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Abstract
The silicon neuron is an electronic circuit that re-

produces the electrophysiological behavior of neuronal
cells. In experimental results of a square-wave burster
silicon neuron circuit, we found a characteristic fluctu-
ation in spike generation in its fast subsystem, which
leads to instability in the bursting behavior. This ar-
ticle proposes a biologically possible countermeasure
against this problem in the modeling aspect, which is
originally intuitive and expanded based on the formal-
ism of the ionic current models. Its qualitative effec-
tiveness is evaluated using our silicon neuron model.
To support the possibility that this measure is also ef-
fective in biological cells, a simulation was performed
with a well-known virtual neuron model.
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1 Introduction
The nerve system receives huge amount of input data,

robustly extracts critical information from them, and
decides appropriate responses in real time. In addi-
tion, learning ability improves the responses dynami-
cally and autonomously. These splendid information
processing features are realized by far lower-power
consumption and more compact system than the dig-
ital computers. The silicon neural network is one of
the most promising candidates of the next generation
information processing systems that realize these fea-
tures. It is a network of silicon neurons, electronic
copies of neuronal cells, connected each other by sil-
icon synapses. The silicon neuron has a long research
history and there have been proposed a number of
excellent circuits [Renaud, Tomas, Bornat, Daouzli,
and Saı̈ghi, 2007; Simoni, Cymbalyuk, Sorensen, Cal-
abrese, and DeWeerth, 2004; Indiveri, 2003]. How-
ever, because most of them have been designed to solve
neuron models utilizing analog electronic circuit, they

are extremely complex and consume larger resources
and higher power if the model is detailed whereas their
dynamics are restricted if ultimately simplified models
such as the leaky integrate-and-fire model are selected.

We proposed a mathematical-structure-based design-
ing approach based on the qualitative modeling tech-
niques of the ionic conductance dynamics in neuronal
cells [Kohno and Aihara, 2008; Kohno and Aihara,
2010]. These techniques allow us to describe the mech-
anisms of the dynamics by fewer system variables and
simpler equations than the conductance-based mod-
els. In our designing approach, silicon neuron models
are constructed by a combination of the characteristics
curves of simple, compact, and low-power consuming
elemental circuits instead of polynomials that are most
tractable in mathematics. Our most recent very-large-
scale integrated circuit (VLSI) chip contains a square-
wave burster silicon neuron circuit. The square-wave
burster [Wang and Rinzel, 2003] is a class of bursters
with most simple dynamics, that is composed of a fast
subsystem with bistability between a limit cycle and an
equilibrium, and a slow negative feedback on it. The
Hindmarsh-Rose model [Hindmarsh and Rose, 1984],
a pacemaker neuron model in the pre-Bötzinger com-
plex [Butera, Rinzel, and Smith, 1999], and the pan-
creas β cell model [Chay, 1996] belong to this class. In
circuit experiments, we found that the burst firing pat-
terns in our silicon neuron circuit were hard to be sta-
bilized though circuit simulation under noiseless con-
dition concluded stable burst firing. Apparently this in-
stability is attributable to the internal noise of the cir-
cuit. Because it is impossible to eliminate noises in
real-world systems, our silicon neuron requires some
mechanisms to reduce this effect of the internal noise
as well as improvement of noise resistance of circuitry.
In this article, after a brief overview of our silicon neu-
ron model, simulation results are reported on effective-
ness of a biologically possible mechanism in our model
and a well-known semi-qualitative model based on the
Morris-Lecar model [Rinzel and Ermentrout, 1998].



10 30

-100

0

(mV)

(pA)

-50

50

50

-150
40 6020

(T)

-nullcline

= 66 pA

orbit

Unstable spiral
Stable limit cycle

Stable
node

Unstable
limit cycle

Hopf
bifurcation

SaddleStable
spiral

Saddle-loop
homoclinic orbit

bifurcation(33.43pA)

Bistability

Figure 1. The v-q plane of our silicon neuron model.

2 A square-wave burster silicon neuron
In the background of our designing approach is the

belief that the qualitative properties of the neuronal be-
haviors, not the exact shape of the action potentials,
hold the essences of the nervous information process-
ing. Our silicon neuron circuit is designed based on
a theoretical model constructed by a combination of
the idealized characteristics curves of the elemental cir-
cuitries.

