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Bound states of topological defects arising in a tetragonal lattice formed by two orthogonal 

standing parametrically excited capillary surface waves are investigated. A system of four 

coupled Ginzburg-Landau equations is proposed to model the bound states. Numerical 

modeling of this system gave solutions corresponding to the bound states observed in 

experiment. 

 

Formation and destruction of bound states is a process determining the properties of 

spatio-temporal chaos of an ensemble of topological defects in nonequilibrium systems. Our 

earlier research revealed that by changing parameters of nonequilibrium, for instance by 

modulating them in time, one can control both the motion of individual topological defects 

and features of spatio-temporal chaos [1].  

Dynamics of individual topological defects in roll and hexagonal structures is the best 

understood today. The present work is concerned with numerical computations of four 

coupled Ginzburg-Landau equations for amplitudes of waves forming a square lattice. The 

important point taken into account in numerical computations was coupling of 

counterpropagating waves caused by spatially homogeneous oscillations with a frequency 

twice as large as the wave frequency. Such a system of equations describes, for example, 

parametric excitation of surface capillary waves in a layer of viscous liquid (Faraday ripples):  
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Here,  are wave amplitudes, ,  is the group velocity of the 

waves,  are coupling coefficients, 
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gv

1,041 ,bc − ∆Ω  is mismatch, and γ  is the coefficient of linear 

dissipation. 

The boundary conditions for the amplitudes corresponded to zero wave amplitude at 

side boundaries.  

 The first series of numerical experiments was aimed at finding bound states of 

topological defects in one pair of parametrically excited waves. We neglected the influence of 

the other pair of waves propagating normally to the first wave pair.  

Numerical experiment demonstrated that solution of equation (1) may be a bound state 

of defects. Such a state is shown in Fig.1. The initial conditions were set to correspond to the 

topological defect belonging to the wave propagating to the right. Coupling due to pumping 

gave rise to a topological defect belonging to the wave propagating to the left. Increasing of 

group velocity results in increasing distance between the defects and the bound state will 

decay, which was verified in numerical experiment. The higher the group velocity, the longer 

was the distance between defects in the waves propagating in opposite directions. The defects 

were spaced apart in the direction of wave propagation along the OX-axis. Two topological 

charges forming a bound state moved as a whole.  

 

 

 
Fig.1. Fields of the product of amplitudes and phase difference of counterdirected 

waves obtained by numerical computations for ,001.0,001.0 10 −=−= cc  ,22 =c 20 =b , 

 v,0,0,10,0 431 =∆Ω=−== ccb g=0.3. 

 



Our calculations revealed that with increasing group velocity, when the distance 

between individual charges became comparable with the size of the system, the trajectory of 

motions of a bound state could include motions of “climb” and “glide” type. The shape of the 

trajectory depended on position of the region where the topological defect had been formed. 

The bound state along the horizontal coordinate (“glide” motion) tended to shift to the nearest 

vertical boundary. Two bound states with opposite topological charges annihilated. As the 

bound states were approaching each other they did not rotate yet.  

Such bound states were observed in experiment [2]. Note that numerical experiments 

with the equations used in our work were recently carried out in [3]. The authors of [3] did 

not find bound states like those observed by us both in numerical computations and in 

experiments. Possible reasons for this will be discussed below.  

Numerical modeling of dynamics of defects in a square lattice formed by perpendicular 

standing waves using coupled Ginzburg-Landau equations disclosed a number of effects 

observed in experiments, namely, scattering of two bound states belonging to perpendicular 

modes and arising of pairs of defects having opposite charges.  

Topological charges in the mode propagating along the OX -axis perturb the waves 

propagating along the OY -axis. These perturbations may be of two types (see the right-hand 

sides of the equations of system (1) for ): (i) nonlinear damping or nonlinear frequency 

shift 

±B

))(( 22
4 −+± + AABc  and (ii) “efficient” pumping . Perturbations of the first 

type do not introduce any phase changes, they only lead to amplitude modulation of waves 

