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On nonlinear resonance oscillations of a spring supported point particle.
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Abstract— Full research of flat small nonlinear oscil-
lations of a spring pendulum with nonlinear dependence
of a tension of a spring on its lengthening is conducted.
The method of a hamiltonian normal form is used. For
reduction to a hamiltonian normal form the method of
invariant normalisation is used, what essentially reduces
calculations. Solutions of the normal form equations
have shown that periodic reorganisation between verti-
cal and horizontal oscillations occurs only in case of
resonances 1:1 and 2:1. At a resonance 2:1 this effect
is shown in square-law members of the equation, and
at a resonance 1:1 one should take into account cubic
members. In all other cases, both in the presence of
a resonance, and at its absence, oscillations have con-
stant frequencies with a little different from frequencies
of linear approach. For a resonance 2:1 it is found
maximum detuning of frequencies at which the effect
of swapping of energy from one kind of oscillation to
another disappears. The resonance 1:1 is physically
possible only for a spring possessing the negative cubic
term in the law of deformation.

Keywords: Spring pendulum, hamilton system, normal form,
nonlinear oscillations.

I. A normal form of a Hamilton system [2].

To simplify our reasoning, we shall limit ourselves
by two degrees of freedom, although all the conclusions
are extended to the case of finite degrees of freedom.

Let (q,p) def (g1,92,p1,p2): be dependent variables,
H = H(q,p): be Hamilton function of Hamilton system

where the dot means d/dt. Let @ =p =0: be a fixed
point of system (1) and function H = H(q,p): in it be
analytical. Then function H can be represented as an
expansion in powers of gq,p which starts with quadratic
terms while power expansions of the right parts of
system (0.1) start with linear members. Let R be a
matrix of a linear part of system (0.1). Eigenvalues
A1y..., A4 of matrix R are split into pairs A\j o = —Aj,
j =1,2:. By means of a canonic linear variable change:
(q,p)* = B(x,y)*, where * means transposition, Matrix
R can be reduced to Jordan complex-valued normal form,
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in which eigenvalues A1,...,Aq: are located diagonally.
Then: H(q,p) = H(x,y). Let the canonic linear

complex variable change:
(x,y) = (u,v) + N(u,v), (0.2)
where N % (N1,...,N4), Nj(u,v) are power series

withou} constant and linear terms reduce Hamilton func-
tion: H(x,y) to

h(u,v) €3 hew?, (0.3)

def def
where w = (wi,...,wq) = (u,v), s = (81,...,84),
def def .
S = wit.wp = ui'us?vivst. Hamilton formal

function is called a complex normal form provided that:

1) the linear part matrix of the relevant Hamil-
ton system is of normal form with eigenvalues:
A1, A2, —A1, —Ag, located diagonally

2) in expansion (0.3) there are only resonance terms
for which

(51— 83)A1 + (52 — 84)A2 = 0. (0.4)

[1] proves that for every system (0.1) there is a formal
change (0.2) which leads Hamilton function: H(q,p)
to a normal form (0.3), (0.4). In accordance with [4],
if the initial system (0.1) is real, there is a real normal
form which can be reduced to a complex normal form
(0.3), (0.4) by a standard linear change of coordinates.

Special cases of such a normal form are those of
Birkhoff [3] and of Cherry and Gustavson. Birkhoff [3]
analyzed a case with all eigenvalues incommensurable,
so equation (0.4) in which si,...,s4 are integers, has
a trivial solution s; — s3 = s3 — s4 = 0. In this case
expansion (0.4) is a series of products: (u3v1)®! (ugvz)*?
and every such a product is a formal integral of the
relevant Hamilton system. Cherry considered a case
where eigenvalues A; and Ao are different. Gustavson
came to the same result. Belitskii suggested an expanded
normal form in which Jordan boxes of matrix linear
part are used to further reduce the number of nonlinear
members. A more detailed review of other expanded
normal forms is given in [4],[2].



