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Università di Roma La Sapienza
Italy

francesco.romeo@uniroma1.it

Giuseppe Rega
Dipartimento di Ingegneria Strutturale e Geotecnica
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Abstract
Infinite and finite chains of mono-coupled nonlin-

ear oscillators are considered. The dynamics of these
one dimensional chains is studied relying upon dis-
crete nonlinear periodic models governed by second
order nonlinear difference equations. At first, ampli-
tude dependent frequency thresholds bounding nonlin-
ear propagation and attenuation zones are determined
for infinite chains through a nonlinear map approach.
Next, finite chains with homogenous boundary con-
ditions are tackled through the multiple scales per-
turbation approach by assuming weak nonlinearities.
Free vibrations frequency-amplitude curves as well as
nonlinear modes are determined. Furthermore, their
connection with the amplitude dependent frequency
thresholds of the nonlinear propagation zone is dis-
cussed.
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1 Introduction
The dynamics of one dimensional chains of linearly

coupled nonlinear oscillators is investigated. Being
interested in mechanical structures, where the wave-
length of the main dynamic phenomena is of the same
order of magnitude of any element of the chain, discrete
nonlinear periodic models governed by second order
nonlinear difference equations are studied.
Monocoupled periodic systems of infinite extent with
material nonlinearities have been addressed in [Vakakis
and King, 1995]. Two different asymptotic approaches
have been devised for studying standing (stop-bands)
and traveling (pass-bands) waves; amplitude dependent
frequency thresholds bounding nonlinear propagation
and attenuation zones have been found. In [Davies
and Moon, 1996] an array of elastic oscillators coupled
through buckling sensitive elastica has been addressed
both numerically and experimentally. Localized modes

in chains of oscillators with cubic nonlinearities have
been studied in [Manevitch, 2001] through an asymp-
totic approach. In [Chakraborty and Mallik, 2001], har-
monic wave propagation in weakly nonlinear periodic
structures made up of chains of masses joined by non-
linear springs has been investigated through a pertur-
bation expansion of the propagation constant; bound-
ing frequencies of propagation zones as well as non-
linear normal modes of finite chains have been de-
termined. More recently, wave attenuation caused by
weak linear/nonlinear damping has been addressed in
[Marathe and Chatterjee, 2006], where the method of
multiple scales is applied to the nonlinear map gov-
erning the dynamics of the periodic structure. Mono-
coupled chains of linearly coupled nonlinear oscillators
have been studied in [Romeo and Rega, 2006] through
a nonlinear map approach. According to this approach,
conservative infinite chains of nonlinear oscillators can
be investigated by means of nonlinear maps. The gov-
erning difference equations are regarded as symplec-
tic nonlinear transformations relating the amplitudes in
adjacent elements, by considering a dynamical system
where the position plays the role of the discrete time
[Hennig and Tsironis, 1999]. Thus, wave propagation
becomes synonymous of stability: to find regions of
propagating wave solutions is equivalent to find regions
of linearly stable map solutions.
In this work mono-coupled finite chains with homoge-
nous boundary conditions are considered in the back-
grund of wave propagation results obtained for infi-
nite chains. The non-linear normal modes of such
multi-degree of freedom system correspond to periodic
motions when all the coordinates cross their equilib-
rium position simultaneously and the associated fre-
quencies are the so called non-linear natural frequen-
cies. In this realm the preliminary, yet worthy, goal
is to determine the free vibrations frequency-amplitude
curves, and the associated nonlinear modes, as well as
to discuss their relationship with the amplitude depen-
dent frequency thresholds of the nonlinear propagation
zone. The analysis is carried out for weak nonlineari-



Figure 1. Monocoupled infinite nonlinear spring-mass chain.

ties through the multiple scales perturbation approach.
Strong and weak linear coupling between the oscilla-
tors is discussed and the comparison between numeri-
cal and analytical results is presented.

