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Abstract the choice of optimization techniques. In the above

The practical problem of effective ventilation in un- listed papers a consumer demand is treated as a fixed
derground mines meeting requirements of production air flow quantity and the action of a passive regula-
leads to optimization problems having specific fea- tor is described by the loss of pressure in its branch.
tures. Recent experience concerned, however, onlyBoth [Kumar et al, 1998; Wang, 1999] rely on the gen-
problems with fixed air flow in branches-consumers eralized reduced-gradient method [Avriel, 1976], but
and a limited dimension. In the paper a combined the 1St assume regulators to be only in fixed-quantity
method having features of feasible directions and branches and the second enable them to be in an ar-
gradient-restoration methods is proposed to overcomebitrary branch. As to [Lile and Kuzmanow, 1994],
these deficiencies. The principal algorithm is formu- it is based on sequential unconstrained minimization
lated and substantiated, some details of its implemen-technique by Fiacco and McCormic [Fiacco and Mc-
tation are discussed. Experience of the method appli- Cormic, 1968]. Although the principal model of MVN
cation is presented showing its usefulness to meet prac4in the papers [Kumar et al, 1998; Liliand Kuz-
tical requirements. manovt, 1994; Wang, 1999] and many other is the

same, it is transformed into the optimization problem

in slightly different ways. In the presented examples
Key words different approaches were successful to cope with opti-
mine ventilation system, control, optimality. mization problems in question, but dimension of the

problems were rather small and much less than for

mines of Donetsk coal basin for which we solved the
1 Introduction similar problems.

For underground mining proper ventilation, i.e., sup- The model of air distribution problem put forward
ply of required quantity of fresh air to working zones as in [Ushakov, 1999] differs from the mentioned above
well as removal of methane and other pollutant gases, ismodels in two aspects: 1) the requirement of a con-
a question of both safety and successful operation of asumer is treated as a given direction and an admissible
mine. The cost of ventilation is an important thing too, range of air flow quantity; 2) an additional aerodynamic
since energy consumption by fans is great and expen-resistance of a branch containing passive regulator in-
sive. Regulation of a mine ventilation network (MVN)  stead of pressure loss in itis treated as a controlled vari-
consists in determination of aerodynamic resistances ofaple. For our opinion, both assumptions are more real-
passive regulators (e.g., special doors) alongside withistic; besides, fixed air quantity is a particular case of
controlled parameters of main fans (MFs). 1t aim the admissible range for which lower and upper bounds
is to satisfy requirements of a given set of fresh air con- ¢oincide.
sumers, the"d to minimize energy consumption pro-  Besides, the method of hierarchical segmentation of a
vided that consumer requirements are satisfied. It is themine ventilation network from the viewpoint of sepa-
general treatment of the problem of optimization of air ration of air intake between groups of consumers put
distribution in mine ventilation networks displayed in forward in [Ushakov, 1999] gives recommendations
many papers, including [Kumar et al, 1998; Eiland where to place passive regulators.

Kuzmanove, 1994; Wang, 1999]. The method proposed to solve the optimization prob-

The differences between various approaches to thelems based on the proposed model is the combined
problem in question lie in interrelated topics of repre- method having features of feasible directions and
sentation of consumer requirements and regulators andgradient-restoration methods. Besides, it takes into



account the most general properties of the network branches quitting and entering tji¢h node. In the for-
model relationships set structure. Instead, the specificmulation of the problem it is convenient to represent the
technique of feasibility restoration is incorporated in set of Kirchhoff equations (1) with the use of incidence
it, namely well known Hardy Cross iterative method matrix of the ventilation network [Abramov, Tyan and