2.1 Model
Our silicon neuron has the minimum number of

variables to realize the dynamics in the square-wave
burster; a two-variable fast subsystem and a slow feed-
back variable. The system equations are as follows:

Cv
dv

dt
= −g(v) + fm(v) − n − q + Ia + Istim, (1)

dn

dt
=

fn(v) − n

Tn
, (2)

dq

dt
=

fq(v) − q

Tq
, (3)

where variables v and n represent the membrane po-
tential and a hyperpolarizing current that compose the
fast subsystem, and q represents the slow hyperpolar-
izing current that gives a slow negative feedback to it.
Parameters Cv , Ia, Tn, and Tq are the membrane ca-
pacitance, a constant leak current, the time constants
of n and q, respectively. Functions fx(v) (x=m, n, or
q) and g(v) represent the idealized characteristics of
most simple, compact and low-power consuming cir-
cuits based on the differential pair circuitry composed
of Metal-Oxide-Semiconductor Field-Effect Transis-
tors (MOSFETs) operated under the subthreshold con-
dition. They are the similar functions to the hyperbolic
tangent as listed in Eqs. (4) and (5). They belong to
the most simple, compact, and low-power consuming
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Figure 2. Block diagram of our silicon neuron circuit.

circuits.

fx(v) = Mx
1

1 + exp (− κ
UT

(v − δx))
, (4)

g(v) = S
1 − exp (− κ

UT
(v − θ)/2)

1 + exp (− κ
UT

(v − θ)/2)
. (5)

Here UT is the thermal voltage (approximately 26mV)
and κ is the capacitive-coupling ratio that is dependent
on the fabrication process and the operating condition
of MOSFETs (between 0.6 and 1.0 in most cases). Pa-
rameters Mx, δx, S, and θ as well as Ia, Tn, and Tq are
to be specified by externally applied voltages.
This model generates burst firing patterns if those pa-

rameter values are selected appropriately. As shown
in the v-q plane of Fig. 1, a bistability between a
limit cycle and an equilibrium exists in an interval of q
(gray-colored region in the figure), and the q-nullcline
roughly separates the limit cycle and the stable node.
Because most part of the limit cycle is above the q-
nullcline, q increases while the state point is moving
along the limit cycle. It is eliminated by a saddle-loop
homoclinic orbit bifurcation when q reaches a critical
value and the state point jumps to the unique stable
state of the equilibrium. Because the stable node is
under the q-nullcline, q decreases until it vanishes by a
saddle-node bifurcation and the state point jumps to the
limit cycle. The mechanism of the square-wave burst-
ing is the repetition of this process; alternation between
the tonic firing (the limit cycle) and the silent (the equi-
librium) phases.

2.2 Circuit
Figure 2 illustrates the block diagram of our square-

wave burster silicon neuron circuit. The voltage of ca-
pacitor Cv represents the membrane potential v. Each
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Figure 3. The results of the circuit experiment where q is fixed at
a value in the bistability interval. The dimension of n is voltage,
because the current that represents n is converted to voltage by a
nonlinear high-impedance circuit in the VLSI chip. (a) Time series of
v. (b) The same data is projected on the Vn-v phase plane. Variable
n is coded by a fine current in the VLSI chip, which is converted to
voltage Vn by an integrated I-V converter.

of fx(v) and g(v) blocks are respectively a differen-
tial pair circuit and a transconductance amplifier whose
idealized characteristics are represented by Eq. (4) and
(5). Their output currents are integrated by the current-
mode integrator blocks whose output currents Iq and
In are integrated in capacitor Cv . The voltage clamp
amp. block and switches SW1, 2, and 3 allow us to
draw the v-, the n-, and the q-nullclines. How they
assist estimating the circuit’s dynamics and determin-
ing the externally applied parameter voltages, as well
as the circuitry of each block, were discussed in our
previous works[Kohno and Aihara, 2008; Kohno and
Aihara, 2010].
In circuit experiments of our silicon neuron VLSI

chips fabricated by TSMC Complementary Metal-
Oxide-Semiconductor (CMOS) 0.35µm process, we
successfully found the parameter voltages to realize the
bistability in the fast subsystem circuit described in the
previous subsection and observed bursting behavior.
As mentioned in the introduction, however, the burst-
ing behavior could not be stabilized whereas HSPICE
circuit simulator concluded stable bursting.
The behavior of the fast subsystem circuit was ob-

served by emulating a fixed value of q by closing SW1,
opening SW2 and 3, and applying equivalent Istim. An
appropriate selection of Istim value and an initial condi-
tion sustains the system state on the limit cycle in the
bistability interval of q. In the time course of v (Fig.
3(a)), the lower edge of the oscillation is significantly

fluctuating in comparison to the upper edge. Figure
3(b) draws the orbit on the Vn-v phase plane where
the experimentally obtained v- and Vn-nullclines are
superimposed. In this figure, Vn is a voltage that re-
flects n, which is originally expressed by a fine cur-
rent that ranges under 1 nA in our VLSI. The current
is converted to a voltage by an internal nonlinear high-
impedance circuit to avoid difficulty in measuring dy-
namical fine currents. Though these nullclines have rel-
atively large errors caused by their measurement cir-
cuitries, we can see that the fluctuation is amplified
when the system state passes near the saddle point (see
Fig. 1 for stability of the equilibria).