2 Infinite chain of nonlinear oscillators: propaga-
tion regions

A mechanical model for an infinite chain of linearly-
coupled nonlinear oscillators, schematically depicted
in Figure 1, has been chosen in the form:

mün+k1un+k3u
3
n+k(2un−un−1−un+1) = 0 (1)

The equation of motion (1) is characterized by on-site
cubic nonlinearity, as e.g. in [Manevitch, 2001], de-
scribing a chain of Hamiltonian oscillators. Periodic
solutions of equation (1) are sought for by assuming
the time harmonic solutionun = an cos(ωt) (har-
monic balance with only the first harmonic), and set-
tingα = mω2−k1

k −2 and β = −3k3
4k , the following

second-order difference equation for the stationary am-
plitude is obtained

(α + βa2
n)an + an+1 + an−1 = 0 (2)

Equation (2), relating the amplitudesa in adjacent
chain sitesn − 1, n and n + 1, can be rewritten in
matrix form asan+1 = T(an)an, whereT(an) is the
nonlinear transfer matrix. In the linear case,T repre-
sents a symplectic linear transformation and its recip-
rocal eigenvaluesλ satisfyλ1λ2 = 1. As well known,
such eigenvalues govern the stationary wave transmis-
sion properties: if the eigenvalues lie on the unit cir-
cle, then free waves propagate harmonically without
attenuation (pass band,P); if the eigenvalues are real,
then free waves decay without oscillations (stop band,
S). In the more general nonlinear case,T(an) be-
longs to the class of area preserving maps such that
det(DT(an)) = 1, whereDT is the Jacobian or tan-
gent map with reciprocal eigenvalues. Therefore, in or-
der to study the stationary wave transmission properties
of the one-dimensional nonlinear chain (1) of lenght
N , it is convenient to rely on the eigenvalues of the lin-
earized map equations in the neighborhood of an orbit
ranging from(a0, a1) to (aN−1, aN ). Indeed, accord-
ing to [Hennig and Tsironis, 1999], the transformation
an+1 = T(an)an can be considered as a dynamical

system where the chain indexn plays the role of dis-
crete time, so that the analysis of the transmission prop-
erties is equivalent to the stability analysis of the orbits.
The linear stability of a given orbit is investigated by in-
troducing a small complex-valued perturbationvn; lin-
earizing the map equations, a second-order difference
equation for the perturbation is obtained leading to the
two-dimensional Jacobian

DT =
[
−α − 3βa2

n −1
1 0

]
(3)

The interest lies in the linear stability of spatially peri-
odic orbitsan+q = an with cycle lengthq. The eigen-
values ofDT are determined by its trace, so the stabil-
ity of period-q orbits is described bytr(DTq). If the
eigenvalues lie on the unit circle, then stable elliptic
periodic cycles or oscillating solutions (pass band,P)
occur; if the eigenvalues are real, then unstable hyper-
bolic periodic cycles or exponentially increasing solu-
tions (stop band,S) occur [Hennig and Tsironis, 1999].
For period-1 orbits the curves bounding the propaga-
tion regions, where the eigenvalues lie on the unit cir-
cle, can be determined by the condition|tr(DT)| =
2. Having setan+1 = x̃n+1 and an = ỹn+1

and introduced the change of variables(x̃, ỹ) →
(x/

√
β, y/

√
β), such boundaries are given by

r := {(x, α) | 3x2 + α + 2 = 0}
s := {(x, α) | 3x2 + α − 2 = 0}

(4)

and are shown in Figure 2a in thex-positive half-plane.
The curvesr ands represent hyperbolic (λ1 = λ2 = 1)
and reflection hyperbolic (λ1 = λ2 = −1) boundaries,
respectively. In Figure 2b further curvesti, lying inside
the pass band region, are depicted; they are determined
by satisfying the condition|tr(DTq)| = 2 for q = 4
and their number depends on the periodicity of the or-
bit, i.e. ti with i = 1, . . . , q−1. While the curvesr are
always hyperbolic boundaries, the curvess are either
hyperbolic with reflection boundaries, forq odd, or hy-
perbolic boundaries, forq even. Whenever a period-q
orbit crosses a curveti it temporarily loses its stability
or, equivalently, does not propagate, through either a
saddle-node or a period-doubling bifurcation fori even
or i odd, respectively. As expected, the nonlinearity
(β 6= 0) implies a propagation region depending on the
amplitude of oscillationsx = x̃

√
β (see Figure 2), in

contrast to the linear case, where the propagation re-
gion is given by|α| ≤ 2. As thoroughly described in
[Romeo and Rega, 2006], period-1 and period-4 orbits,
representing the fixed points ofT andT4, respectively,
are determined as

Period-1: x = y = ±
√
−2 − α

Period-4: x = y = ±
√
−α

(5)



Figure 2. Propagation region of period-q orbits: a)q = 1; b)

q = 4.

and are superimposed in Figures 2a and 2b, respec-
tively. It can be noticed that, regardless of the peri-
odicity q, the bounded orbits region coincides with that
of the period-1 case whose boundaries are given by the
curves of equations (4).