; whereas perturbations of the second type give rise to both amplitude and phase 

perturbations, with the topological charge being 
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 have topological charges like it is showed in Fig.1, they may induce topological 

charges in waves  but their sum topological charge will be equal to zero. Consequently, 

interaction of normal waves, in contrast to interaction of waves propagating in opposite 

directions, does not lead to global restructuring of the entire phase field. This conclusion has 

been confirmed by experiments. Indeed, two bound states of topological defects belonging to 

normal modes may pass through each other. Such a process was revealed in calculations of 

system (1) consisting of 4 coupled equations. It was found that, when one bound state arises 

in each normal wave, these bound states pass through each other, without formation of a long-

lived object. One can see in fig. 2 that in the region where one mode has a bound state (the 

dark spots corresponding to the amplitude drop down to 0), the wave intensity in the other 
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mode grows (the bright spots caused by the amplitude increase). This is the result of nonlinear 

competition of normal modes that is the most pronounced for t=8,t=12.  

 

 

Fig.2 Fields of products of the amplitudes of two counterpropagating waves in perpendicular 

pairs. The upper row is for the mode with vertical wave number, and the lower one with 

horizontal wave number. The bound states belonging to the perpendicular modes pass through 

each other. The calculation was made for the following parameters: γ =1, -0.001,     

-0.001,  2, 0.1-i2, -0.1+i2, 

=0с

=1с =2с =3с =4c =gv 0.12, =∆Ω 0, =0b 2, and 2. =1b

 

However, we failed to find in numerical experiment bound state of four topological 

defects observed in [4]. A possible explanation is that system (1) is applicable at small 

supercriticality only, whereas this condition was not fulfilled in [4] when bound states of 4 

defects were formed.  

Results of our numerical calculations should be compared with computation results 

presented in [3]. There are several differences in numerical modeling. First, instead of two 

mutually orthogonal wave pairs, the authors of [3] investigated dynamics of two waves 

propagating in opposite directions along the OX-axis. Second, the basic difference between 

our two works is that periodic boundary conditions at side boundaries were used in [3], 

whereas we took zero boundary conditions. We believe that zero boundary conditions in 

numerical modeling are logically more justified if results of computations will be compared 

with physical experiment. There is usually no energy pumping near side walls, energy is only 

absorbed there. Zero boundary conditions for perturbations propagating in a nonequilibrium 

medium were observed, for instance, for spiral waves in the Coutte-Taylor flow [5], roll 

convection in a channel [6], and in other experiments. Periodic boundary conditions are more 

attractive in terms of mathematics for proving theorems, finding exact solutions, and so on, 

but they are not adequate to physical experiment.  



Our solution in the form of a bound state of two defects in waves propagating along the 

OX-axis is not periodic along the Y-coordinate. Indeed, the number of spatial periods differs 

by unity in the wave  at Y=-0.5 and at Y=+0.5. The same relation is true for the 

wave . Hence, the bound state depicted in fig. 1 cannot be obtained in [3] at any 

boundary conditions. In [3] topological defects arise in pairs in each counterpropagating wave 

and have opposite topological charges in each pair. Such pairs live for finite time from the 

moment of their birth till annihilation. In our bound states defects are in different waves and 

cannot annihilate in principle.  
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Fig. 3 Snapshots of amplitude and phase of chaotic fields А and В for  
.1,2,2,0,21.0,0,5,001.0,001.0,1.0 1043210 −====+−==∆Ω−=−=−== γbbciccccVg

 
 

Third, in our calculations the coefficient γ  in eq. (1) was equal to +1 and corresponded 

to wave damping. Instability arose due to parametric forcing at double wave frequency.. 

Parametric instability arose when the external force amplitude exceeded a threshold due to 



linear dissipation of the system. In [3] γ <0, which means the absence of linear dissipation 

and that instability is possible without parametric forcing. Even when the amplitude of 

parametric forcing is equal to zero =0b 0, there is energy pumping in the medium. It was 

shown in [3] that there may arise spatio-temporal chaos of appearing and annihilating pairs. 

We also made calculations for the case γ <0 under homogeneous boundary conditions. The 

results are given in fig. 3. We found that complex spatio-temporal dynamics arising in 

calculations is caused by interaction of long-lived bound states like the ones shown in fig. 1 

rather than by formation of annihilating pairs.  

Thus, dynamics of topological defects at parametric excitation of waves, formation of 

bound states of defects, and structure of spatio-temporal chaos depend significantly on 

boundary conditions. This effect may be of primary importance for numerical modeling of 

physical experiments.  
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