II. Methods of normal form computation

Computation algorithms of canonical normalizing
transformations (0.2) and normal forms (0.3), (0.4)
are classified into three groups according to the form of
canonical transformation. There are now three forms of
canonical transformations: A. by means of a generating
function; B. by means of Lie series; C. parametric.
Thus, we will refer algorithms to one of the three
groups above depending on the canonical transformation
used.

Description of algorithms.

A. The generating function to compute a normal form
was first introduced by Jacobi [3]-[8]. According to
this method, vector series: N(u,Vv) in nonlinear formal
transformation is computed using generating function
g(x,v) = z1v1 + ... + x2v3 + ... of mixed variables
x = (z1,22) Vv = (v1,v2), while

uj = 0g/0v; =x;+ ..., (0.5)
yj =09/0z; =vj+...,j=1,2. )
If the generating series g(x,v) is computed, it is nec-
essary to express x; with the help of u,v to obtain
transformation (0.2), thus to invert power series for u;.
This results in a highly complicated computation, how-
ever always applicable (with no matrix R limitations).

B. For normalizing with the help of Lie series, scal-
ing q=¢eq, p=cp’ and x =ex', y=¢y/, t' =
e2t, w = ew’ is usually applied in which case H(x,y):
Hamiltonian, h(w): normal form, and Lie G(w) gen-
erator can be considered a series on a small parameter
€ - i -

H(x',y') = ¥ "Hp(x',y'), h(w') = 3 e*Gi(w')
k=0 k=0
The normalizing coordinate transformation and the nor-

mal form h(w’'): can be found in the form of Lie
series \
7 =w +e{w G} + 5{{w',G},G} + ...,

h(w') = H(w')+e{H,G}+5{{H,G},G}+..., where
curly brackets mean Puasson brackets.

Functions hg and Gj_; in their turn are computed
successively following k growth with the help of a
homologous equations

hi(w) = {Ho(w), Gr_1(W)} + My(w), (0.6)

There are two algorithms to solve homologous equations
(0.6), and consequently two normalization algorithms.

B.1. Equation (0.6) is computed as a system of
linear equations for form hy Gp_1 coefficients. This
method was developed by Hori and Deprit. Similar to
the previous method, there are no R matrix limitations
in this method either.

B.2. Zhuravlev [8], [6] proposed to solve the homolo-
gous equation by means of integration. If matrix R is di-
agonalizable {Hy, Gr_1} = dGy—_1/dt, Puasson bracket
equals to the derivative of G with respect to ¢ along
the solution of system q = 0Hy/0p, p = —0Hy/0q.
Therefore, hy is an average of Mj function along the

solutions of the system, and function minus Gg_; is
t

a constant in [ Mjdt integral. Thus, for the first
0

two approximations, functions Mj(w) are as follows
M, = Hy,
M, = Hy + {H1,G1} + ${{Ho, G1},G1.

C. Petrov [9], [10] proposed a parametrical form of
canonical transformation
(a,p) — (Q,P). The general result concerning the
parametrization of canonical change of variables can be
stated as follows [10]

Theorem. Suppose that transformation
(a,p) = (Q,P) of variables is represented in the
parametric form .30

1 1
¥y, Q=x+ E‘I}ya

Q=x-3

(0.7)
—y+ly, Poy- iu
P=Y 5 % =Yy g X

where U(t,x,y) is a twice continuously differentiable
function in a neighborhood of the point (t9,X0,¥0)-
Then the following assertions are valid.

1) The Jacobians of two transformations (x,y) —
(q,p) and (x,y) — (Q,P) identically coincide:

9(q,p) _ 9(Q,P)
= =J(t,x,y). 0.8
Ixy) 0xy) ( ) (08)
2) For J(t,x,y) # 0, there exists a neighborhood of
the point (to,Xo,¥yo) in which the transformation (0.2)
(a,p) = (Q,P) brings a Hamiltonian H(t,q,p) fto
Hamiltonian

H(t,Q,P) such that

\Pt(taxa Y) + H(ta q, p) = g(tv QaP)a

where the arguments q,p and Q,P of the Hamiltonians
H and H can be expressed via parameters x and 'y
by formulas (0.7).