[Cross, 1936]. Potyomkin, 1978] as
2 The problem statement > Iijq; =0, i€ N\{0}, (3)
2.1 Data and dependences that determine the jeJ

problem

Let J be the set of the MVN brancheg; being di-
rected air flow value for théth branch, andv the set
of ventilation network nodes. For any branch the nom-
inal direction is determined ang > 0 for flows which
direction coincide with it, otherwisg; < 0. We as-
sume that the nominal direction of branches containing
fans (V) is the required direction. Z (Im+i5730510;] + Hj(gj,u5)) =0, i € K, (4)
For every fanj € W dependences for depression ;2
and energy consumption, i.€4;(g;, w;), N;(g;,u;),
must be determined representing respectively depres- ) .
sion and energy consumption as functions of air flow wheref;(q;, u;)=0 if the j-th branch has no fann
g; and control parameter; values . The working zone

is the number of noded,,;;=-1 if the j-th branch
of a fan in thej-th branch is described in the space belongs to the-th contour and the contour is passed
(g5,u;) with restrictions

round in the nominal branch directioh,,,; = 1 if the

directions of passing round the contour and the branch

are opposite and,,+,;=0 if the j-th branch does not
Qjmin(u;) < ¢ < Qjmax(uy), belong to the-th contour.

Controlled variables are: 1) aerodynamic resistances
of branches belonging to the sB&t C J of branches
containing air flow regulators and 2) controlled param-

Ujmin < Uj < Ujmax- eters of MFs{;, i € W) subject to corresponding con-
straints
The desired quality of ventilation is described with the
set of branches-consumer®)(with given ranges of

(wherel;;=1 if the j-th branch enters to theth node,

I;; = —1 if the j-th branch quits theé-th node, other-
wise I;;=0), and to represent equations (2) with the use
of generalized incidence matrix as

. . . 0<T'millgr'gr'nlax; .ERa 5
air flow quantity (Fimin, < Gimazl,i € P), its re- I ;=" J ©)
quired direction being the nominal direction for each
i € P, and the set of so-called likely diagonal3)(for
which the nominal direction of air flow in each guaran- e < s < s i ©6)
tee the absence of forbidden subsequent ventilation of gmin = Uj = Ujmax, ’
consumers.

2.2 The problem formulation Qimin(u) < q; < Q; , i
. . . . . . . . min _q—QHIXu7 GW 7

Air flows distribution in a mine ventilation network jmin(t5) ! jmax(ts); 3 @
(MVN), i.e., directed air flows quantities in network
branchesq;, j € J) with aerodynamic resistances, Restrictions expressing demands for ventilation qual-
is subject to Kirchhoff equations ity are

i lZO ] N\{0 1 Q'mingq'gq*maxa 'GP’ 8

Doieri B Qs % =0 T E NV} (D) j <45 j ®)

- Ziel(k) rigila| +

Zie[(k)ﬂW Hi(gi,u;) =0, k € K, (2) Restrictions (4)-(6) are easy to satisfy. Due to the
above notation the=t problem (to minimize the maxi-

. mum residual in the constraints) has the form
where N and K are the sets of MVN nodes and in- )

dependent contours respectively [Abramov, Tyan and
Potyomkin, 1978],/~ () andI™(j) being the sets of z — min, (20)



Gimin — ¢ <2, @ —Gimax <2, jEP, (11 of problemsI andll for the corresponding(™). The
principal construction of the method resembles that of
[Valuev, 1990].
Let us determine: as a vector which components are

¢ > -2 JeED, (12) ri,j € R, u;, i € W, andq as a vector with compo-
nentsg;, j € J, and their dimensions asx and Ng.
Both the1Stand the2"d problems may be represented
in the form
Qjmin(uj) —q; < 2, (13)
) ‘m'xU'SZ,'EVVv
4 = Qmax(ty) J Go(z,q) — min, (15)
under restrictions (3)—(6) and th8%one (to minimize
total energy consumption by MFs) — as
Gi(z,q) <0,i=1,..,M, (16)
ZieW N;(gi,u;) — min (14)
under restrictions (3)—(9). Tjmin < 25 < Tjmax, J = 1,..., Nx, (17)