3 Possible measures against instability in bursting
behavior of silicon neuron model

It is feasible that the fluctuation of v in the fast sub-
system reported in the previous subsection originates
from the saddle point, because when the state point ap-
proaches a saddle point, small displacement of the ini-
tial position in the direction along the unstable mani-
fold of the saddle point results significant difference in
the orbit. In addition, the q-nullcline is most sensitive
to v near the saddle point (see Fig. 1) where this fluc-
tuation is facilitated. There is a possibility that this is
one of the crucial mechanisms of the instability in the
bursting behavior.
The instability of the bursting behavior that originates

from the fluctuation in the fast subsystem is modeled
by introducing white noises to v and n in Eqs. (1) and
(2) as follows:

C
dv

dt
= −g(v) + fm(v) − n − q + Ia + Istim + ξv,

(6)

dn

dt
=

fn(v) − n + ξn

Tn
. (7)

Figure 4 shows a simulation result of the model of Eqs.
(6) and (7) in the similar setting as in Fig. 3 where q is
fixed at a value in the bistability interval. In this figure
and the following subsections, standard deviation of ξv

and ξn are 2.0 × 10−2 (mV) and 8.0 × 10−5 (nA), re-
spectively. Though quantitatively much modester, they
qualitatively reproduce the fluctuation in the fast sub-
system. The behavior of our model under the existence
of noises in the fast subsystem was simulated by the
model of Eqs. (3), (6), and (7). Their parameters are
the same as those in Fig. 1 that produces stable 4-spike
bursts if no noise is applied. Figure 5(a) is a time course
of v in this system. In the figure, 3- and 5-spike bursts
are observed as well as 4-spike bursts. The appearance
frequencies of N-spike bursts in a 1000 bursts are listed
in the “original” column in Table 1. Their average and
standard deviation are calculated using 10 trials of the
1000 bursts. In this article, the stability of bursting is
evaluated by the spike number per burst instead of the
bursting period. This is because it is natural to assume



(a)

(b)

Figure 4. Simulation results of Eqs. (6), (7), and (3) where q is
fixed at a value in the bistability interval. (a) Time series of v. (b)
The same data is projected on the n-v phase plane.

that the fluctuation in the discrete quantity of the for-
mer has more impact on the behavior of the neuronal
networks than the variation in the continuous number
of the latter. In addition, the stabilization of the former
has an effect of reducing variance in the latter.

3.1 Modification of the q-nullcline
The saddle point in the fast subsystem is an inevitable

structure in the dynamics of the square-wave burster.
Thus, a possible countermeasure against this mecha-
nism in the modeling aspect is to make the fluctuation
of v in the limit cycle less effective on dq

dt . A most
straightforward way to realize this is reducing the sen-
sitivity of the q-nullcline to v near the saddle point. If
we redefine sigmoidal function fq(v) in Eq. (3) as fol-
lows, the width of and the gradient of its plateau region
can be arranged by constant K.

fq(v) = Mq
1

1 + exp (−K κ
UT

(v − δq))
. (8)

Larger value of K increases the steepness of the
sigmoid, which leads to the wider and less gradient
plateau region. This fq(v) is approximately imple-
mentable in CMOS circuit.
Figure 6 illustrates the v-q plane of our silicon neu-

ron model with this modification, where the new q-
nullcline is steepened (K = 10) and displaced so that
the model generates stable 4-spike bursts with similar
bursting period to the original setting if no noise is ap-
plied. A time course of v is plotted in Fig. 5(b) and the
average and the standard deviation of the appearance
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Figure 5. Time courses of v in our silicon neuron model when
white noises are applied to v and n. (a) Original model, (b) The
q-nullcline is steepened, (c) The dependence of the time constant of
q is introduced into (b), (d) The same modification as (c) is applied
to (a), (e) White noise ξq is introduced to q in (c).

frequencies of N-spike bursts are listed in the “mod.1”
column in Table 1. The appearance of 2- and 6-spike
bursts are eliminated and 3- and 5-spike bursts are re-
duced approximately by half.