If a Hamiltonian system is autonomous, then the
function
®(q,p) = ¥ (3(a+Q(a,p)),3 (p+P(q,p))) is a
generating function, which Poincare introduced [13].
Thus, function ¥(t,x,y) can be called parametrical
Poincare function.

Function ¥(x,y) and parametric canonical normal-
izing transformation of variables in the form of (0.7)
is used instead of G generator in the algorithm of



constructing a normal form [11], [12]. The first two
approximations for G and ¥ are the same, while the
ones that follow are different. To simplify the compu-
tation, it is possible to use integration similar to the
method described in B.2.

Methods B.2 and C simplify the normal form com-
putation significantly. In addition to this, there is a
notion of Hamiltonian symmetrization introduced which
expands the notion of the normal form. This is done
using property of commutation of perturbed and non-
perturbed parts only.

III. Hamilton symmetric form [6]

Definition. Perturbed Hamiltonian Ho + F: is a
symmetric form if perturbation F(t,q,p,¢€) is the first
integral of non-perturbed part %—f +{Hy, F}=0.

There are three advantages of this definition over the

previous ones [3], [7]. They are as follows:

1. To solve the whole system of Hamilton equations
in its symmetrical form, a superposition of solutions of
a non-perturbed system and a solution of an autonomous
Hamiltonian, which equals F(0,q,p,¢), is used.

2. The invariant character of the definition allows sym-
metrization both without a preliminary simplification of a
non-perturbed part and specification of autonomous/non-
autonomous, resonance/non-resonance cases.

3. Asymptotic of a normal form and transformation
of variables which lead Hamiltonian to its normal form
can be found by consequent quadratures of the functions
known at every step (algorithms II.2 and III).

IV. Algorithm of symmetrization with the help of
generating Hamiltonian [6]

Let the Hamiltonian under consideration has the fol-
lowing form

H(q,p,E) = HO(qa p) + F(qa p, 5))
F=e¢F, +e?Fy+ ...,
where Hy and F' are non-perturbed and perturbed parts
of the Hamiltonian, € is small parameter.
To construct generating Hamiltonian G = eGi +
62_G2+,.._. (Lee generator) and symmetrical part F' =
eFy + e2Fy+, ... we should

1. find solution q(¢,Q,P), p(¢t,Q,P) of a non-
perturbed system;

. OHy
q= apa

0H,

= —E, Q(O) =Q,

2. find functions: mg(¢,Q,P) =
Mi(a(t,Q,P),p(t,Q,P)), k=1,2,..., where
M, = F, M; =F,+{F,G1}+ %{{HO,GH},GH},
({f,g} are Poisson brackets).

Ay
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Fig. 1. Spring pendulum

t —
3. Using identity of [ my(t,Q,P)dt = tF(Q,P)+
0

Gr(Q,P)+ f(t) we find asymptotics coefficients of the

symmetrized part Fj(Q,P) and generator G(Q,P)
¢

from the quadrature [ my (¢, Q,P)dt. In particular, Hy

0
is a quadratic normal form, the symmetrization algorithm
equals II.3 normal form algorithm. However, even in
this classical case, the algorithm is significantly less
complicated than classical algorithms I. and II.1.

V. Spring pendulum. The pendulum with two degrees
of freedom is considered: the heavy point shaking in
a vertical plane on a spring (fig. 1), the spring
is weightless. We enter following designations: k -
rigidity of a spring, ! - its length position of rest
of the point, m - weight of the point, lx,ly - point
co-ordinates, [R - length of a spring, where

R=/I+a7 + 2

The Cartesian system of coordinates has the begin-
ning in a point O - position of rest of the point -
and axes x and vy, directed vertically and horizontally
correspondingly (see fig. 1). The spring tension obeys
the following nonlinear law:

_ ke(IR—1p)° L k(R L)

T
B lo

(1)

Where [y - length of not loaded spring.
Potential E, and kinetic Ej, energy of system:

5 ke (IR —1p)* k(IR —1y)?
P a3 21

g () ()| _mel | (dz\* (dy
c 2 [\t dt! 2 dt dt
Here t' - dimensional time, ¢t = wt’ - dimensionless
time.