3 Computational method and algorithm
3.1 A combined optimization method Fi(z,q) =0, i=1,..,Ng, (18)

The proposed method of the problem solution may
be treated as a specific variant of a feasible directions _ o N
method for a problem with inequality constraints. For whereM is the total amount of constraints-inequalities
this representation Kirchhoff equations are treated as(7)- S _ )
means of representation of dependences that determine The descent direction iff's(y) is represented with
these constraints as implicit functions of controlled VectorsAz, Ag, Ax being determined from the special
variablesr;, j € R, u;, i € W. So we must treat optimization prpblem and'the correspondiag from
the operation of the method as taking place in admissi- the system of linear equations
ble domainX of controlled variables space. According
to the general s_cheme of the methoq defscent directions (v, F(z,q), Az)+ (Vo Fi(x,q), Ag) =0,
are (for a certain vector norm) the direction of steepest 1N
descent when the control vectoties insideX and not ’ e e
close to its boundarg X. In the vicinity of 90X the
descent directions deviate towards the tangent plane inThe principal requirements a descent direction is reduc-
the nearest point of the boundary and tend to the pro-ing the value of the linear approximation of the target
jection of the steepest descent direction to the tangentfunction, i.e.,
plane.

For detailed description it is more convenient to re-
gard it as a hybrid method that combine features of fea-
sible directions and gradient-restoration methods. One
of the preferences of this representation is that variantssafeguarding the inequality constraints satisfaction
of the method with regulated accuracy of the projection what is expressed by the condition
phase depending on how near the obtained point is to
the optimum point.

In this representation the set of controlled variables Gilw,q) + (V“’Gi(xf @), Av)+
consists of;, j € R, u;,i € W, andg;, j € J. Kirch- (VoGi(z,q), Ag) <0, i=1,... M,
hoff equations determine the surfagén the domainy”
of respective controlled variables vectors. The problem gnq in the formal setup of the problefrboth require-
I of finding the descent direction for a knowne Y’ ments are balanced. The value Af satisfying the
is being sought in the tangent hyperplanetm y and equations set (18) may be expressed(4s, q)Az
then a step is done in this direction. It is analogous \here theN,, x Nx matrix C(z, q) which elements

to gradient-restoration problem [Bazaraa, Sherall and are partial derivatives af; () with respect tar; gives
Shetty, 1993], but the problethis more complicated.  the solution of the equations system

After that the obtained poing’ of the tangent hyper-

planeTs(y) is being projected t&' (the problemil)

analogously to classical gradient-restoration methods. (Vo Fi(,0))" + (Vo Fi(z,9))" C(x,q) = 0, (19)
Each (-th) iteration of the method consists of solutions i=1,..,Ng.

(vaO(‘T7q)’ AZZJ) + (quO(m7q)a AQ) < 07



Taking into account the dependense = C(z, q)Ax, the pairz(+1), ¢(+1) from the pairz(‘+1), ¢(+1) using

we define the problend like in [Zukhovitskii, Polyak the same vector of parameters.

and Primak, 1963] (using as well recommendations of Algorithm Q2 consists in the following.

[Pshenichnyi and Danilin, 1975][p. 246] for linear in-

equalities) Step 0. The vectorz(®) is given that satisfies

(17). Solving the system (18) by Hardy Cross iterative

method, compute the correspondifi). Set/=0.

