Λ) of any converging
subsequence{y(r), r ∈ Λ} satisfy necessary optimality
conditions of the theorem 1.

As for most optimization problems containing non-
convex relationships the existence of the unique local
minimum (that is the global one in this case) is not
guaranteed.

4 Computational experience and practical appli-
cations

The proposed method was implemented and used for
the solution of the optimum air flow distribution prob-
lems for a number of underground coal mines of the
Donetsk coal basin. The conditions of ventilation
change as a result of mining dynamics: aerodynamic
resistances change slowly and permanently and the
number of consumers may change after termination of
work in a certain longwall. So for each mine the prob-
lem is being solved at least once a month. This fact
results in a great computational experience. Usual di-
mension of the problem is: the number of fans 1, 2 or 4,
the number of air consumers from 16 to 30, the number
of diagonals 1 or 2, the number of branches from 390
to 470. Solving the1st problem it is possible some-
times to meet the requirements of all the consumers
while violation of them without regulation may reach
2–3 cubic meters per second. The number of iterations
that allows reach the desired accuracy for the 1st prob-
lem may be from 5 to 15. Solving the2nd problem it
is possible usually for 3–5 iteration decrease the total
energy consumption by fans to 1–3 %. As to time of
computation, it ranges from several minutes on PC/386
to several seconds on typical modern PC of medium
class.
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