3 Finite chains: nonlinear frequencies and modes

Figure 3. Monocoupled finite nonlinear spring-mass chain.

In this section we consider a finite chain composed by
N mono-coupled weakly nonlinear oscillators having
both ends fixed; the chain model is derived from equa-
tion (1) and it is sketched in Figure 3. The governing
equations of motion can be written in the compact form

Iü + Ku + β̂n = 0 (6)

whereu= (u1, u2, . . . , uN)T , n= (u3
1, u

3
2, . . . , u

3
N)T ,

I andK are theNxN identity and stiffness matrices, re-
spectively; the latter is a tridiagonal matrix of the form

K =




α1 −α2 0 0 0
−α2 α1 −α2 0 0

0 · · · 0
0 0 −α2 α1 −α2

0 0 0 −α2 α1




(7)

and the parameters are:α1 = (k1 + 2k)/m, α2 =
k/m and β̂ = k3/m; the first and last row ofK take
into account the boundary conditions. The weak cubic
nonlinearity allows us to assume a series expansion of
the solution as:

u = εu1 + ε3u3,
d

dt
= d0 + ε2d2 + . . . (8)

with dk = ∂/∂tk andtk = εkt (k = 0, 2, . . .), so that
the perturbation equations read

ε : Iü1 + Ku1 = 0
ε3 : Iü3 + Ku3 = −β̂n1 − 2d0d2u1

(9)

wheren1 = (u3
11, u

3
12, . . . , u

3
1N)T . The orderε so-

lution of equation (91) can be put in the formu1 =∑N
j=1 u1j, where

u1j = Ajφje
iωj t + c.c. (10)

with φj = (φj1, φj2, . . . , φjN)T being the j-th or-
thonormal linear mode andωj the corresponding linear
frequency. By substituting expression (10) in the order
ε3 equations (92) we get, for each higher-order modal
contribution,

Iü3j + Ku3j =
(
−β̂A3

jξje
3iωjt −

3β̂A2
j Ājηje

iωjt − 2iωjφjA
′
je

iωjt
)

+ c.c.
(11)

with the vectorsξj = (φ3
j1, φ

3
j2, . . . , φ

3
jN)T andηj =

(φ2
j1φ̄j1, φ

2
j2φ̄j2, . . . , φ

2
jN φ̄jN )T including the mode

nonlinearities. In the non-internally resonant case, the
solvability condition for thej-th mode yields

φT
j (−3β̂A2

j Ājηj − 2iωjA
′
jφj) = 0 (12)

entailing

A′
j = −

3β̂A2
jĀjφ

T
j ηj

2iωjφ
T
j φj

(13)



Taking equation (13) into account, equation (11) reads

Iü3j + Ku3j = −β̂A3
jξje

3iωjt0 + c.c. (14)

and a particular solution of the latter can be found via
the method of undetermined coefficients by letting

u3j = γjA
3
je

3iωjt0 + c.c. (15)

whereγj =(γj1, γj2, . . . , γjN )T . By substituting (15)
into (14) a set of algebraic equations for theγj is ob-
tained:

(
K − 9 ω2

j I
)
γj = −β̂ξj + c.c. (16)

Once the vectorγj is determined, thej-th modal re-
sponse is obtained as

uj = εAjφje
iωjt0 + ε3γjA

3
je

3iωjt0 + c.c. (17)

By writing Aj in the polar formAj = 1/2aje
iθj , sub-

stituting into the solvability equation (12) and separat-
ing real and imaginary parts we obtain

a′
j = 0 ϑ′

j =
3 β̂a2

jφ
T
j ηj

8 ωj
(18)

where equation (182) represents the natural frequencies
corrections. Moreover, the solution (17), reabsorbing
theε, can be expressed in trigonometric form as follows

uj = ajφj cos(ωjt0 + θj) +
1
4
a3

jγj cos(3 ωjt0 + 3 θj) (19)

In view of the numerical investigation presented in Sec-
tion 4, where the frequency-amplitude curves of finite
chains will be shown against the propagation region of
the infinite chain, the parameterµ = k1/k is intro-
duced. It allows to investigate the effect of the ratio be-
tween the on-site (k1) and the coupling (k) linear stiff-
nesses on the wave propagation. Aiming at analysing
the effect ofµ, the propagation regions described in
Section 2 are herein represented in theµ-ω-a space
(Figure 4a) and itsµ-ω plane projection (Figure 4b).
In particular the propagation region lies between the
upper and lower bounding surfaces given by the corre-
sponding version of equations (4). It is seen that, asµ
increases, the propagation region shrinks since the ef-
fect of coupling between the oscillators of the chain be-
comes weaker and weaker in absolute or relative sense.