— mglx

)]



We enter dimensionless impulses v = ¢, v = g
and write down through them function of Hamilton
H = (Ey + Ep)/(mgl)

ke (IR —1o)*
4mgll}

k(IR —lp)?

H =
2mglly

(u2—|—v2)fm+

DN | =

The movement equations of hamilton system:

d_on du__on
dt  Ou’ dt oz’

dy OH dv  OH

dt v’ dt  dy

We study movement near to rest position on the big
times ¢ and expand hamiltonian in a vicinity of position
of balance H = Hy+ Hy+Fy+F>, where Hy, Ho, Fy, Fo
- polynoms of the first, second, third and fourth degrees
accordingly.

lex(K(s)\3+)\)—1),

w02 +2? K(A+1)(3eA*+1) 492 K (eA®+2) (2)
2 ’

Fi=.., F=..

Hy =

The expressions for F; and F> are too lengthy to be
presented here.

The linear part of the hamiltonian is equal in balance
position to zero, whence we receive

K(eX+A)=1 (3)

It follows from this that the factor at y? in the
hamiltonian is equal in position of balance % It means
that frequency of horizontal oscillations is equal 1.
Let us fixate some any frequency of fluctuations on a

vertical: wyert = w, that is
(A+1) (38X’ +1) = (eX’ + A) w? (4)

The soliton of the system (3) (4) with the variables
K and e:

3 w?

), .2
Aw® +A+1 3 (5)
22 2(A+1)

T X\ (w2-3)-3)

15 K =

Besides one can present A as a series on the parameter
of spring nonlinearity €. To within the first degree ¢
we will receive:

1 2w?
A= +€ d
(w? = 1)

-+ 0(e?) (6)

w? -1

In case of resonance 1:1, that is when w = 1, we
have

11,
A:—\s/—2_€—§+0(\/5) (7)

By means of (3) and (4) one can exclude parameters
K ¢e. Then in the vicinity of balance point we can
expand (2) with the dependence on two parameters: w
A

Further to the hamiltonian expansion the algorithm of
invariant normalization will be applied knowing value
of frequency w.

VI. Non-resonance

At first we formally apply algorithm of invariant
normalization not imposing any restrictions on the ver-
tical frequency. The received hamiltonian normal form
is convenient for writing down in Birkhoff variables.
Normal form factors are expressed precisely through the
dimensionless lengthening A, with the help (6) in the
form of series on € to within members of an order &2

le%ﬂ'\/ax, Zy =V +1iY

I?A[g :z'(wZ121+2222), Fl =0
Fg = Z (anlele + 012Z121Z222 + 0[22Z22222)

where o;; is known coefficients.

The decision of such normal form are the usual
harmonious oscillation occurring separately on a vertical
and a horizontal which frequency receives the small
amendment of an order of a square of amplitudes.

VII. Resonance 1:1

Let’s consider a resonance case 1:1. Believing in (8)
w =1 we find a normal form in Birkhoff variables
Z1=U+iX, Zy=V+iY:

ﬂzzi(Z121+Z2Z2), F‘;L:O
By =i(an 2273+
—|—O£2Z22222 + Ol3Z121Z2ZQ + oy (Z22212 + 212222))

where

ay — C3AF 1A +5) o 3V

32)\4 ~ 16 % 22/3°
3A+1) 3§

a2:0

3(A+1) 3¢k

a3 = — Qg4 = —

82 4%22/3

32)2 16 % 22/3



This normal form in contrast to the normal form
at not resonant case posses component Z2Z% + 7272
which bring essential changes in behavior of system.

With a view of simplification of the analysis pertur-
bation of the second order has been broken into two
components:

A -~ - -~ . - =12
Fy = Fo1 + Fay, Foyr =ik (2121 + Z225)
FQQ = *ZkZ%Zzz + inZ1Z22122 + im (leg - ZQZl)Z

 3(A3 47X+ 11X +5)
T 324 ’

3(22%—4x*—112-5)
1672

3(A+1)
3222

n=—

All three parts of the hamiltonian (I?&, 13’21, 13'22)
commutates with each other. That is why we can
search solutions for every hamiltonian separately, and
then build combined solution by means of the algorithm
described in [6].