Step 1 (thd-th algorithm iteration). Solve the problem

(20) (19)-(20) withz = :c(l),. q = ¢V, If its solution
yields s=0, halt (the optimum vector() is found).
Otherwise do the following.

vy <zj+Azr; <wxy; 1< Az <1, Seta=1. Computer = () + aAz and findg from

j=1,..,Nx, (21) solution of equation set (18) by Hardy Cross iterative
method. If constraints (16) are satisfied and

s = max{m; + [(V2Gi(z,q))" + (V4Gi(z, )"
xC(z,q)]Az | i =0,..., M} — min,

wheremy=0,m; = GZ(IE, q), i=1,...M.
After regrouping equations (19) we have a number of

l l
similar equations sets for columng,; of the matrix Go(z,q) < Go(zV, ¢V) +as/2,
C(z,q), all system having the same matrix on the left
side. General form of these systems is: setz(t) = g, ¢(+1) = ¢ and proceed to Step 2, oth-

erwise set: = a/2 and repeat computations of Step 1.
Step 2. Set =1 + 1 and proceed to Step 1.

The substantiation of the method may be done analo-
gously to the paper [Valuev, 1990]. According to [Val-
The set of equations system (22) is being solved in the uev, 1990], we will consider two conditions on proper-
following way [Demmel, 1997]. By the direct phase of ties of the problem (15)—(18).

Gauss elimination method.U-decomposition) upper Condition 1. There isA > 0 andY, is the set of
and lower triangular matrice8 (z, ¢) and L(x, q) are approximately admissible in (15)—(18) pairs= (z, q)
determined which product is the matrix obtained from satisfying the conditions

A(z, q) by permutation of columns. After that the in-

verse phase of the eIim.inati.on method is performed. for Gi(z,q) <A, i=1,.., M,

eachc;(z, ¢), that consists in the subsequent solution

of equations systems

A(x,q)cc0|j =0b,(z,q), j=1,..,Nx. (22)

Ljmin — A S Zj S Tj max +Aa .7 = 17'--7NXa
Ulz, q)y; = bj(x,q), ! o

L(z, q)ceol; (%, 9) = ;- (23)

‘Fi(.%',q” < A, 1= 1, ...,NQ,
Computation Otcolj(% q) requires (Vo)? multiplica-
tive and (Vg)? additive operations because of prop- Ya is bounded, functiong;(y), i=0,..., M, and
erties of triangular matrices, whileU-decomposition .y =g, . ,NQ are defined. continuous and
demands {,)3/3 operations of both types [Demmel, Lipschipz-continuously differentiable dii.
1997]. Thus the total amount of calculations for the Practically dependencesl;(q;, u;), N;(q;,u;)
whole set of Ny << NQ systems (23) is not much Q; min (1), Q; max (u;) are presented by manufactures
greater than for the unique one. _ o of fans in graphic form that show curves represent-
If fact, matricesA(x, ¢) generated by differentiation ing them are smooth as well as boundednesg’ of

of left sides of equations (3), (4) are sparse as each,hich bounds are presented with (6)—(7). Hefce
equation contains much less variables than the num-zo. small A >~ 0 is bounded too. Smoothness of

ber of branche_s. Practical experience show that aﬂ?rgraphs of these functions shows the possibility to de-
all transformations they stay sparse and the total ratio g¢jhe them as at least twice continuously differentiable
of non-zero elements is not more than 15%. Efficient 5 therefore Lipschipz-continuously differentiable on
usage of sparse matrices techniques lead to greater efy,q cjosed bounded skk. Other functions are linear,
ficiency of the whole optimization method. except|q|q which 1St derivative is equal to[2| and so
Lipschipz-continuous for any=0 with Lipschipz con-
3.2 The algorithm of the proposed optimization stant 2. So Condition 1 is valid for problems in ques-
method tion.
The proposed principal algorithm of the problem Let us define for arbitrare > 0 and (,q) €
(15)—(18) solution is stationary, i.e. consists of a suc- YA sets ofe-active restrictions of types (16)—(17) re-
cession of the same iteration algorithms that calculate spectively asl.(x,q)={i |G:(x,q) >e} for (16),



Lre(@)={j | %jmn +¢ > z;} for left (17), the inequality is valid

Lr(u) ={j | x; > xjmax — ¢} forright (17).