Figure 4. Propagation region vs coupling stiffness ratio (β̂=0.01).

a) Amplitude dependent propagation region in theµ-ω-a space; b)

propagation region in theµ-ω plane.

4 Numerical investigations
Results pertaining to instances of finite chains as

sketched in Figure 3 are presented in this sec-
tion. Chains of 15 elements are considered and the
frequency-amplitude relation governing nonlinear free
vibrations is evaluated based on the natural frequencies
corrections given by equation (182) having setβ̂ = 1.
In Figure 5 such frequency-amplitude curves are pre-
sented against the nonlinear propagation regions of the
corresponding infinite chain. As expected, for small
amplitude oscillations all the natural frequencies fall
within the passing band. Figure 5a and 5b refer to
chains characterized by strong (µ = 0.1) and weak
(µ = 10.0) coupling between the oscillators. The prop-
agation regions shrinking, previously shown in Figure
4, entails the increasing of modal density as the cou-
pling becomes weaker.
The modal response given by equation (19) is also in-
vestigated. In Figure 6 the nonlinear correction of the
mode shapes as the amplitude increases is shown for
the first (6a) and the eighth (6b) modes for the same
five amplitude levels. Analysis of the other modes lead
to infer that the nonlinear correction becomes weaker



Figure 5. Chain of 15 nonlinear oscillators: frequency-amplitude

relations against the nonlinear propagation region (β̂=1). a)µ =
0.1; b) µ = 10.0.

as the mode number increases. Figures 7 and 8 show
the time evolution of the first and eighth mode, re-
spectively. In particular, the linear cases are shown in
Figures 7a and 8a while the nonlinear ones are repre-
sented in 7b and 8b. The modes are sampled at equal
time intervals, chosen according to the relevant peri-
ods. Therefore the expected anharmonic response in
presence of nonlinearity can be noticed from the loss
of symmetry with respect to the resting position. As
shown in Figures 6b and 8, the eighth mode turns out
to be a spatially period-4 solution of the considered fi-
nite chain. This circumstance occurs for any fixed-fixed
chain (Figure 3) withN oscillators, for the(N + 1)/2-
th mode, withN odd and greater than 1. Thus, the
eighth frequency-amplitude approximated curve can be
compared with the analytical one for the infinite chain
given by equation (5b). Such comparison provides with
the frequency differences (%) reported in Figure 9 for
increasing response amplitude andβ̂=0.5.

5 Conclusions
Frequency-amplitude relations and nonlinear modes

in finite, fixed-fixed chains of weakly nonlinear oscilla-
tors, have been built through the multiple scale pertur-
bation approach. These results have been considered
against the nonlinear propagation regions of the infi-

Figure 6. Chain of 15 nonlinear oscillators: nonlinear correction of

the mode shapes as the amplitude increases. a) First mode; b) eighth

mode.

nite chain. The latter have been studied based on the
(space/time) analogy of the linear stability analyses of
the relevant maps, that provided analytically both the
boundaries of pass-band regions and the periodic or-
bits. The frequency-amplitude curves obtained for the
finite chain highlighted that for small amplitude oscil-
lations all the natural frequencies fall within the nonlin-
ear passing band. Moreover a good agreement between
the spatial period-4 solution obtained from the pertur-
bation analysis and the analytical one, given by the map
approach, was found. Since only on-site nonlineari-
ties were taken into account it is expected that different
boundary conditions will not affect the pursued treat-
ment and the overall conclusions whilst certainly im-
plying quantitative modifications of the results.
Future work will address the possible correlation be-
tween the stability analysis of the perturbation spatially
periodic solutions and the wave propagation analysis of
the infinite chain.



Figure 7. Chain of 15 nonlinear oscillators: first mode time evolu-

tion. a) Linear ; b) nonlinear.
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