The solution for hamiltonian ﬁQ +13’21 is the same
as in the case of absence of resonance. And for
the Fy, the solution is found for the particular case,
when A\ = 3+ /14 ~ 6.74. For that A we can see
k =n = 2m, that greatly simplifies system.

Then the asymptotical decision in case |yo/zo| =
v — 0 assumes the following form:

z(t) = X(t) cos(t), y(t) =Y (t)cos(t)
Lo 3T) 2)
2lex]Y (t) = —=Sech (2m [t — — | =5 | +
eal (0 = Zh sech (2m (1~ 3 ) o
+%Sech em(t—T)zd) + (..
X(t) =

1 4}
/U RN S (_)
2y/m(ctm —a) 2maxg Yo

As can be seen from the formulas here takes place
process of periodical energy swapping between hori-
zontal and vertical oscillations. The frequency of this
reorganization is depends on initial conditions and can
be smaller then than frequencies of oscillations in tens
thousand times. The graph of the solution is presented
on fig.2. Visual frequency of oscillations on the graph is
considerably smaller than real for the sake of clearness.

2 Y2(1)

It is possible to solve system and for other values
of A, but the decision will turn out very inconvenient.
IIX. Vicinity of the resonance 2:1 Solutions for the
spring pendulum in the case of resonance 2:1 were
obtained in [17]. Unperturbed hamiltonian for that case:

Ce(A+1)%® 32

w2 02 4z? 42
Hy= — 4+ — 4+ = 4+ 7 B =
2=yttt A

eX2+1 2

Y(t)

}h“mmmn

0.04

t
0 20000 40000

x(t) X(t)

0.1

T e (| ||

0.054

0 20000 40000

Fig. 2. Resonance 1:1

Here we consider, how much quickly disappears
effect of swapping of energy when we introduce small
frequency detuning. We consider for this purpose, that
frequency of horizontal oscillations is equaled not 2,
but w = 2+ p, where p - small parameter of 1st order
to hamiltonian variables. Thus composed in hamiltonian
px? we will carry not to a square-law part, but to
perturbation of the first order. Component pu2z? thus it
is necessary to carry to the second order of perturbation
and due to fact that at normalization we will count up
a normal form only up to members of 3rd order, this
component can be excluded from consideration. Thus,
the following system should be subjected normalization:

u? v 4x? P

Hy = — i _ g
2=yttt

_ sQ+1)%2® | 3y’e 2
Fi=="5eg -+ tue

After normalization

Hy =i (2212, + Z225),

i 321Z§ _ 3Z12§ (10)

1= 8,2 8v/2

+ Linz, 74
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Fig. 3. Detuning at the resonance 2:1

The solution of the system gives us energy swapping
between horizontal and vertical oscillation with the

period
1 2
T=T 1—(-—
0/ <3:L'0) ’
T — 41n(22)+30°+(3/32)(—17+51n(32/v%))v*+0(+° Inv)
H =

3zo

|yo/zo| =v — 0

(11)

where Tj - period at the resonance.

The period finite only when p € (—3|zol;3|zo|),
and that determines the area, where reorganization of
oscillations can be observed. The comparison with the
numerical evaluations is presented at fig.3. The results
of the numerical solutions are denoted as filled circles.

IX. Conclusions

It is proved that reorganization between vertical and
horizontal oscillations is possible only at resonances
1:1 and 2:1. The resonance 1:1 is possible only for
a nonlinear spring possessing the negative cubic term
in the law of deformation. Besides the effect for a
resonance 1:1 is much weaker. At these resonances the
amplitude envelope for both oscillations is defined. It
is described by means of simple function Sech t and
well co-ordinated with numerical calculations.

Dependence of the period T of reorganization from
a deviation of resonant frequency p = wy/w, — 2.

Received numerical evaluations show good accuracy
of these analytical dependences (see fig. 2 and fig. 3)
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