Condition 2. For any , q) € Ya the system of vec-

torsg; = (VaGi(z,q), VqGi(x,q)), i € Ix(x,q),

ej, j € Izpo(x) U I3ro(z), fi = (VaGi(z,q), (Goy(y), w) 2 0.
VqGi(z,q)), i=1,...Ng, is linearly independent.

C°”§"“‘?” 2 r}1eans th"’“}h‘? mat;B(x,q) Wh}Ch rows Theorem 2. Let the problem(15)18) satisfies the
arTe it € QU(C,U’q)’ €J < ?Lo(x) J 31?0@‘ conditions 1 and 2 and the sequence is generated with
.1 =1,..., Ng, is notrank-deficient. To testitis suf- Algorithm Q. Then the limity*(A) of any converging

ficient to fl_JIfiI transf_ormations of _Gaussian eIimination subsequencfy™, r € A} satisfy necessary optimality
method with choosing the resolving element onitltie conditions of the theorem 1.

cycle as having maximum absolute value inihb row
of the transformed matrix; the criterion of linear inde- A for most optimization problems containing non-

pendence of rows is that the resolving element is non- conyex relationships the existence of the unique local

zero for all rows. To evaluate the degree of indepen- minimum (that is the global one in this case) is not
dence of the vectors systdinit is reasonable to scale guaranteed.

it replacingb; by b, = b;/||b;||. Numerical experience

shows that for corresponding’(z, ¢) which rows are

b; absolute values of resolving elements stay not very 4 Computational experience and practical appli-
small and usually greater thaf—3. The proof of Con- cations

dition_ 2 validity may be effectgated in the same com- e proposed method was implemented and used for
putational process as calculation of matfixz, ¢) and  he solution of the optimum air flow distribution prob-
demands not much more computations than determina-jems for a number of underground coal mines of the
tion of C'(z, ¢) since the number of additional rows to  ponetsk coal basin. The conditions of ventilation
the left-side matrix in (22) for this goal is not greater change as a result of mining dynamics: aerodynamic
thanNy << Ng. resistances change slowly and permanently and the

Theoretically for the problem in question linear de- nymper of consumers may change after termination of
pendencies betwedn are possible. Let be the node o1k in a certain longwall. So for each mine the prob-

with two entering branches (numberediand;j) and e is being solved at least once a month. This fact
one quitting branch(l) and let restrictions on them  yegyjts in a great computational experience. Usual di-
b€ ¢imin = ¢i 2 Gimaxs Gimin = ¢ = Gjmax, mension of the problem is: the number of fans 1, 2 or 4,
¢imint¢jmin = @ 2 Gimax+3jmax- ThENG = ¢;+q; the number of air consumers from 16 to 30, the number

and if bothg;, ¢; reach their low or high limits simul- ¢ giagonals 1 or 2, the number of branches from 390
taneously theny reaches its corresponding limit as 5 470. Solving thet St problem it is possible some-
well, i € Ino(2,q), j € I20(2,q), 1 € Iro(z,9) and  times to meet the requirements of all the consumers
9i+9; = gi, So linear dependence may take place. This yyhjle violation of them without regulation may reach
situation is, however, only formally possible and abso- _3 cupic meters per second. The number of iterations
lutely contradicts with real construction of MVN where  hat allows reach the desired accuracy for thegtob-

consumers may not be ventilated successively! ThenIem may be from 5 to 15. Solving trahd problem it
two theorems may be formulated which statements andis possible usually for 3-5 iteration decrease the total

Eg;%f may bet_delr ived from rfe sults of the plaper [Va.ltl.JeV' energy consumption by fans to 1-3 %. As to time of
1 as particular cases of more general proposi Ions'computation, it ranges from several minutes on PC/386

Theorem 1. If the problem(15)(18) satisfies the con-  t0 several seconds on typical modern PC of medium
ditions 1 and 2 and the vectar = (z,q) is optimal class.
in it, then for each vectotw = (wx,wgq) satisfying

conditions
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