3.2 Biologically-inspired modification
In the ionic conductance models of the excitable cells,

some ionic currents without inactivating dynamics are
formulated as follows:

Ix = ḡx zNz (Ex − v), (9)
dz

dt
= Fz(v, z), (10)

where ḡx represents the maximum conductance of
ionic channel x, m is an activating gate variable, and
v is the membrane potential. Constant Nz is a positive



Table 1. Appearance frequencies of from 2- to 6-spike bursts in a 1000 bursting. The “N” column represents the number of spikes per burst.
Their average and standard deviation are calculated using 10 trials (total 10000 burstings). Each column corresponds to the time-series plot in
Fig. 5 from (a) to (e) in sequence, whose condition is described in section 3.

N original mod.1 mod.2 mod.3 mod.2 with noise in q

2 0.1 ± 0.32 0 0 0.1 ± 0.32 0

3 226.3 ± 11.91 106.7 ± 7.79 13.9 ± 3.00 25.1 ± 4.91 15.7 ± 4.52

4 718.7 ± 10.91 861.8 ± 8.05 973.5 ± 5.10 968.3 ± 4.88 971.3 ± 5.60

5 54.6 ± 12.55 31.5 ± 5.68 12.6 ± 3.10 6.5 ± 1.72 13.0 ± 3.89

6 0.3 ± 0.67 0 0 0 0

10 30

-100

0

(mV)

(pA)

-50

50

50

-150
40 6020

-nullcline

Unstable spiral
Stable limit cycle

Stable
node

Unstable
limit cycle

Hopf
bifurcation

SaddleStable
spiral

Saddle-loop
homoclinic orbit

bifurcation(33.43pA)

Bistability

Figure 6. The v-q plane of a modified silicon neuron model. The
difference to Fig. 1 is that the q-nullcline is steepened by setting K
= 10 and displaced along the v-axis. Under the noise-free condition,
the model generates stable 4-spike bursts of very similar bursting pe-
riod to the original model.

integer and Ex is the equilibrium potential of the ion se-
lected by ionic channel x. In the conductance models,
the slow feedback dynamics in the square-wave burster
are realized by ionic currents that follow this formal-
ism.
Thus, the modification in the previous subsection cor-

responds to steepening the Iq-nullcline where Iq is an
ionic current that produces the slow feedback dynam-
ics. The equations above indicate that the Iq-nullcline
is steeper if larger Nz as well as a steeper z-nullcline
is selected. In the case that Nz is larger than 1, the
time constant of Ix is proportional to 1/zNz−1, which
means that the time constant is decreased by increase
in z. This accelerates the effect of negative feedback as
the system state approaches the saddle-loop homoclinic
orbit bifurcation point. Near this bifurcation point, the
system state on the stable limit cycle can easily be re-
pelled out of it by the noise because an stable manifold
of the saddle point is very close to the limit cycle. It is
intuitive that the shorter staying time near the bifurca-
tion point would reduce the noise effect.
This mechanism can be introduced into our silicon

neuron model in the previous subsection by changing

Eq. (3) to

dq

dt
=

fq(v) − q

Tq/fT (q)
, (11)

where fT (q) is a monotonic increasing function that
is approximately implementable by a relatively simple
CMOS circuit. It is

fT (q) = 1 + MT
1

1 + exp (−L κ
UT

(q − δT ))
, (12)

where L, MT , and δT are the parameters that are spec-
ified by the voltages externally applied to the circuit.
Now the modified silicon neuron model is composed
of Eqs. (4) (for x=m or n), (5), (6), (7), (8), (11), and
(12). Appropriate selection of these three new parame-
ters and re-selection of Tq while maintaining the other
parameters the same as in the previous subsection con-
siderably improved the stability of bursting behavior.
A time course of v is plotted in Fig. 5(c), where all
the numbers of spikes in the bursts are 4 in a relatively
short time window. The average and the standard de-
viation of the appearance frequencies of N-spike bursts
are listed in the “mod.2” column in Table 1. The rate
of 4-spike burst is increased up to about 97%.
Another plot in Fig. 5(d) is a time series of v in a sys-

tem obtained by applying the same modification to the
original silicon neuron model (non-steep q-nullcline).
The system equations are composed of Eqs. (3), (4)
(for x=m, n, or q), (5), (6), (7), (11), and (12). Here,
the new three parameters are selected and Tq is re-
selected appropriately, whereas the other parameters
are the same as in the original model. The appearance
frequencies of N-spike bursts are listed in the “mod.3”
column in Table 1, where we see that the rate of 4-
spike burst is similarly high as “mod.2”. It implies that
the major effect of the modification in this section is
attributable to the modification in the time constant of
q, not to steepness of the q-nullcline.

3.3 Influence of noise in q
In the simulations above, no noise is applied to the

slow feedback variable q. We performed simulations
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Figure 7. Simulation results of a virtual neuron model. (a) Original
model (Nz=1). (b) Modified model (Nz=4).

of the model in the previous subsection under the same
condition except for adding white noise ξq to q in Eq.
(11) in the same way as in Eq. (7). The same value of
standard deviation as in ξn (8.0×10−5 (nA)) is selected
for ξq. This value seems relatively large if the differ-
ence between the scales of variables q and n is taken
into account, but it is feasible because both of the vari-
ables are implemented in very similar circuitries that
have similar intrinsic noises. Figure 5(e) shows a time
course of v, where no other than 4-spike bursts is ob-
served as in the result in the previous section. The av-
erage and the standard deviation of the appearance fre-
quencies of N-spike bursts were calculated in the same
way. They are listed in the rightmost column in Table
1, which has no significant difference to those under
the noise-free condition (“mod.2” column). To view
how the rhythm of bursting is affected by this noise, the
bursting period was evaluated by the interval between
the times when v crosses 0 (mV) upward for the first
time in a burst and the next. It was 162.3±6.03 (msec)
for the simulation result in this subsection whereas
162.3±5.86 (msec) for noise-free q condition in the
previous subsection. These values were calculated us-
ing the simulation results of the same 10 sets of 1000
bursts for the calculation of appearance frequencies.
The increase in the standard deviation of the bursting
period by the noise in q is considerably small in com-
parison to the standard deviation itself.

4 Discussion and Conclusion
We proposed an effective measure against instability

in the bursting behavior of a square-wave burster sili-
con neuron model. It originates from the consideration
on the qualitative dynamics in the square-wave burster
and was enhanced by the formalism in the conductance
models of the biological excitable cells. Accordingly,
the influence of the internal noise in biological square-
wave bursters can be reduced by the same mechanism.
To support this possibility, in a well-known virtual

neuron model based on the Morris-Lecar model [Rinzel
and Ermentrout, 1998], we conducted a simulation of

Table 2. Appearance frequencies of from 2- to 7-spike bursts in a
1000 bursting. The numbers in this table are calculated and listed in
the same way as in Table 1.

N Nz=1 Nz=4

2 3.3 ± 1.25 0

3 408.5 ± 9.63 8.6 ± 4.22

4 498.1 ± 11.54 986.2 ± 5.05

5 85.7 ± 8.33 5.2 ± 2.35

6 4.3 ± 2.63 0

7 0.1 ± 0.32 0

increasing Nz (see Eq. (9)) of the slow negative feed-
back current. In this model, the membrane capacitance
Cv is charged or discharged by a very-fast depolariz-
ing current of calcium ICa, a hyperpolarizing current of
potassium IK, and a very-slow hyperpolarizing current
of potassium IK-Ca as follows:

Cv
dv

dt
= ICa(v) + IK + IK-Ca + IL + Istim, (13)

where v is the membrane potential, IL is a leak cur-
rent independent of v, and Istim is an externally applied
stimulus current. The very-slow current IK-Ca is re-
sponsible for the slow feedback dynamics, which fol-
lows the formalism of Eq. (9). The fast subsystem
is constructed by v and w, the activating gate vari-
able of IK whose equation is not described here. In
this simulation, white noises ξv and ξw are introduced
into these variables in the same way as in our silicon
neuron model. The standard deviation of these noises
are respectively 0.2 (mV) and 0.002. Originally in
this model, Nz is 1 and stable 4-spike bursts are ob-
served under the noise-free condition. We changed Nz

to 4 and arranged the other settings of IK-Ca so that the
model produces stable 4-spike bursts of similar burst-
ing period to the original setting when no noise is ap-
plied. Time courses of v in these cases are plotted in
Fig. 7. The appearance frequencies of N-spike bursts
in the original and the modified setting are listed in the
“Nz=1” and the “Nz=4” columns in Table 2, respec-
tively. These values were calculated in the same way
as in Table 1. They indicate significant improvement
in stability of bursting behavior. Taking its effective-
ness into account, we can imagine a possibility that Nz

of slow feedback current is large in some biological
square-wave bursters whose stability of bursting pat-
terns is critical in surviving.
The evaluation of quantitative effectiveness of the

modification in our silicon neuron circuit will be per-
formed in circuit experiments. Simulational work is
ineffective because noises in the circuit is dependent
on various factors including those which depend on the
details of circuit implementation and the operating en-
vironment of the VLSI chip.
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